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ABSOLUTE CONVERGENCE OF THE

DOUBLE FOURIER–FRANKLIN SERIES
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Abstract: We prove that, for every 0 < ε < 1, there exists a measurable set E ⊂ T = [0, 1]2 with
measure |E| > 1 − ε such that, for all f ∈ L1(T ) and 0 < η < 1, we can find f̃ ∈ L1(T ) with∫∫
T
|f(x, y) − f̃(x, y)| dxdy ≤ η coinciding with f(x, y) on E whose double Fourier–Franklin series

converges absolutely to f almost everywhere on T .
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§ 1. Introduction
The article is devoted to absolute convergence almost everywhere of the series in the double Franklin

system from the point of view of the classical Luzin [1] and Menshov [2] Theorems of “functions improve-
ment.”
The Franklin system [3] is one of the popular systems of functions, and many articles are devoted

to its study. One of its principal properties is the fact that it constitutes an orthogonal basis for C[0, 1]
and an unconditional basis for Lp[0, 1], p ∈ (1,∞), where C[0, 1] is the space of all continuous functions
on [0, 1] (‖f‖C = maxx∈[0,1] |f(x)|), while Lp[0, 1] (p > 0) is the space of measurable functions on [0, 1] for
which

∫
[0,1] |f(x)|p dx <∞. We denote by |E| the Lebesgue measure of a set E ⊆ [0, 1] (E ⊆ T = [0, 1]2).

Many articles address the convergence of the Fourier series in the classical systems after changing
the values of the function on a set of small measure.
The following result is well known:

Theorem A [2]. Let f(x) be a measurable function finite almost everywhere on [0, 2π]. For every
ε > 0, we can define a continuous function g(x) coinciding with f(x) on some set E with measure
|E| > 2π − ε whose Fourier series in the trigonometric system converges uniformly on [0, 2π].
Many interesting results have been obtained in this area. We describe those relevant to the results

of this article.

Theorem B [4]. Given an almost everywhere measurable and finite function f(x) on [0, 1] and a real

0 < ε < 1, we can find f̃ ∈ L2[0, 1) with |{x : f(x) 	= f̃(x)}| < ε whose Fourier series in the Haar system
converges absolutely and uniformly on [0, 1].

Theorem C [5]. Given f ∈ C[0, 1] and 0 < ε < 1, we can find f̃ ∈ C[0, 1] with |{x : f(x) 	= f̃(x)}| < ε
whose Fourier series in the Franklin system converges absolutely and uniformly on [0, 1].

We should observe that Katsnelson proved in [6] that it is impossible in the Menshov Theorem to
achieve absolute convergence (i.e., Theorem C is false for the trigonometric system).

Theorem D [7]. For every 0 < ε < 1, there exists a measurable set E ⊂ [0, 1] with measure
|E| > 1− ε such that for each f ∈ L1[0, 1) we can find f̃ ∈ L1[0, 1) coinciding with f on E whose Fourier
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series in the Haar system converges absolutely almost everywhere on [0, 1] and all nonzero terms in the

sequence of Fourier coefficients of f̃ in the Haar system are placed in descending order.

Observe that the “exceptional” set e, on which the change of f(x) happens, is universal in Theo-
rem D (serves the entire function class), whereas e essentially depends on the improved function f(x) in
Theorems B and C; in those theorems, it is impossible to choose e independently of f(x). The following
theorem of [8] yields the same fact for the Franklin system:

Theorem E. For every set E with positive measure and for each density point x0 of E, there exists
f0 ∈ C[0, 1] such that the Fourier–Franklin series of f(x) diverges absolutely at x0 for every bounded
function f(x) coinciding with f0(x) on E.

Theorem E is also valid for the Haar system. Note that this “bad” property is not common for all
bases for C[0, 1]; in particular, it is proven in [9] that the Faber–Schauder system does not possess this
property. Namely, the following holds:

Theorem F. For every 0 < ε < 1, there exists a measurable set E ⊂ [0, 1] with measure |E| > 1− ε
such that, for every f ∈ C[0, 1], we can find g ∈ C[0, 1] coinciding with f on E whose expansion∑∞
k=0Ak(g)ϕk(x) in the Faber–Schauder system converges absolutely and uniformly on [0, 1] and∥

∥
∥
∥

∞∑

n=1

|An(g)|ϕn
∥
∥
∥
∥
C

≤ ‖g‖C < 2‖f‖C .

This leads immediately to the question whose answer is still unknown.

Question 1. Is there an orthogonal basis for C[0, 1] for which Theorem F is valid?

