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Abstract—The dependences of the kinetic factors and mechanism of oxide formation for internal oxidation
zones in the multicomponent alloys are considered. Diffusion equations are presented depending on the
internal oxidation front provided that no external oxide layer is formed and only an internal oxidation zone is
observed.
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INTRODUCTION
The study of oxide film oxidation and formation is

a challenging problem for the determination of laws for
the corrosion stability of steels, including investiga-
tions of liquid-metallic corrosion [1]. A theory of dif-
fusion growth of layers was developed for carbon steels
[2]. The theory provides good correspondence with
experiment. The thermodynamic prerequisites of
internal oxidation zone formation in multicomponent
alloys (metal–solvent + alloying element + insertion
element (oxygen, nitrogen, and carbon)) were pre-
sented [3]. The kinetics of changing the component
concentrations upon the formation of one- and two-
phase oxide layers in alloyed steels was shown. The
general laws (continuity equation) and the influence
of boundary factors on the diffusion equation for the
internal oxidation zones in multicomponent alloys
were presented [4].

Only an internal oxidation zone can be formed and
no external oxide layer is formed on the alloy surface
under certain high-temperature oxidation conditions.
This situation appears, for example, when the thermo-
dynamic activity of oxygen is lower than or equal to the
activity equilibrium with alloying-element oxide [5].

KINETICS OF INTERNAL OXIDATION 
ZONE FORMATION

The kinetics of formation of the internal oxidation
zone (solid solution–particles of alloying-element
oxide (Bω2Oω1) in binary alloy A–B) will be consid-
ered using a system of equations.

Since an external oxide layer is absent, this system
is simplified and consists of the following equations:

diffusion in a solid solution in the two-phase region,

(1)

(Ci and Cj are the component concentrations, Dii and
Dij are the diffusion coefficients, and Q = ln(1 – V),
where V is the phase volume, 0 ≤ x ≤ y(t); i, j = 1, 2;
i ≠ j);

diffusion in the one-phase region,

(2)

mass balance at the two-phase region–solid solu-
tion interface

(3)

discontinuity for the function of the particle size
distribution in the two-phase region,

(4)

where RK is the critical nucleus radius, μ0 and  are
constants, vR is the growth (dissolution) rate of the
new phase particles, f is the function of the particle size
distribution, and δ(x) is the delta function; and the
corresponding initial and boundary conditions.
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Fig. 1. Theoretical distribution of supersaturation L in the
diffusion zone of the plate at various internal oxidation times:

 = 0.0,  = 0.12, and  = 0.01; D11 = 1 × 10–8 cm2/s,
D12 = –0.5 × 10–9 cm2/s, and D22 = 1 × 10–12 cm2/s;
2γVm/kT = 7 × 10–8 cm; α = 1 × 10–18 cm3/s; μ0 = 1 ×
1015 s–1; and  = 3.5 × 101.3 cm–2; for oxide Bω2Oω1,
ω1 = 3 and ω2 = 2.
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The following two main cases can be distinguished
from the whole diversity of oxidation conditions lead-
ing to internal oxidation zone formation:

(1) alloying element is removed from a sample
through its external surfaces, and equilibrium concen-
trations of oxygen and alloying element are main-
tained on them,

(2) no removal of an alloying element to the gas
phase occurs.

In the first case, boundary conditions (boundary
conditions of the first kind) has the form

(5)

where l is the plate thickness,  is the equilibrium
concentration of the ith component.

In the second case (boundary conditions of the
second kind for an alloying element and boundary
conditions of the first kind for oxygen), they are

(6)

The kinetics of internal oxidation zone formation
in the first case will be considered first. A numerical
solution of the system of Eqs. (1)–(5) was performed
using an implicit difference scheme. For every new
step in time, nonlinear Eqs. (1) and (4) were solved by
the iteration method until convergence with a high
accuracy was achieved. As a result of the numerical
solution, the distributions of the supersaturation of a
solid solution L(x, t), the number of disperse particles
N(x, t), average size (x, t), and total volume Vph(x, t)
were obtained.

The distributions of the supersaturation L(x, t) in
the diffusion zone of a plate with thickness l for various
oxidation times are shown in Fig. 1 [5].

Since the component concentrations on the sur-
face are equilibrium, L(0, t). For the second time
L(x, t) vanishes at the point x = y(t), which is the coor-
dinate of the internal oxidation zone boundary. Thus,
the L(x, t) function has a maximum, which shifts deep
into the plate. In this case, the supersaturation in the
range x < xmax decreases in time due to both substance
removal to the growing particles of alloying-element
oxide and diffusional removal beyond the boundaries
x = 0 and x = l (metal thickness). The removal of the
substance to wastes similarly affects the maximum
L(xmax, t), which also decreases in time.

