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Abstract—A version of the model of phase-structural deformation of shape-memory alloys is proposed. An
isotropic hardening parameter for the deformation according to a structural mechanism is the intrinsic
phase-structural strain intensity of the martensitic part of the representative material volume. The problem
of the inverse thermoelastic phase transformation in a constrained rod with a preliminarily specified tensile
or compressive strain is solved. The influence of the translational hardening parameter on the solution is
investigated.
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1. INTRODUCTION
The representative volume of a polycrystalline

shape memory alloy (SMA) can consist of two types of
structures, namely, austenitic and martensitic [1–4].
The transition from an austenitic crystal cell to a mar-
tensitic one is related to the crystallographic deforma-
tion of the direct phase transformation, the intensity of
which in titanium nickelide  can reach 8–9%. The
phase deformation intensity averaged over the repre-
sentative SMA volume changes from zero (in the case
of chaotic, or fully twinned, martensite) to the value
correlating with  (for fully oriented martensite)
[5, 6]. In [7], we experimentally found that strain
hardening is uncharacteristic for the phase mecha-
nism of SMA deformation.

When the representative volume of SMA (which is
in the state of chaotic (fully twinned) martensite) is
loaded by increasing stress, low-symmetric martensi-
tic cells are reoriented and detwinned and the degree
of misorientation of these cells decreases [8, 9]. As a
result, the second, structural, mechanism of SMA
deformation becomes operative. This mechanism is
characterized by all manifestations of strain hardening
effects, both isotropic [8, 9] and translational [10–13].

The authors of [14–16] experimentally found that
SMA deformation according to the phase mechanism
affects the manifestation of the structural mechanism.
Thus, a problem arose to describe the deformation
process that occurs according to two mechanisms,
which are fundamentally different in phenomenologi-
cal manifestations, with the first mechanism obviously
affecting the second. These fundamental features were
not taken into account in the well-known models of

SMA deformation, which were reviewed in [17] and
described in [18–20]. In this paper, we propose a
model for SMA deformation, which is free of these
disadvantages. This model is then used to solve the
problem of the reverse phase transformation of an
SMA rod in the constrained state.

2. FORMULATION OF THE MODEL
2.1. Loading Surface Equation

The authors of [21] proposed a model for the defor-
mation of SMA in a fully martensitic phase state when
only a structural transition (martensitic inelasticity) is
operative; this model is an analog of the model
adopted in the theory of plastic f low. They showed
that, due to the specific shape of a martensitic inelas-
ticity diagram, the use of such integral parameters of
isotropic hardening as the work of stresses at inelastic
strains or the Odqvist parameter leads to contradic-
tions with the experimental data. Therefore, we pro-
posed to use the maximum (over the entire history of
the existence of the given martensitic volume) struc-
tural strain intensity as a parameter of isotropic hard-
ening. It was found [22–24] that, in terms of such a
model, one cannot limit oneself only to the consider-
ation of isotropic hardening—it is also necessary to
take into account translational hardening. From these
considerations, a loading surface equation for the
structural deformation of SMA was proposed in the
form [21]

where ρD2 is a material parameter that determines the
maximum strain intensity of martensitic inelasticity,
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1204 MOVCHAN
ϕ2(S) is the material function such that the ratio  =
ρD2ϕ2(Si) is the martensitic inelasticity diagram equa-
tion, and S* is the loading surface radius in the active
stress deviator space Sij [23].

A necessary condition for active loading is the
equality

where Si =  is the active stress tensor inten-
sity.

Function ϕ2 is nonnegative, increases monotoni-
cally, and satisfies the conditions

(1)

The model proposed in [21] only describes the
structural mechanism of SMA deformation. Attempts
to describe both mechanisms were made in [25–27],
taking into account only isotropic [25, 26] or both iso-
tropic and translational [27] hardening. However,

integral parameter χ such that dχ =  as an
isotropic hardening parameter and the loading surface
equation [27]

(2)

were used in those works.
A factor in the form of the volume fraction of mar-

tensitic phase q is added to the left-hand side of Eq. (2)
to take into account the possibility of phase transi-
tions.