Theorem E implies that it is impossible, by changing the values of each continuous function f(x) on
the given set, to obtain g(x) ∈ C[0, 1] whose Fourier–Franklin series converges absolutely and uniformly
on [0, 1]. However, the problem becomes solvable if we require that, after the change of f(x) ∈ L1[0, 1] on
the given set, we obtain g(x) whose Fourier–Franklin series converges absolutely and almost everywhere
on [0, 1], while f(x) itself is only summable. Moreover, the following is proved in [8]:

Theorem G. For every 0 < ε < 1, there exists a measurable set E ⊂ [0, 1] with measure |E| > 1− ε
such that, for each f ∈ L1[0, 1), we can find f̃ ∈ L1[0, 1) coinciding with f on E whose Fourier–Franklin
series converges absolutely to f̃ almost everywhere on [0, 1] and the sequence of the Fourier coefficients

of f̃ in the Franklin system {fn(x)}∞n=0 lies in all lr, r > 2, i.e.,
∞∑

n=0

|cn(f̃)|r <∞ ∀r > 2, where cn(f̃) =
1∫

0

f̃(x)fn(x) dx.

In this article we investigate whether we can obtain similar results for double Franklin series.
Let T = [0, 1]2, p ∈ [1,∞), and f ∈ Lp(T ). The Fourier coefficients of f ∈ Lp(T ) in the double

Franklin system {fk(x)fs(y)}∞k,s=0 are denoted by
ck,s(f) =

∫∫

T

f(t, τ)fk(t)fs(τ) dtdτ, k, s ∈ N ∪ {0}. (1.1)

Put
Λ(f) := spec{ck,s(f)} = spec(f) = {(k, s), ck,s(f)} 	= 0, k, s ∈ N ∪ {0}. (1.2)

The rectangular and spherical partial sums of the double Fourier–Franklin series are determined as
follows:

SN,M (x, y, f) :=
N∑

k=0

M∑

s=0

ck,s(f)fk(x)fs(y), (1.3)

SR(x, y, f) :=
∑

k2+s2≤R2
ck,s(f)fk(x)fs(y). (1.4)
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Observe that some results are impossible to transfer from the one-dimensional case to the two-
dimensional; even particular (spherical, rectangular, or square) partial sums differ strikingly from each
other in their properties with respect to convergence in Lp, p ≥ 1, and convergence almost everywhere.
In particular, the following result justifies the above-mentioned fact: There exists a summable func-

tion f0(x, y) on T whose rectangular partial sums of the double Fourier–Haar series [10] diverge almost
everywhere on T (we do not know whether such result is valid for double Fourier–Franklin series).
Note that in the one-dimensional case the Fourier–Franklin series of every f ∈ L1[0, 1] converges

almost everywhere on [0, 1].
The question arises naturally: Is there a measurable set e with arbitrarily small measure such that

after changing the values of each g ∈ L1(T ) on e the Fourier series in the double Franklin system
{fk(x)fs(y)}∞k,s=0 of the resulting function converges almost everywhere on T by rectangles or spheres?
It turns out that the answer to this question is in the affirmative.

Theorem 1. For every 0 < ε < 1, there exists a measurable set E ⊂ T = [0, 1]2 with measure
|E| > 1− ε such that, for each f ∈ L1(T ), we can find f̃ ∈ L1(T ) coinciding with f(x, y) on E and such
that both rectangular and spherical partial sums of the double Fourier–Franklin series of f̃ converge to f̃
almost everywhere on T .

Moreover, in this article we prove

Theorem 2. For every 0 < ε < 1, there exists a measurable set E ⊂ T = [0, 1]2 with measure |E| >
1−ε such that, for all f ∈ L1(T ) and 0 < η < 1, we can find f̃ ∈ L1(T ) with ∫∫T |f(x, y)−f̃(x, y)| dxdy ≤ η
coinciding with f(x, y) on E whose double Fourier–Franklin series converges absolutely to f̃ almost
everywhere on T .

This theorem follows from the stronger result:

Theorem 3. There exists a series in the double Franklin system of the form

∞∑

k=0

∞∑

s=0

dk,sfk(x)fs(y),
∞∑

k,s=0

|dk,s|r <∞, r > 2, (1.5)

such that, for every 0 < ε < 1, there exists a measurable set E ⊂ T with measure |E| > 1− ε such that,
for all f ∈ L1(T ) and 0 < η < 1, we can find f̃ ∈ L1(T ) with ∫∫T |f(x, y)− f̃(x, y)| dxdy ≤ η coinciding
with f(x, y) on E whose Fourier–Franklin series converges absolutely to f̃ almost everywhere on T and

ck,s(f̃) = dk,s, (k, s) ∈ Λ(f̃) = spec(f̃).