The distributions of the particle number N(x, t),
their average radius (x, t), and total phase volume
Vph(x, t) presented in Fig. 2 show that the (x, t) and
Vph(x, t) dependences repeat, on the whole, the L(x, t)
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distribution. At the same time, the maximum on the
N(x, t) curve lies near the surface and does not shift
with time to the plate center. As shown by an analysis
of the obtained data, the nucleation rate (number of
particles in this cross section of the diffusion zone)
depends strongly on the maximum of the degree of
supersaturation L(xmax, t). It is this circumstance
which results in the situation where the main portion
of particles is formed in the near-surface layer when
L(xmax, t) is still fairly high. The probability of nucle-
ation decreases sharply with a decrease in L(xmax, t),
which corresponds to deeper layers of the diffusion
zone, and the number of formed particles is low.

The theoretical studies of the kinetics of L(x, t)
changes in different cross sections of the diffusion
zone showed that the character of supersaturation
changing is similar (with shifting in time) for all pre-
sented cross sections: after the boundary reaches the
y(t) zone of a certain cross section, the supersaturation
of a solid solution increases rapidly, passes through a
maximum, decreases with a sufficiently high rate, and,
finally, asymptotically approaches zero. The modeling
results show that certain stages of internal oxidation
zone formation correspond to the time dependence of
the L(x, t) change: the active nucleation of particles of
alloying-element oxide occurs at a fast increase in
supersaturation; the stage of a fast decrease in L(x, t)
corresponds to the fast particle growth, and the nucle-
ation frequency decreases sharply with an increase in
the process time; no nucleation of new particles occurs
at the asymptotic stage, and the main mechanism of
their growth is coalescence.
 12
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Fig. 3. Kinetics of changing the average radius of the par
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Fig. 2. Theoretical distributions of the number of disperse
particles N, their average size , and total volume Vph in
the internal oxidation zone of the plate at various times of
the process.
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The calculated curve of the (t) dependence for
one of the cross sections of the plate is shown in Fig. 3.
As a rule, the experimental kinetic (t) dependences
have the form

(7)

The corresponding processing of the curve in Fig. 3
shows that the whole curve cannot be described using
Eq. (7) but its particular regions satisfy this depen-
dence at certain (for each region) n value. As the inter-
nal oxidation time increases, n takes the following val-
ues: 1, 2, 3, and ~200. For low times and at the asymp-
totic stage, n corresponds to the particle growth
mechanism known from the theory of solid solution
supersaturation: at n = 1 the kinetics is determined by
particle nucleation, at n = 2 the kinetics is determined
by their diffusional growth due to the substance of a
solid solution, and at n = 3 coalescence is determining.

The slow stage of the process (n ≈ 200) at which the
average particle radius is nearly completely stabilized
is not observed for the decomposition of an supersat-
urated solid solution in an isolated system. This stage
is experimentally observed for the internal oxidation of
a Ni–1 wt % Cr alloy. We will show that in a system
with an supersaturated solid solution and growing par-
ticles of the second phase the stage of average radius
stabilization is related to a diffusion flow of an alloying
element to the plate surfaces x = 0 and x = l on which
the supersaturation is zero.

In the case of a small volume of particles of alloy-
ing-element oxide Vph(x, t) and long oxidation times,
when the whole alloy volume is internally oxidized
(y = l/2), Eqs. (1) can be written as follows: (compo-
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nent 1 is oxygen, component 2 is alloying element,
D21 = 0) [5]:

(8)

(9)

where Δi = Ci(x, t) – .
The solution of the system of Eqs. (8) with the

boundary and initial conditions (9) has the form

(10)

where m is the oxide weight.

Here, we have

The following approximation was made when solv-
ing Eq. (8):

which corresponds to a low phase growth rate.
The supersaturation of a three-component alloy is

determined, according to Eq. (2), as follows:

(11)
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where α, γ1, and γ2 are constants. Introducing
Eqs. (10) simplified for the case of long t into Eq. (11)
and differentiating, we obtain

(12)

The first term in the right-hand part of Eq. (12)
characterizes the decrease in the supersaturation due
to the presence of internal drainages (particles of the
second phase), and the second term is due to external
drainages (plate surfaces x = 0 and x = 1). Equation (12)
shows that these terms have opposite signs. If the
power of the internal drainages is higher than that of
the external drainages, then  > 0. In the oppo-

site case,  < 0. Since on the plate surface
L(0, t) = L(l, t) = 0 and, correspondingly,  ≥ 0,
there is the maximum power of the internal drainages
at which the second derivative of the supersaturation is
zero. Based on this fact, from Eq. (12) we find

(13)

It follows from Eq. (13) that at long times the
dependences of the volume of a molecule of the
formed oxide Vm(t) and, correspondingly, (t) (at N =
const) are weak functions of time and can be described
by equations of the (7) type only very approximately.
For this approximation, exponent n would depend on
dVm/dt: the lower dVm/dt, the higher n. An analysis of
Eq. (13) also shows that the maximum growth rate of
the total phase volume depends on the diagonal diffu-
sion coefficient of alloying element D22, plate thick-
ness l, and remoteness of cross section x in which the
process is considered from the plate surface: dVm/dt
increases with a decrease in D22 and an increase in l
and x. For dVph/dt < dVm/dt, Vph(t) is a weaker time
function than function (13), but the drawn conclu-
sions remain qualitatively valid for these cases as well.
This is confirmed by the results of the numerical solu-
tion of the system of Eqs. (1)–(6).