It is easy to show that, for proportional (in general,
nonmonotonic) loading, the right-hand side of
Eq. (2) changes into an analog of the Odquist param-
eter [25, 27], which leads to contradictions with the
experimental data for nonmonotonic loading [13]. To
overcome this disadvantage, we [28] proposed to use
the loading surface equation

(3)
The right-hand side of Eq. (3) represents the max-

imum intensity of the averaged phase-structural strain
of the considered representative volume of SMA over
the entire history of the existence of the martensitic
part of this representative volume. There is no justifi-
cation for the presence of factor q in the left-hand side
of Eq. (3) or (2) in [25–28].

In this paper, we propose an alternative (Eq. (2) or
(3)) formulation of the loading surface equation for
the structural deformation of SMA; it is based on the
assumption that isotropic hardening is determined by
the maximum intensity of the intrinsic phase-struc-
tural strain of the martensitic part of the representative
volume rather than by the strain intensity averaged
over the entire representative volume.

 is the phase-structural strain deviator aver-
aged over the representative volume of SMA, which
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generally consists  two parts, namely, martensitic
and austenitic. In this case, inelastic strain is only
observed in the martensitic part of the representative
volume. Using the mixture rule, we can find that the
deviator  of the intrinsic phase-structural strain of
the martensitic part of the representative volume and
the intensity of this intrinsic strain  satisfy the rela-
tions

It is natural to assume that the isotropic hardening
of SMA, which is caused by structural strains and
characterizes the state of the martensitic part of the
representative volume, is determined by the maximum
intensity of the intrinsic phase-structural strain of the
martensitic part of the representative volume  over
the entire history of the process. Therefore, the rela-
tion for the radius of the loading surface taking into
account both the phase and structural transition is
written as

(4)

In contrast to Eq. (3) [28], changes in both 
and q are taken into account during the maximization
of the right-hand side of Eq. (4).

2.2. Relations for the Phase and Structural 
Deformation Mechanisms

The strain increment induced by a structural transi-
tion is considered to be described by the associated law

(5)
Equation (5) is fulfilled only at Si = S*, where S*

fulfills Eq. (4) and the condition
(6)

otherwise, we have d  = 0.
The displacement of the center of the loading sur-

face rij, which determines the translational hardening,
should also be related to the change in the intrinsic
strain of the martensitic part of the representative vol-
ume. If we accept the hypothesis that the change in rij
is proportional to the change in the intrinsic strain of
martensite according to both the structural and phase
mechanisms, we can write

(7)
In Eq. (7), g has the meaning of the tangent modu-

lus of translational hardening.
Stress deviator  is connected to tensors Sij and rij

by the usual relation

(8)
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MODEL FOR THE INELASTIC DEFORMATION OF SHAPE MEMORY ALLOYS 1205
which is accepted in the theory of plastic f low with
translational or combined hardening [22–24]. The
strain increment in SMA induced by a phase transition
is determined by the relationships [7]

(9)

(10)

Here, ε0 is the linear strain of the volume effect of the
phase transition; ρD1 is a material parameter correlat-
ing with the crystallographic strain intensity of the
phase transformation; ϕ1(Si) and f(q) are the material
functions, where ϕ1 has the properties similar to
Eq. (1) and the inequality ρD1ϕ1(x) > ρD2ϕ2(x) is valid
for any x > 0 [25]; and signs “+” and “–” in the super-
script correspond to the direct (dq > 0) and reverse
(dq < 0) phase transformation, respectively.

The substitution of Eq. (10) into Eqs. (9) and (7)
for the direct transformation gives

For the reverse transformation and the structural
transition, the equation for the motion of the center of
the loading surface is significantly simplified,

(11)

According to Eq. (11), in the case of the reverse
transformation occurring together with the structural
transition, the center of the loading surface is shifted
only if the strain increment due to the structural tran-
sition is different from zero. The presence or absence
and the magnitude or direction of strain increment
induced by the phase transition does not affect drij
during the reverse transformation.

We can a priori accept the hypothesis that a change
in the position of the center of the loading surface,
which determines the deformation process according
to a structural mechanism, occurs only when the
inelastic strain changes according to the structural
mechanism. Under this assumption, Eq. (11) is valid
not only for the reverse, but also for the direct trans-
formation accompanied by a structural transition.
This equation is then used for both the direct and
reverse transformations.

To formulate a f low law according to the structural
mechanism, it is necessary to obtain an expression for
factor dλ (Eq. (5)). For this purpose, using the formal-
ism of the theory of plastic f low, it is necessary to con-
sider the active process in which the point representing
a state of stress is located on the loading surface; that
is, Eq. (4) is satisfied for the current values of the
quantities included in it,

(12)

Differentiating Eq. (12) and taking into account
Eqs. (5) and (8)–(10), we can derive an expression
for dλ. However, the presence of the maximization
sign in Eq. (12) makes the right-hand side of this equa-

tion nonanalytical and makes it difficult to implement
this algorithm.