Question 2. Is it possible to choose as a (1.5) series the Fourier series in the double Franklin system
for some g ∈ L1(T )?

§ 2. Proof of the Main Lemma
Recall the definition of the Franklin system [3]. Let π1 = {0, 1} and

πn = {ts}ns=0, where ts = ts(n) =
{ s
2k+1

if s = 0, 1, . . . , 2i,

s−i
2k

if s = 2i+ 1, . . . , n,

for n = 2k + i, k = 0, 1, . . . , i = 1, 2, . . . , 2k.
Denote by Sn the space of functions continuous on [0, 1] and piecewise linear with nodes from πn.

Observe that πn is obtained by adding the point zn = t2i−1(n) = 2i−1
2k+1

to πn−1.
The system of the Franklin functions F = {fn(x)} is determined on [0, 1] as follows:

f0(x) = 1, f1(x) =
√
3(2x− 1), x ∈ [0, 1],

fn(x) ∈ Sn, fn ⊥ Sn−1, ‖fn‖L2 = 1, fn(t2i−1(n)) > 0, n ≥ 2.
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Divide the interval [0, 1] into 2q equal parts: Δ
(j)
q =

[
j−1
2q ,

j
2q

]
, 1 ≤ i ≤ 2q, which we call binary

intervals.

Remark 1. Given f ∈ L1(T ) and a positive real ξ, there exists a polynomial Q(x, y) in the double
Franklin system {fk(x)fs(y)}∞k,s=0 such that

3

4
ξ ≤
∫∫

T

|f(x, y)−Q(x, y)| dxdy ≤ 5
4
ξ. (2.1)

Indeed, it is easy to see that we can choose a polynomial Q(x, y) in the double Franklin system
{fk(x)fs(y)}∞k,s=0 such that ∫∫

T

|(f(x, y)− ξ)−Q(x, y)| dxdy ≤ ξ
4
.

Hence, ∫∫

T

|f(x, y)−Q(x, y)| dxdy ≤ ξ
4
+ ξ,

∫∫

T

|f(x, y)−Q(x, y)| dxdy ≥
∫∫

T

ξ dxdy −
∫∫

T

|[f(x, y)− ξ]−Q(x, y)| dxdy ≥ ξ − ξ
4
.

Lemma 1. Given f ∈ L1(T ) and a sequence of positive reals {ξk}∞k=1 with

0 < ξk+1 ≤ ξk
5
, k ≥ 1, (2.2)

we can find a sequence of polynomials {Πk(x, y)}∞k=1 in the double Franklin system {fn(x)fs(y)}∞n,s=0
with rational coefficients such that

lim
N→∞

∫∫

T

∣
∣
∣
∣

N∑

k=1

Πk(x, y)− f(x, y)
∣
∣
∣
∣ dxdy = 0, lim

N→∞

N∑

k=1

Πk(x, y) = f(x, y) a.e. on T,

ξk
2
≤
∫∫

T

|Πk(x, y)| dxdy ≤ 3
2
ξk, k ≥ 2.

Proof. It is easily seen that, by Remark 1, we can choose a sequence of polynomials {Qk(x, y)}∞k=1
in the double Franklin system {fn(x)fs(y)}∞n,s=0 with rational coefficients such that

3

4
ξk+1 ≤

∫∫

T

|f(x, y)−Qk(x, y)| dxdy ≤ 5
4
ξk+1, k ≥ 1. (2.3)

Put

Πk(x, y) = Qk(x, y)−Qk−1(x, y), k ≥ 1, Q0(x, y) = 0. (2.4)

From (2.3) and (2.4) it follows that

∫∫

T

∣
∣
∣
∣f(x, y)−

N∑

k=1

Πk(x, y)

∣
∣
∣
∣ dxdy =

∫∫

T

|f(x, y)−QN (x, y)| dxdy ≤ 5
4
ξN , N ≥ 1. (2.5)
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By (2.2)–(2.4), derive
∫∫

T

|Πk(x, y)| dxdy ≤
∫∫

T

|f(x, y)−Qk(x, y)| dxdy

+

∫∫

T

|f(x, y)−Qk−1(x, y)| dxdy ≤ 3
2
ξk, k ≥ 2,

∫∫

T

|Πk(x, y)| dxdy ≥
∫∫

T

|f(x, y)−Qk−1(x, y)| dxdy

−
∫∫

T

|f(x, y)−Qk(x, y)| dxdy ≥ ξk
2
, k ≥ 2.