The case analyzed by Wagner [3] will be empha-
sized to consider the kinetics of internal oxidation
zone formation when the boundaries x = 0 and x = l
are “closed” for an alloying element. The Wagner
model is widely used for the description of the internal
oxidation of the alloys containing alloying elements
with a high oxygen affinity. These alloys do most fre-
quently undergo internal oxidation in practice.
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Fig. 4. Theoretical distributions of the concentrations of oxygen C1 and alloying element C2, supersaturation L, number of parti-

cles N, average size , and phase volume Vph in the internal oxidation zone of the plate:  = 0.0,  = 4.5 × 10–3, and  =
6 × 10–4; D11 = 1 × 10–6 cm2/s, D12 = –5 × 10–8 cm2/s, and D22 = 1 × 1011 cm2/s; 2γVm/kT = 7 × 10–8 cm; α = 1 × 10–18 cm3/s;
μ0 = 1 × 1015 s–1; and  = 3.5 × 101.3 cm–2; for oxide Bω2Oω1, ω1 = 3 and ω2 = 2.
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On the one hand, the kinetics of movement of the
boundary of the internal oxidation zone and volume of
the alloying-element oxide particles in the zone can
theoretically be determined using the Wagner model,
which is fairly simple and appropriate for analytical
calculations. On the other hand, no information about
the medium-size particle distribution in the zone and
their number cannot be obtained from the Wagner
model. This information can be obtained using the
solution of the system of Eqs. (1)–(4) and (6). In addi-
tion, the solution of a more complete problem than
that considered by Wagner makes it possible to reveal
the applicability range of the model.

An analysis of the system of Eqs. (1)–(4) and (6)
shows that Wagner’s case is accomplished when two
main conditions are fulfilled: fast relaxation of an
RUS
supersaturated solid solution in the diffusion zone and
a high  derivative. The fulfillment of the
first condition is related to the rate of disperse oxide
particle formation and growth, amount of the formed
phase, and maximum supersaturation of a solid solu-
tion. The fulfillment of the second condition is related
to the energy of formation of alloying-element oxide.

The calculation results are given in Fig. 4, indicat-
ing that the supersaturation distribution L(x, t) is a
curve with a maximum shifting deep inside the sample
with time, which is accompanied by a decrease in the
maximum value of L(xmax, t). This, in turn, induces a
decrease in the number of formed particles in periph-
eral cross sections of the zone. Each point on the
descending branch of the L(x, t) curve moves accord-
ing to a parabolic law, and deeper cross sections of the

eq eq
1 2dC dC
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diffusion zone exist in the supersaturated state for a
longer time; i.e., particles in these cross sections have
time to grow to the sizes exceeding sizes of excretions
that are arranged closer to the surface. The particle
number distribution corresponds to the dependences
N(x) ~ x–1 for low x and N(x) ~ x–3 for high x, which
confirms the earlier theoretical conclusions [6, 7].

The character of the distribution of the phase vol-
ume Vph over the diffusion zone depth (see Fig. 4) is
close to the stepped one. Near the sample surface, Vph
remains almost unchanged; i.e., the Vph distribution
corresponds to the form that follows from the Wagner
model. According to the Wagner scheme, the distinc-
tion between the numerical and analytical calculations
is that the excretion region is not localized near the
line representing the internal oxidation front but is
somewhat blurred. In spite of the fact that the blurring
is relatively weak, it still affects the parabolic constant
of the rate of internal oxidation zone growth β0. This
parameter calculated from the Wagner equation [3]
(applied to the case illustrated in Fig. 4) is approxi-
mately by a factor of two lower than the value obtained
by the numerical calculation. As shown by an analysis
of the numerical solutions, the degree of blurring of
the distribution of Vph is mainly determined by the
relaxation rate of supersaturation of a solid solution
near the internal oxidation front: the higher the rate,
the better the fulfillment of the Wagner scheme. Of
course, the cases important in the practical respect are
not exhausted by the examples presented above.

CONCLUSIONS
The analyzed variants of the internal oxidation

illustrate possibilities of the proposed quantitative
model, which allows one to calculate the kinetics of
this process and obtain information about the zone
structure (number of particles, phase volume, and
average particle size). This approach makes it possible

to reveal the general laws of internal oxidation and,
therefore, provides a possibility of controlling the pro-
cess. This is important for the considered phenome-
non, since the internal oxidation kinetics depends on
many parameters, but only in a few cases one can pre-
dict what effect is exerted on the process occurrence by
a change in each parameter. The conclusions pre-
sented in the article are consistent with the results of
other researchers dealing with internal oxidation [8].
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