If the maximum value of the ratio  is reached
at an intermediate rather than current point of the pro-
cess under consideration, the differential of the right-
hand side of Eq. (12) is zero. A similar result is
obtained if d( ) < 0 at the current point of the
process. In both cases, dSi = 0 according to Eq. (12);
i.e., a purely translational hardening mode takes place.
If the condition

(13)

is met at the starting point of some stage of the process
and, at the same time, d( ) > 0 at all points of the
considered stage, then condition (13) is met and the
notation max can be removed from Eq. (12) not only
at the initial, but also at all points of the stage. This
ratio is easily differentiated, and combined hardening
(increase in Si) occurs. Therefore, for the future con-
sideration, it is important to determine the sign of
d( ) for the reverse and direct transformations,
which occur along with the structural transition.

For the reverse transformation, we have

(14)

According to Eq. (14), for the reverse phase trans-
formation occurring together with the structural tran-
sition, the inequality d( ) > 0 is satisfied under
the condition

(15)
In the cases of fulfilling the inequality that is oppo-

site to inequality (15) and the reverse transformation,
the active process can occur only in the form of purely
translational hardening.
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1206 MOVCHAN
A similar analysis for the direct transformation
occurring simultaneously with the structural transi-
tion gives an equality, which is not presented here
because of its cumbersomeness. According to this
equality, we can state that, in the case of the direct
transformation occurring along with the structural

transition, the inequality  ≤ 0 is a sufficient
condition for the fulfillment of the inequality
d( ) < 0, i.e., purely translational hardening,
although this hardening can also occur when inequal-
ity (15) is fulfilled.

2.3. Flow Law for Purely Translational Hardening
First, we derive the laws of inelastic SMA deforma-

tion for the purely translational hardening mode,
where

(16)
Expressing active stress tensor intensity differential

dSi through the differentials of the tensor components
and using Eqs. (5), (8), and (11), we can obtain expres-
sions for dλ and d ,

(17)

which are valid for the structural transition occurring
along with the direct or reverse phase transformation.
The differential condition of active loading dλ > 0 in
this case is equivalent to the inequality

(18)

In Eqs. (17) and (18),  is the stress deviator.
As follows from Eqs. (17) and (18), in the purely

translational hardening mode, neither the f low law for
the structural mechanism nor the differential condi-
tion of active loading depend on either the magnitude
or the sign of increment dq, which determines the
phase transition, and they are only characterized by
the stress deviator increment. It should be noted that,
when Eqs. (3) from [28] rather than Eqs. (4) are used
as a loading surface equation, Eqs. (17) and (18)
become more complicated and contain terms propor-
tional to dq in addition to the terms proportional to d .

2.4. Flow Law for Combined Hardening
We now derive an expression for the law of defor-

mation change as a result of the structural transition in
the combined hardening mode, when the maximum
value of  is reached at a current point of the pro-

cess where d( ) > 0. In this case, loading surface
equation (12) can be rewritten in the form

(19)
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After differentiating Eq. (19) using Eqs. (11) and
(5), we obtain a linear equation for dλ, the solution of
which for the case of the inverse transformation has
the form

(20)

Taking into account that the process is active and
Eq. (19) is fulfilled at each point, the expressions for

dλ (Eq. (20)), d , and d  are simplified,

(21)

Since combined hardening can occur during the
reverse phase transition and the structural transforma-

tion only under the condition Sij  > 0, it follows
from Eq. (21) that R2 > 0 and the differential condition of
active loading in this case is again reduced to Eq. (18).

According to Eq. (21), when the reverse transfor-
mation and the structural transition occur together,
parameter dλ and, hence, the strain increment
according to the structural mechanism do not depend
on dq; that is, the deformation according to the phase
mechanism affects the deformation according to the
structural mechanism only through the loading sur-
face radius.