Putting

B :=
∞⋃

q=1

∞⋂

N=q

{

(x, y) ∈ T : |f(x, y)−
N∑

k=1

Πk(x, y)| <
√
ξN

}

and using (2.2) and (2.5), we get |B| = 1.
It is clear that

∣
∣f(x, y)−∑Nk=1Πk(x, y)

∣
∣→ 0 as →∞ on B; consequently,

lim
N→∞

N∑

k=1

Πk(x, y) = f(x, y) a.e. on T.

Lemma 1 is proven.

Below we will use the following lemma (see [8, Lemma 6]):

Lemma 2. Assume given ε0, δ0, λ0, θ0, τ0, σ0 ∈ (0, 1), some N0 ∈ N, ε0 < δ0, and the binary interval
Δ = [a, b]. Then there exist a polynomial in the Franklin system of the form Q(t) =

∑M
n=N0

anfn(t) and
G ⊂ E ⊂ [a, b] such that
(1) |E| > (1− ε0)(b− a), |G| > (1− δ0)(b− a),

(2) Q(t) = 0 for all t /∈ [a, b],

(3) Q(t) = 1 for all x ∈ E,

(4)

∫

[a,b]

|Q(t)| dt < 2(b− a),

(5)
M∑

n=N

|anfn(t)| < θ0 for all t /∈ (a− λ0, b+ λ0),

(6)

( M∑

n=N0

|an|2+σ0
) 1
2+σ0

< τ0,

(7)
M∑

n=N0

|anfn(t)| <
A
(
log 1δ0

)

δ0
for all t ∈ G, where A is constant.
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Lemma 3. Assume given 0 < η < ε < δ < 1, r > 2, some N ∈ N, and f(x, y) ∈ L1(T ) with∫∫
T |f(x, y)| dxdy > 0. Then there exist G ⊂ E ⊂ T , g(x, y) ∈ L1(T ), and the polynomial in the double
Franklin system of the form

Q(x, y) =
M∑

k,s=N

ck,sfk(x)fs(y)

such that

(1) |E| > 1− ε, |G| > 1− δ,

(2) g(x, y) = f(x, y) on E,

(3)

∫∫

T

|g(x, y)−Q(x, y)| dxdy ≤ η,

(4)

∫∫

T

|g(x, y)| dxdy ≤ 5
∫∫

T

|f(x, y)| dxdy,

(5)
M∑

k,s=N

|ck,sfn(x)fs(y)| ≤
B
(
log 1δ

)2|f(x, y)|
δ2

+ η, (x, y) ∈ G, where B is constant,

(6)

( M∑

k,s=N

|ck,s|r
) 1r
≤ η.

Proof of Lemma 3. Take the step-function

ϕ(x, y) =
2q∑

l,j=1

γl,jχΔl,,j (x, y), (2.6)

where
Δl,,j = Δ

′
l ×Δ

′′
j = [αl−1, αl]× [αj−1, αj ], (2.7)

αj =
j

2q
, j = 0, 1, . . . , 2q, (2.8)

such that ∫∫

T

|f(x, y)− ϕ(x, y)| dxdy < min
[

ηδ3

128A2
(
log 1δ

)2 ;
1

2

∫∫

T

|f(x, y)| dxdy
]

. (2.9)

Let

E0 =

{

(x, y) ∈ T : |f(x, y)− ϕ(x, y)| < ηδ2

32A2
(
log 1δ

)2

}

. (2.10)

By (2.9) and (2.10), we obtain

|E0| >
(

1− δ
4

)

. (2.11)
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Put

∂ =
δη

(
4A

2q∑

l,j=1

|γl,j |+ 1
)(
log 1δ

)
. (2.12)

Apply Lemma 2 (for each l ∈ [1, 2q]), putting

Δ = Δ′l, ε0 =
ε

4
, δ0 =

δ

4
, N0 = Nl, τ0 =

( 2q∑

l,j=1

|γl,j |
)−1
,

σ0 = r − 2, λ0 = δ

2q+4
, θ0 = ∂.

