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Abstract—All types of plastic deformation, such as tension–compression, bending, and torsion, are imple-
mented during cold metal forming. Each type of deformation results in specific hardening patterns. Cyclic
deformation causes hardening–softening processes and residual stresses (RSs). RSs form due to reversible
dislocation movement. A new dislocation structure forms as a result of polygonization during subsequent low-
temperature annealing–aging, and thus RSs contribute to hardening. Shear deformation, i.e., torsion, generates
the greatest number of dislocations. Tensile–compressive deformation gives no hardening effect at all.
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Fig. 1. Primary tension diagram. Grade 40 steel: (1) dia-
gram of the first tension of the specimen and (2) diagram
of the repeated tension of the specimen after compression
and heat treatment.
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The cold working of products is accompanied by
plastic deformation of all types. Each type of deforma-
tion makes an individual contribution to this process.
Many papers consider the effect of plastic deformation
on the strength of a product during bending and tor-
sion [1–4]. There are also works devoted to workpiece
hardening [5–7] and the heat treatment effect during
this process for various metals and alloys [8, 9]. Cyclic
plastic deformation changes mechanical properties
[10–13]. This work considers the hardening and soft-
ening of workpieces using grade 40 steel after air-hard-
ening and rail steel after quenching and high temper-
ing for all types of elastic-plastic deformation, such as
tension–compression, torsion, and bending. The
effect of intermediate heat treatment on the hardening
of a workpiece is investigated. Heat treatment was
done in the form of low-temperature annealing.

Tension–compression. Tension–compression
cycles with and without intermediate heat treatment
were performed on a SHIMADZU AG-X-1 machine
to a strain no more than 2.5 mm (7%). As a result, we
found that tension–compression deformation gives no
hardening effect under any heat treatment conditions.
Figure 1 shows the primary tensile diagram for a work-
piece made of grade 40 steel. The diagram shows no
hardening when the specimen is repeatedly stretched.

Bending. Bending tests were performed on the
same machine used for tension–compression tests.
Grade 40 steel and rail steel specimens were cyclically
bent according to the three-point and pure bending
schemes. The conclusions were drawn that cyclic
deformation during both bending modes caused hard-
ening only when it was alternated with heat treatment
(low-temperature annealing–aging). No hardening
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took place without heat treatment. Figure 2 shows the
bending diagram of the rail steel specimen. The dia-
gram shows the hardening process that occurs during
repeated bending after straightening and subsequent
heat treatment.
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Fig. 2. Primary bending diagram: (1) diagram of the first
bending of the specimen and (2) diagram of the repeated
bending of the specimen after heat treatment and straight-
ening.
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Fig. 3. Specimens subjected to bending.
A comparison of three-point and pure bending
revealed a shift of the neutral line and distortion of
the bend line of the specimen during three-point
bending. This effect was not observed during pure
bending. Figure 3 exemplifies the change in the shape
of the specimens tested.

This observation was confirmed by finite element
calculations made using the Ansys Workbench soft-
ware. The results of the calculations are shown in
Fig. 4.
RUS

Fig. 4. Results of the plastic bending calculation using the Ansys W
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Torsion. Standard specimens with a diameter of
10 mm were subjected to torsion on a TNS-DW1
machine. The Bauschinger effect was not observed
during torsion, in contrast to the tension–compres-
sion and bending tests.

The effect observed during torsion was the same as
that observed during cyclic bending. Heat treatment
was found to result in significant hardening of the rail
steel specimens previously subjected to torsion
according to the scheme: torsion by 180° → torsion by
180° → heat treatment → torsion to failure (Fig. 5).

The results of the torsional tests of the grade
40 steel are shown in Fig. 6. The diagram shows that
there is a significant hardening (increase in the torque
moment).

Therefore, we can conclude that torsion without
intermediate heat treatment leads to softening,
whereas heat treatment leads to hardening. The hard-
ening effect manifests itself in an increase in the torque
moment. The yield strength becomes equal to the ten-
sile strength.
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orkbench software: (a) three-point bending and (b) pure bending.
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Fig. 5. Torsion test results. Rail steel: (1) 180° clockwise
torsion, (2) 180° counterclockwise torsion, and (3) torsion
to failure after heat treatment.

250

200

150

100

50

0 40 80 160120 200

T, N m

3

1

2

�, deg

Fig. 6. Torsion test results. Grade 40 steel: (1) 180° clock-
wise torsion and (2) 180° counterclockwise torsion after
heat treatment.

160

120

80

40

0 100 200 300 400

T, N m

1

2

�, deg
CONCLUSIONS

(1) Heat treatment between reverse loading cycles
considerably changes the picture of the process. Tor-
sional and bending deformation causes rapid harden-
ing. The yield strength becomes equal to the ultimate
RUSSIAN METALLURGY (METALLY)  Vol. 2021  No.
tensile strength. Each subsequent loading step gives an
increase in the strength. No hardening occurs without
heat treatment.

(2) Cyclic deformation during pure bending causes
no shift of the neutral line in contrast to three-point
elastic-plastic deformation and does not change the
line shape of the object to be bent in the plastic defor-
mation region.

(3) Torsional hardening (purely shear deformation)
can be considered as an effective technique that does
not reduce the workpiece thickness [13].
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