Similar calculations for the structural transition
occurring simultaneously with the direct phase trans-
formation in the combined hardening mode for the
simplified model (10), in which f(q) = 0 is assumed,
give

As was shown in [28], strain accumulates at inten-
sity  = ρD1qϕ1(σi) during the direct transformation
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MODEL FOR THE INELASTIC DEFORMATION OF SHAPE MEMORY ALLOYS 1207
under a constant stress at intensity σi, so that the ratio

 = ρD1ϕ1(σi) retains a constant value. Therefore,
for any q (including the complete direct transforma-
tion (q = 1)), the condition max{ } = ρD1ϕ1(σi) is
met. Substituting this relation in the right-hand side of
Eq. (4) we can determine the constant loading surface
radius in this process,

(22)

According to inequality (22), the structural transi-
tion does not occur during the direct transformation
under a constant stress.

3. REVERSE TRANSFORMATION 
AFTER DIRECT TRANSFORMATION

UNDER CONSTANT STRESS 
AND CONSTRAINT

3.1. Process Stages not Accompanied 
by Structural Transition

Let complete direct transformation occur at the
first stage of the process under a constant tensile or
compressive stress σ1 (uniaxial state of stress). The
parameters, namely, stress σ and phase strain deviator
ε that accumulates during the direct transformation,
are taken to be positive for both compression and ten-
sion. Under these conditions, σ and ε coincide with
the intensities σi and εi of the corresponding tensors.
As a result of the direct transformation, the following
phase-structural strain is accumulated:

where ε1 > 0 is the deviatoric component of the accu-
mulated phase strain parameter (hereafter, a sign in a
superscript is used for tension and a sign in a subscript,
for compression).

We now assume that the deviatoric component of
the complete direct transformation strain exceeds the
linear strain of the volume effect of this transforma-
tion, ε1 > ε0. In this case, the inequality

(23)
is valid.

The loading surface radius at the end of the direct
transformation (Eq. (22)) is

(24)

The center of the loading surface is located at the
origin of coordinates, r = 0, S = σ. Then, complete
elastic unloading to σ = 0 takes place. Then, the com-
plete strain is fixed (constraint is performed), and the
reverse thermoelastic phase transformation occurs
under these conditions as a result of heating. In heat-
ing, we have

(25)
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Differentiating Eq. (25), we obtain

(26)

In Eq. (26), we take into account that εe = σ/E(q)
for elastic deformation, where the dependence of
Young’s modulus of SMA on q is taken into account
using the formula

where EM and EA are Young’s moduli for the marten-
sitic and austenitic states, respectively.

From Eq. (25), we obtain

substituting this result into Eq. (26), we have

Obviously, stresses appear during a phase transition
and their parameter increases monotonically, σ > 0.
Until σ reaches S1 (Eq. (24)), the structural transmis-
sion does not occur, dλ = 0, and the process is deter-
mined by the equation

the solution of which under the initial condition
σ(1) = 0 gives

(27)

Since dεst = 0 at the two process stages under study,
we have dr = 0, r = 0 and S = σ > 0. This inequality is
valid for q < 1 according to Eq. (23).

According to Eq. (27), σ increases with decreasing
q until σ reaches S1 (Eq. (24)) at some q = qs. At the
stage of decreasing q from 1 to qs, no structural transi-
tion takes place, and only the reverse phase transfor-
mation occurs. Integrating the equation for changing
the strains due to the reverse phase transition dεphst' =

 under the initial condition εphst'(1) = ε1, for
q ∈ [qs, 1] we obtain

(28)
According to Eq. (28), the phase-structural strain

deviator parameter in the considered part of the pro-
cess decreases in magnitude monotonically and in
proportion to q. At the same time, the loading surface
radius is determined by the equation ρD2ϕ2(S) = ε1 and
retains a constant value (24) in terms of the model
under study with loading surface equation (4) and tak-
ing into account the fact that max{ } = ε1
according to Eq. (28) during the reverse transforma-
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tion in the absence of the structural transition. It
should be noted that S* tends to increase sharply
toward  in terms of model (3) [28] under the same
conditions. The condition for the point representing
the state of stress to reach the loading surface is S1 = σ
or, according to (27),

(29)

From Eq. (29), we find the value of qs at which the
structural transition can join the reverse phase trans-
formation if the corresponding differential condition
is met. Solution (29) has the form

The considered stage ends at σ(qs) = S(qs) = S1 and
εphst'(qs) = qsε1.

3.2. Process Stage Accompanied by Structural Transition

We now consider the reverse transformation for q ≤ qs.
It is interesting to establish whether (and if so, for how
long) the structural transition occurs during further
heating and in which version, combined or purely
translational hardening?