Then the measurable set G′l ⊂ E′l ⊂ Δ′l and polynomials in the Franklin system

Q′l(x) =
Nl+1∑

n=Nl+1

a
(l)
k fn(x) (2.13)

are determined for each l ∈ [1, 2q] and satisfy the conditions

|E′l| > |Δ′l|
(

1− ε
4

)

, |G′l| > |Δ′l|
(

1− δ
4

)

, (2.14)

Q′l(x) =
{
1 for x ∈ E′l,
0 for x /∈ Δ′l,

(2.15)

∫

Δ′
l

|Ql(x)| dx < 2|Δ′l|, (2.16)

Nl+1∑

k=Nl+1

∣
∣a(l)k fk(x)

∣
∣ < ∂, x /∈

[

αl − δ

2q+4
, αl+1 +

δ

2q+4

]

, (2.17)

Nl+1∑

k=Nl+1

∣
∣a(l)k fk(x)

∣
∣ <
4A
(
log 1δ

)

δ
, x ∈ G′l, (2.18)

( Nl+1∑

k=Nl+1

∣
∣a(l)k
∣
∣r
) 1r
<

( 2q∑

l,j=1

|γl,j |
)−1
. (2.19)

Again, apply Lemma 2 (for each j ∈ [1, 2q]), putting

Δ = Δ′′j , ε0 =
ε

4
, δ0 =

δ

4
, N0 = N2q+1,

τ0 = η, σ0 = r − 2, λ0 = δ

2q+4
, θ0 = ∂.

Then the measurable sets G′′j ⊂ E′′j ⊂ Δ′′j and the polynomial in the Franklin system

Q′′j (y) =
Mj+1∑

s=Mj+1

b(j)s fs(y), M1 = N2q , (2.20)
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are determined for each j ∈ [1, 2q] and satisfy the conditions

|E′′j | > |Δ′′j |
(

1− ε
4

)

, |G′′j | > |Δ′′j |
(

1− δ
4

)

, (2.21)

Q′′j (y) =
{
1 for y ∈ E′′j ,
0 for x /∈ Δ′′j ,

(2.22)

∫

Δ′′j

|Q′′j (y)| dy < 2|Δ′′j |, (2.23)

Mj+1∑

s=Mj+1

∣
∣b(j)s fs(y)

∣
∣ < ∂, y /∈

[

βj − δ

2q+4
, βj+1 +

δ

2q+4

]

, (2.24)

Mj+1∑

s=Mj+1

∣
∣b(j)s fs(y)

∣
∣ <
A
(
log 1δ

)

δ
, x ∈ G′′j , (2.25)

( Mj+1∑

s=Mj+1

∣
∣b(j)s
∣
∣r
) 1
r

< η. (2.26)

Define Q(x, y), g(x, y), E, and G as follows:

Q(x, y) =
2q∑

l,j=1

γl,jQ
′
l(x)Q

′′
j (y) =

2q∑

l,j=1

γl,j

Nl+1∑

k=Nl+1

a
(l)
k fk(x)

Mj+1∑

s=Mj+1

b(j)s fs(y)

=
M∑

k,s=N

ck,sfk(x)fs(y), M =M2q+1, (2.27)

ck,s =

⎧
⎪⎨

⎪⎩

γl,ja
(l)
k b
(j)
s , (k, s) ∈ Ωl,j := (Nl, Nl+1]× (Mj ,Mj+1], l, j ∈ [1, 2q],

0, (k, s) /∈
2q⋃

lj=1

Ωl,j ,
(2.28)

g(x, y) = f(x, y)− [ϕ(x, y)−Q(x, y)], (2.29)

E =
2q⋃

l=1

2q⋃

j=1

(E′l × E′′j ), (2.30)

G = E0 ∩
[( 2q⋃

l=1

G
′
l

)

×
( 2q⋃

j=1

G
′′
j

)]

\E0 ∩ [(Aq × [0, 1]) ∪ ([0, 1]×Aq)], (2.31)

where Aq =
⋃2q
l=1

[
αj − δ

2q+4
, αj +

δ
2q+4

]
. From (2.6), (2.11), (2.14), (2.15), (2.21), (2.22), (2.27), and

(2.29)–(2.31) it follows that

|E| > 1− ε, |G| > 1− δ, g(x, y) = f(x, y) on E,
∫∫

T

|g(x, y)−Q(x, y)| dxdy ≤ η.

By (2.6), (2.15), (2.16), (2.22), (2.23), and (2.27), we obtain

∫∫

T

|Q(x, y)| dxdy =
q∑

l,j=1

|γl,j |
∫

Δ′
l

|Ql(x)| dx
∫

Δ′′j

|Q′′j (y)| dy ≤ 4
q∑

l,j=1

|γl,j ||Δ′l||Δ
′′
j | = 4

∫∫

T

|ϕ(x, y)| dxdy.
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Hence, (2.9) and (2.29) imply that

∫∫

T

|g(x, y)| dxdy ≤
∫∫

T

|f(x, y)− ϕ(x, y)| dxdy +
∫∫

T

|Q(x, y)| dxdy ≤ 5
∫∫

T

|f(x, y)| dxdy.

