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Abstract—The Ti—Zr and Ti—Nb coatings fabricated by the electric explosion of conductors are studied by
scanning electron microscopy, and the behavior of the coating/substrate interface is theoretically investi-
gated. The results obtained are used to propose a mechanism for the interface relief formation. The wavy
interface reliefis assumed to be caused by the Rayleigh—Taylor instability. An analysis of a dispersion equation
shows that the wavelength corresponding to the maximum increment is 0.92 wm for the Ti—Zr system and
1.67 um for the Ti—Nb system. The distance between relief ridges detected in experiments is 2.5—8.7 um for
Ti—Zr and 5—11 um for Ti—Nb. This difference is explained by the fact that the second maximum in the
wavelength dependence of the instability increment can be observed in experiments.
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INTRODUCTION

Artificial materials are widely used in modern med-
icine to replace damaged tissues and organs. They
must operate for a long time, withstand erosion wear,
and do not contain toxic elements [1]. Volume alloy-
ing for improving the properties of implanted materi-
als is not always justified, since a material begins to
degrade from its surface. Therefore, the surface of a
part should be hardened first of all [2—4].

The required specifications can be met by surface
modification, in particular, the formation of a coating
on a working surface. Many methods of coating depo-
sition onto the surface of an implant have been devel-
oped to date, and gas-phase chemical and physical
deposition [5, 6] and the sol gel method [7] are note-
worthy. Although these methods can be sued to create
coatings with the required properties, the process of
their deposition is labor consuming.

Surface modification is often accompanied by
coating separation, which is caused by mechanical
stresses at the coating/substrate interface because of
the difference between their elastic moduli [8, 9]. The
stress distribution depends on the interface relief. As
follows from [10, 11], a developed surface relief favors
the dispersion of stress concentrators. As a result, the
functional properties of a coating can be retained
without the formation of extended localized plasticity
bands in a matrix.

An alternative to the existing coating deposition
methods can be an electric explosion of conductors
[12—16]. This method can be used to create composite
coatings having high adhesion and mechanical erosion
resistance. To use this method widely and to search for
the treatment conditions that ensure a developed coat-
ing/substrate interface relief, it is necessary to know
the relief formation mechanism.

The authors of [17] proposed a mechanism, which
is based on the appearance of the Rayleigh—Taylor
instability, for mixing materials during electric explo-
sion treatment. The essence of this instability con-
sists in the fact that, if the boundary of two media
moves at an acceleration directed normal to the
interface from the lighter to the heavier medium, this
boundary is unstable [18]. The development of the
Rayleigh—Taylor instability is a complex process,
which includes the formation of sharp protuber-
ances, curtains, and bubbles [19]. Such relief ele-
ments were detected during the formation of compos-
ite coatings [12, 13, 16].

The purpose of this work is to study the mechanism
of formation of the interface between a coating
formed by electric explosion alloying and a titanium
substrate. Titanium and its alloys are widely used to
prepare implants due to their good compatibility with
the human body. The Rayleigh—Taylor instability is
assumed to occur at the interface during the electric
explosion alloying of the titanium surface [12, 13, 16].
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Table 1. Characteristics of the electric explosion device

Parameter Value
Energy consumption, kJ 60
Discharge eigenfrequency, kHz 10
Maximum charge, kV 5
Charging voltage step, kV 0.1
Maximum capacity at the maximum 10
charging voltage, cycles/h
Average consumed power in charging, kW <0.55
Battery capacity, uF 1008
Pulse duration, us 100

EXPERIMENTAL

We studied 20 % 20 X 5-mm samples made of VI'1-0
titanium. Zirconium and niobium foils 568 and 134 mg
in weight, respectively, were used as conductors to be
exploded. To form multiphase plasma jets, we used an
EVU 60/10 device, which consists of an end-face
coaxial plasma accelerator. The main characteristics of
the device are given in Table 1 and the principle of its
operation is comprehensively described in [20, 21].

The main parameters of the electric-explosion
deposition of conductors are pulse duration T and
power density g absorbed during the thermal action on
a surface. The conditions required for this process
were specified by the charging voltage of the accelera-
tor energy storage system (U = 1.8 kV), the plasma
stream acceleration (g = 6 X 10° m/s?), the nozzle
channel diameter (d = 20 mm), and the distance from
the nozzle exit section to a sample (s = 20 mm). To
choose ¢ for treatment (¢ = 1.5 gW/m?), we calculated
the irradiated surface temperature using the model of
heating by a flat thermal source [22].

The modified layers were analyzed by scanning
electron microscopy (Zeiss EVO 50 XVP microscope).
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RESULTS AND DISCUSSION

Under the chosen deposition conditions, the inter-
face between Ti—Zr and Ti—Nb coatings and the base
is wavy (Figs. 1, 2). The wavy character of the Ti—Nb
coating is more pronounced. The shape of the ridges
(indicated by the arrow in Fig. 2) is similar to the pic-
ture that is observed when the Rayleigh—Taylor insta-
bility was studied [18, 19]. It is logically to assume that
this instability is the relief formation mechanism. The
distance between ridges is 2.5—8.7 um in the case of a
Ti—Zr coating and 5—11 um in the case of a Ti—Nb
coating.