At the initial moment q = qs, the point representing
the state of stress is located on the loading surface.
Therefore, if the condition dλ > 0, which in this case is
equivalent to dσ > 0 for both combined and transla-
tional hardening, is met at each point in a certain frag-
ment of the further process, an active process occurs
and the point is retained on the loading surface.
Therefore, the active process stops only at the point
where dσ ≤ 0.

At the initial point q = qs, the condition Sε > 0 is
met, which indicates that combined hardening place
in the case of active loading (dσ > 0). Therefore, as
long as the conditions dσ > 0 and Sε > 0 are met, an
active combined hardening mode occurs and is
described by a one-dimensional analog of Eq. (19),

(30)

At q = qs, we find ε = ε1qs and ε/q = ε1, and Eq. (30)
has the form ρD2ϕ2(S) = ε1.

We now derive relations that would allow us to find
the dependences of S, σ, and ε on q. For the active
process of the reverse transformation and structural
transition under combined hardening, the one-

∞
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dimensional analogs of Eqs. (21) and(11) are as fol-
lows:

Solving the last equation for dr, we have

(31)

Integrating Eq. (31) under the initial condition
r(S1) = 0, we obtain

(32)

According to Eq. (32), when S increases from S1, σ
increases monotonically from S1 and tends toward ∞
at S → ∞.

Constant strain condition (25) for q ≤ qs, for an
active combined hardening process, when Eq. (30) is
fulfilled, is written as

Taking into account that

we obtain a linear equation for q, the solution of which
has the form

(33)

According to Eq. (33), when S and σ increase, q
decreases monotonically, tending toward zero at σ →
EAε0. Since the changes in functions S, σ, and q are
monotonic, we can state that, when q decreases from
qs to zero, quantities S and ε = qρD2ϕ2(S) are positive
and dσ > 0; i.e., the conditions of active process
(Sdσ > 0) and combined hardening (Sε > 0) are ful-
filled. Therefore, the assumptions formulated on
obtaining this solution about the presence of a struc-
tural transition and a combined character of hardening
are correct at the considered stage of the process.

The second relation in Eq. (32), Eq. (33), and the
relation εphst'(q) = qρD2qϕ2(S) (which is one of the
active loading conditions) represent an explicit para-
metric representation of the solution to the problem for
all the desired functions with parameter S ∈ [S1, +∞]. In
this case, parameter σ expressed in terms of S (the sec-
ond relation in Eq. (32)) should be substituted into
Eq. (33).
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Fig. 1. Dimensionless strain vs. q and the initial tensile
strain.
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Fig. 2. Dimensionless strain vs. q and the initial compres-
sive strain.
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The calculations are then carried out using the fol-
lowing dimensionless variables: e = εphst'/ρD2, e1 =
ε1/ρD2, e0 = ε0/ρD2, e0 = ε0/ρD2, c = S/σ20, c1 = S1/σ20,
C = σ/σ20, G = ρD2g/σ20, eA = ρD2EA/σ20, ϕ2(σ) =
Φ2(σ/σ20), Φ2(C) = 1 – exp(–Cα), and ϕ2(s) =
Φ2(S/σ20) = Φ2(c) = 1 – exp(–cα). The calculations
were performed for the following values of the param-
eters: g = 3000 MPa or g = 750 MPa, EA = 84000 MPa,
EM = 28000 MPa, μ = 2, and ε0 = 0.001. For the case
of tension (TiNi, f lattened billets [29]), we have σ20 =
180 MPa, ρD2 = 0.0572, and α2 = 2.96. For the case of
compression (rods 8 mm in diameter [29]), we have
σ20 = 305 MPa, ρD2 = 0.019, and α2 = 4.9. Figures 1–3
show the dependences of phase-structural strain e on
phase composition parameter q.

The data shown in Fig. 1 correspond to the tension.
Curves 1–5 were obtained for e1 = 0.5, 0.4, 0.3, 0.2,
and 0.1, respectively. Three characteristic segments
can be distinguished in the curves. The first segment
on the right corresponds to the reverse phase transfor-
mation without a structural transition, and this seg-
ment begins at the point q = 1, e = e1 and ends at the
point (qs, e1qs) corresponding to the beginning of the
structural transition. The continuation of all these seg-
ments passes through the origin of coordinates. The
third segment represents the general linear asymptot-
ics of all curves, ending at the origin of coordinates,
and the equation of this asymptotic is e = q.