Verify the claim (5) of Lemma 3.

If (x, y) ∈ G, then (x, y) ∈ G′l0 × G′′j0 for some l0 and j0. Using (2.6), (2.12), (2.17), (2.18), (2.24),
(2.25), (2.28), and (2.31), we obtain

M∑

k,s=N

|ck,sfn(x)fs(y)| ≤
2q∑

l,j=1

|γl,,j |
( Nl+1∑

n=Nl+1

∣
∣a(l)k fk(x)

∣
∣
)( Mj+1∑

s=Mj+1

∣
∣b(j)s fs(y)

∣
∣
)

= |γl0,j0 |
( Nl0+1∑

n=Nl0+1

∣
∣a(l0)k fk(x)

∣
∣
)( Mj0+1∑

s=Mj0+1

∣
∣b(j0)s fs(y)

∣
∣
)

+
∑

(l,j)∈[1,2q ]2\(l0,j0)
|γl,j |
( Nl+1∑

n=Nl+1

∣
∣a(l)k fk(x)

∣
∣
)( Mj+1∑

s=Mj+1

∣
∣b(j)s fs(y)

∣
∣
)

≤ 16A
2
(
log 1δ

)2|γl0,j0 |
δ2

+ 2

( 2q∑

l,j=1

|γl,j |
)(
A log 1δ
δ
∂ + ∂2

)

≤ B
(
log 1δ

)2|ϕ(x, y)|
δ2

+
η

2
, where B = 16A2. (2.32)

The inequality (see (2.9) and (2.31))

|ϕ(x, y)| < |f(x, y)|+ ηδ2

32A2
(
log 1δ

)2 , (x, y) ∈ G ⊂ E0,

together with (2.32) implies

M∑

k,s=N

|ck,sfk(x)fs(y)| ≤
B
(
log 1δ

)2|f(x, y)|
δ2

+ η.

Owing to (2.19), (2.26), and (2.28) we have

( M∑

k,s=N

|ck,s|r
) 1
r

=

( 2q∑

l,j=1

Nl+1∑

n=Nl+1

Mj+1∑

s=Mj+1

∣
∣γl,ja

(l)
k b
(j)
s

∣
∣r
) 1
r

=

( 2q∑

l,j=1

|γl,j |r
Nl+1∑

n=Nl+1

∣
∣a(l)k
∣
∣r

Mj+1∑

s=Mj+1

∣
∣b(j)s
∣
∣r
) 1
r

≤
2q∑

l,j=1

|γl,j |
( M∑

k=N

∣
∣a(l)k
∣
∣r
) 1
r
( M∑

s=N

∣
∣b(j)k
∣
∣r
) 1
r ≤ η.

Lemma 3 is proven.
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§ 3. Proof of Theorem 3
Let ε > 0. Denote by

{φn(x, y)}∞n=1 (3.1)

the sequence of polynomials in the double Franklin system {fk(x)fs(y)}∞k,s=0 with rational coefficients
and put

δn = min

{
1

2
; 4

√
√
√
√

∫∫

T

|φn(x, y)| dxdy
}

. (3.2)

Applying Lemma 3, we can find the sequences of sets {Gn} and {En}, the functions {gn(x, y)}, and the
polynomials in the double Franklin system

Qn(x, y) =

Mn+1∑

k,s=Mn+1

c
(n)
k,sfk(x)fs(y), (3.3)

which for all n ≥ 1 satisfy the conditions:
En, Gn ⊂ T, |En| > 1− ε2−(n+2), |Gn| > 1− δn, (3.4)

gn(x, y) = φn(x, y) on En, (3.5)
∫∫

T

|gn(x, y)−Qn(x, y)| dxdy ≤ 2−5(n+3), (3.6)

∫∫

T

|gn(x, y)| dxdy ≤ 5
∫∫

T

|φn(x, y)| dxdy, (3.7)

Mn+1∑

k,s=Mn+1

∣
∣c(n)k,sfk(x)fs(y)

∣
∣ ≤ B

(
log 1δn

)2|φn(x, y)|
δ2n

+ 2−5(n+3), (x, y) ∈ Gn, (3.8)

( Mn+1∑

k,s=Mn+1

∣
∣c(n)k,s
∣
∣2+2

−n
) 1
2+2−n ≤ 2−5(n+3). (3.9)

Put

E =
∞⋂

n=1

En, (3.10)