We now consider the initial stage of the Rayleigh—
Taylor instability, when a flat interface loses its stabil-
ity at small harmonic perturbations. The important
parameters that characterize the instability at this
stage are the critical wavelength at which the instability
begins and the wavelength corresponding to the maxi-
mum instability [23]. To find these parameters, we
have to analyze a dispersion equation for small har-
monic perturbations. We analyze the dispersion equa-
tion obtained in [17],

aw’ +2bo+ ¢ = 0, (1)

where a = p,coth(kh)+p,coth(kH), b =
ik*(p,v,coth(kh)), ¢ = g(p, — p;) — Oxk>, p is the den-
sity, v is the kinematic viscosity, ¢ is the surface ten-
sion, 6, = |6, — G,| is the interfacial surface tension,
H is the coating thickness, /4 is the substrate thickness,
g is the plasma stream acceleration, k is the wavenum-
ber, and subscripts 1 and 2 belong to the substrate and
the coating, respectively.

In the calculations, we use the approximation H — o
and & — oo. Equation (1) was derived in the so-called
viscous potential approximation [24], according to
which viscosity effects are significant only at the inter-
face. The electric explosion plasma incident on a sam-

Fig. 1. Structure of the Ti—Zr coating (cross section).
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Fig. 2. Structure of the Ti—Nb coating (cross section).

ple is taken to be an ideal liquid, and the molten sub-
strate layer is taken to be viscous. To find the incre-
ment, we write the cyclic frequency as a complex
number ® = g + io, where W, and o are the real and
imaginary parts of the complex frequency, respec-

tively. As a result, we have the set of equations1

2 2
amy —ao” —bo+c =0
amzo + bwy, = 0.

()

From the solution to Eq. (2), we find increment o,

[ 2
o = V=b_ tac (3)
a
To calculate o, we estimate plasma stream velocity
v and acceleration g. The plasma stream velocity at the
nozzle exit section of the accelerator is calculated by
the empirical formula [25]

2 m
v =6.75x10° (Czij , (4)
T

where C is the battery capacity, Uis the charging volt-
age, m is the exponent dependent on the type of source
(m = 0.05 for electric explosion sources), and 7T is the
pulse duration.

The stream acceleration is estimated as

2

14
g:_s
28

where s is the distance from the nozzle to the sample
surface.

VIf the imaginary part of the complex cyclic frequency (incre-
ment) is zero, the corresponding wavelength is critical. All wave-
lengths with A > A, are unstable and lead to the formation of
vortices. The wavelength at which the instability is maximal
indicates the most probable size of vortex structures.
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Fig. 3. Increment s. the wavelength for (/) Ti—Zr and
(2) Ti—Nb systems.

Table 2 gives the physical characteristics of the
materials used to find the wavelength dependence of
the increment.

Figure 3 shows the increment as a function of the
wavelength at the experimental treatment parameters.
The wavelength of the maximum increment for the
Ti—Zr pairis 0.92 um (Fig. 3, curve ) and 1.67 um for

Table 2. Physical properties of the materials

Material p, kg/m3| v, 1077 m?/s| o©,N/m
Titanium 4120 10.7 1.402
Zirconium 5800 8.16 1.492
Niobium 7580 5.92 1.9

p is density; v, kinematic viscosity; and G, surface tension.
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Fig. 4. Wavelength corresponding to the maximum incre-
ment vs. the charging voltage for the coatings of (/) Ti—Zr
and (2) Ti—Nb systems.

the Ti—Nb pair (Fig. 3, curve 2). A smaller wavelength
in the case of zirconium alloying is caused by lower
interfacial surface tension. The calculated values are
slightly smaller than the experimentally detected
inter-ridge distances (see Figs. 1, 2). This difference
could be explained by the fact that the temperature-
gradient-induced effects manifest themselves during
the coating—substrate interaction under real condi-
tions. However, when Eq. (1) was derived in [16], the
processes under study were assumed to occur under
isothermal conditions. On the other hand, the viscous
potential approximation used in this work and the
assumption about an infinitely large layer thickness
give only one maximum at short waves (see Fig. 3). A
second maximum can appear at long wavelengths
under experimental conditions. This maximum is
likely to manifest itself in electron-microscopic
images (see Figs. 1, 2).

Despite these differences, we can conclude that the
Rayleigh—Taylor instability is the main mechanism of
formation of the coating/substrate interface relief and
the viscous potential approximation can be used to
predict the surface relief geometry. Indeed, a decrease
in the wavelength corresponding to the maximum
increment points to a more developed surface relief.

The dependence of the wavelength corresponding
to the maximum increment on the charging voltage is
linear (Fig. 4). An increase in the charging voltage
decreases the wavelength corresponding to the maxi-
mum increment. Thus, a developed surface relief
forms at high charging voltages.

CONCLUSIONS

The formation of the coating/substrate interface
relief during coating deposition by electric explosion
of a conductor was studied for Ti—Zr and Ti—Nb sys-
tems. Using scanning electron microscopy, we showed
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that a developed interface relief formed during electric
explosion treatment. A relief formation mechanism,
which is based on the appearance of the Rayleigh—
Taylor instability during electric explosion treatment,
was proposed. An analysis of the initial stage of this
instability showed that the wavelength corresponding
to the maximum increment was 1.67 um for the
Ti—Nb pair and 0.92 um for the Ti—Zr pair. The
dependence of the wavelength that corresponds to
the maximum increment on the charging voltage is
linear and can be used to choose the optimum condi-
tions of electric-explosion coating deposition.
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