A transitional middle segment is between the first
and third segments, and it starts from the point of
break of the tangent, which is related to the operation
of a structural deformation mechanism. Only in this
transitional segment, the curve depends on transla-
RUSSIAN METALLURGY (METALLY)  Vol. 2021  No.
tional hardening parameter g. The thin lines here cor-
respond to g = 3000 MPa and the thick lines, to g =
750 MPa. When g decreases, the strains in this seg-
ment grow at the same values of q. For sufficiently low
values of g at the beginning of the intermediate seg-
ment, the strain during the reverse transformation can
not decrease, but even increase slightly.

In Fig. 2, similar curves are plotted with allowance
for the properties of the material corresponding to
compression for e1 = 0.1–0.9. The curves are arranged
from top to bottom from e1 = 0.9 and to e1 = 0.1 at a
step of 0.1. Note that, during the transition from ten-
sion to compression (see Fig. 1), the first segment
lengthens significantly and the intermediate one
shortens. For low values of e1, the second and third
segments are absent at all, and the structural transition
is not observed until the completion of the reverse
transformation. The curves in Fig. 2 are plotted for g =
750 MPa and their shapes at g = 3000 MPa are almost
the same.

In Fig. 3, we compare the dependences of e on q for
e1 = 0.5 (1, 1' ) and e1 = 0.1 (2, 2 ') in the case of tension
(1, 2) and compression (1', 2 '). For a low initial strain
e1 = 0.1, structural deformation does not occur at all
during compression, and a structural transition occurs
in the major part of the q range during tension.

Figure 4 shows the q dependences of the dimen-
sionless coordinates of the center of the loading sur-
face r (curve 1), the dimensionless parameter of active
stresses c (curve 2), and the dimensionless parameter
of stress deviator C (curve 3). The solutions are
obtained for compression, e1 = 0.5 and g = 3000. The
dependence of r on q reaches a horizontal asymptote
when q approaches zero due to properties of (1) func-
 10
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Fig. 3. e vs. q for (1, 1') high and (2, 2') low initial strains for
(1, 2) tension and (1', 2') compression.
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Fig. 4. Effect of q on (1) microstresses, (2) active stresses,
and (3) total stresses for compression.
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Fig. 5. Effect of q on (1) microstresses r, (2) active stresses c,
and (3) total stresses C for tension.
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Fig. 6. Dimensionless stress vs. dimensionless strain for
tension.
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tion ϕ2. Curves 2 and 3 coincide with each other for
q ∈ [qs, 1] and become equidistant for q close to 0.

In Fig. 5, similar curves are shown for the case of
tension at an initial strain e1 = 0.1. The lower group of
thick and thin lines determines the changes of r with q,
the middle group, the values of c, and the upper group,
the values of C. When g increases, all other things
being equal, the values of r and C in the segment q ∈
[0, qs) decrease and c increases (thin lines, as before,
correspond to g = 3000 MPa, thick lines, to g =
RUS
750 MPa). At q → 0, the dependences C(q) for various
values of g have the same asymptotics. As g increases,
the segment of the “horizontal” asymptotics of the
dependence r(q) adjacent to the ordinate axis shortens
and completely disappears.

Figure 6 shows the dependences of dimensionless
stress C on dimensionless strain e for the process under
consideration in the case of tension. The curves from
right to left correspond to e1 = 0.2, 0.15, 0.1, 0.05. As
can be seen, for sufficiently low values of g (thick
SIAN METALLURGY (METALLY)  Vol. 2021  No. 10
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lines), the stresses are not a monotonic and single-val-
ued function of strain. Immediately after the begin-
ning of the structural transformation with an increase
in stress, the deformation parameter passes from
decreasing to increasing, reaching a local maximum,
and then monotonically decreases to zero. This non-
monotonicity and nonuniqueness effect at fixed g
increases with decreasing initial strain e1.

4. CONCLUSIONS

(1) The assumption that the intensity of the intrin-
sic phase-structural strain of the representative SMA
volume should be used as a parameter of isotropic
hardening for the structural deformation of SMA was
substantiated. This assumption makes it possible to
significantly simplify an SMA deformation model for
the case of simultaneous structural and reverse phase
transformations.

(2) Taking into account the structural transforma-
tion during the reverse transition in an SMA rod,
which is in a constrained state, significantly changes
the solution of the problem, leading to a nonmono-
tonic (in some cases, ambiguous) strain dependence of
stresses.
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