∞∑

k,s=0

dk,sfk(x)fs(y) =

∞∑

n=1

Qn(x, y) =

∞∑

n=1

Mn+1∑

k,s=Mn+1

c
(n)
k,sfk(x)fs(y), (3.11)

dk,s =

⎧
⎨

⎩

c
(n)
k,s for (k, s) ∈ Ω :=

∞⋃

n=1
(Mn;Mn+1]× (Mn;Mn+1],

0 for (k, s) /∈ Ω.
(3.12)

It is obvious (see (3.4), (3.9), (3.10), and (3.12)) that

|E| > 1− ε,
∞∑

k,s=0

|dk,s|r <∞, r > 2.
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Let f(x, y) ∈ L1(T ) and η be an arbitrary positive real. By Lemma 1, we can choose a subsequence
{φnk(x, y)}∞n=1 from (3.1) such that

lim
N→∞

∫∫

T

∣
∣
∣
∣

N∑

k=1

φnk(x, y)− f(x, y)
∣
∣
∣
∣ dxdy = 0, (3.13)

lim
N→∞

N∑

k=1

φnk(x, y) = f(x, y) a.e. on T, (3.14)

η2−4(k+1) ≤
∫∫

T

|φnk(x, y)| dxdy ≤ 3η2−4(k+1), k ≥ 2. (3.15)

From (3.13) and (3.15) we obtain that
∫∫

T

|f(x, y)− φ
n1
(x, y)| dxdy < η

2
. (3.16)

Suppose that the numbers n1 = ν1 < · · · < νq−1, the functions g1(x, y) = φn1(x, y), g2(x, y), . . . ,
gq−1(x, y), and the polynomials

Qνn(x, y) =

Mνn+1∑

k,s=Mνn+1

c
(νn)
k,s fk(x)fs(y), 1 ≤ n ≤ q − 1,

are already defined so as to satisfy the following conditions:

gl(x, y) = φkl(x, y), (x, y) ∈ E, l ∈ [1, q − 1],∫∫

T

|gl(x, y)| dxdy < 2−(l+1), l ∈ [1, q − 1],

∫∫

T

∣
∣
∣
∣

l∑

j=1

[gj(x, y)−Qν
j
(x, y)]

∣
∣
∣
∣ dxdy < η2

−5(l+2), l ∈ [1, q − 1]. (3.17)

It is easy to see that we can choose a natural νq > νq−1 (φνq(x, y) from (3.1)) such that
∫∫

T

∣
∣
∣
∣

{

φnq(x, y)−
q−1∑

j=1

[gj(x, y)−Qν
j
(x, y)]

}

− φνq(x, y)
∣
∣
∣
∣ dxdy ≤ η2−6(q+3). (3.18)

Show that

η2−4q−5 ≤
∫∫

T

|φνq(x, y)| dxdy ≤ η2−4q. (3.19)

By (3.15), (3.17), and (3.18), we get

∫∫

T

|φνq(x, y)| dxdy ≥
∫∫

T

|φnq(x, y)| dxdy −
∫∫

T

∣
∣
∣
∣

q−1∑

j=1

[gj(x, y)−Qν
j
(x, y)]

∣
∣
∣
∣ dxdy

−
∫∫

T

∣
∣
∣
∣

{

φnq(x, y)−
q−1∑

j=1

[gj(x, y)−Qν
j
(x, y)]

}

− φνq(x, y)
∣
∣
∣
∣ dxdy

≥ η2−4(q+1) − η2−5(q+2) − η2−6(q+3) ≥ η2−4q−5
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and, similarly, ∫∫

T

|φνq(x, y)| dxdy ≤ η2−4(q+1) + η2−5(q+2) + η2−6(q+3) ≤ η2−4q.

Put

gq(x, y) = φnq(x, y) + [gνq(x, y)− φνq(x, y)]. (3.20)

Hence, from (3.5) and (3.10) it follows that

gq(x, y) = φnq(x, y), (x, y) ∈ E, q ≥ 1. (3.21)

Taking (3.6), (2.18), and (3.20) into account, for all q ≥ 2, we obtain
∫∫

T

∣
∣
∣
∣

q∑

j=1

[gj(x, y)−Qν
j
(x, y)]

∣
∣
∣
∣ dxdy

≤
∫∫

T

∣
∣
∣
∣

{

φnq(x, y)−
q−1∑

j=1

[gj(x, y)−Qνj (x, y)]
}

− φνq(x, y)
∣
∣
∣
∣ dxdy

+

∫∫

T

|gνq(x, y)−Qνq(x, y)| dxdy ≤ η2−5(q+2). (3.22)

By (3.15), (3.19) and (3.20), derive

∫∫

T

|gq(x, y)| dxdy ≤
∫∫

T

|φnq(x, y)| dxdy +
∫∫

T

|gνq(x, y)| dxdy +
∫∫

T

|φνq(x, y)| dxdy ≤ η2−q. (3.23)

The sequence of functions {gq(x, y)}∞q=1 (g1(x, y) = φn1 (x, y)) and the polynomials {Qνq(x, y} satisfy-
ing (3.21)–(3.23) for all q > 1 are determined by induction;

∞∑

q=1

∫∫

T

|gq(x, y)| dxdy <∞

by (3.23). Define f̃(x, y) and the sequence {εk,s}∞k,s=0 as follows:

f̃(x, y) =
∞∑

q=1

gq(x, y), (3.24)

εk,s =

⎧
⎨

⎩

1 for (k, s) ∈ Ω0 :=
∞⋃

q=1
(Mνq ,Mνq+1]× (Mνq ,Mνq+1],

0 for (k, s) /∈ Ω0.
(3.25)

From (3.14), (3.21), and (3.24) it follows that f̃ ∈ L1(T ) and f̃(x, y) = f(x, y), (x, y) ∈ E. Since
g1(x, y) = φn1 (x, y), from (3.13), (3.16), and (3.24) we derive

∫∫

T

|f(x, y)− f̃(x, y)| dxdy ≤
∫∫

T

|f(x, y)− φ
n1
(x, y)| dxdy +

∞∑

q=2

∫∫

T

|gq(x, y)| dxdy ≤ η.
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By (3.3), (3.12), (3.23)–(3.25), for all q ≥ 2 we have
∫∫

T

∣
∣
∣
∣

Mνq+1∑

k,s=0

εk,sdk,sfk(x)fs(y)− f̃(x, y)
∣
∣
∣
∣ dxdy

=

∫∫

T

∣
∣
∣
∣

q∑

j=1

Mνj+1∑

k,s=Mνj+1

c
(νj)
k,s fk(x)fs(y)−f̃(x, y)

∣
∣
∣
∣ dxdy

≤
∫∫

T

∣
∣
∣
∣

q∑

j=1

[gj(x, y)−Qν
j
(x, y)]

∣
∣
∣
∣ dxdy +

∞∑

j=q+1

∫∫

T

|gj (x, y)| dxdy ≤ 2−q. (3.26)

Hence,

εk,sdk,s = ck,s(f̃) =

∫∫

T

f̃(t, τ)fk(t)fs(τ) dtdτ. (3.27)

Consequently, (3.24) and (3.25) yield

ck,s(f̃) = dk,s, (k, s) ∈ Λ(f) = spec(f̃) ⊂ Ω0.
Show that the double Fourier–Franklin series

∞∑

k,s=0

ck,s(f̃)fk(x)fs(y) =
∞∑

k,s=0

εk,sdk,sfk(x)fs(y)

for f̃(x, y) converges absolutely almost everywhere on T . Denoting

Bq = {(x, y)⊂ T = [0, 1]2; |φνq(x, y)| dx ≤ η2−3q}, q ≥ 2, (3.28)

we obtain

η2−3q|T \Bq| ≤
∫∫

[0,1)\Bk

|φνq(x, y)| dxdy ≤ η2−4q, q ≥ 2;

thus, |Bq| > 1− 2−q.
Put

B =
∞⋃

k=2

∞⋂

q=k

(Bq ∩Gνq), (3.29)

whence |B| = 1 since |Bq ∩Gνq | > 1− 2−q+4 (see (3.2), (3.4), (3.19), and (3.28)).
Let (x, y) ∈ B. There exists a natural q0 such that (x, y) ∈ Bq ∩Gνq , q ≥ q0.
Using (3.2), (3.8), (3.19), and (3.28), we obtain

Mνq+1∑

k,s=Mνq+1

∣
∣c(νq)k,s fk(x)fs(y)

∣
∣ ≤
B
(
log 1δνq

)2|φνq(x, y)|
δ2νq

+ 2−νq ≤ B√ηq22−q + 2−q. (3.30)

Hence, from (3.12), (3.26), (3.27), (3.29), and (3.30), we conclude that
∞∑

k,s=0

|ck,s(f̃)fk(x)fs(y)| <∞

almost everywhere on T . It easy to verify (see (3.26), (3.27) and (3.30)) that

lim
N,M→∞

N,M∑

k,s=0

ck,s(f̃)fk(x)fs(y) = f̃(x, y)

almost everywhere on T . Theorem 3 is proven.
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