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Abstract⎯The directional solidification of a ternary system with an extended phase transition region is the-
oretically studied. A mathematical model is developed to describe quasi-stationary solidification, and its ana-
lytical solution is constructed with allowance for a nonlinear liquidus line equation. A deviation of the liqui-
dus equation from a linear function is shown to result in a substantial change in the solidification parameters.
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INTRODUCTION
Melt solidification often occurs in the presence of

a long phase transition region (two-phase, or mushy,
zone), which appears due to a thermal or concentra-
tion supercooling [1–3]. The processes of new-phase
nucleation and growth take place in this supercooled
zone and are accompanied by the release of the latent
heat of solidification [4–7]. If this heat compensates
for the supercooling, the mushy zone is called quasi-
equilibrium [1, 2, 8–10]. The authors of [11, 12] were
the first to develop a mathematical model for the
mushy zone, and analytical solutions to this model,
which describe the real processes of solidification of
binary systems under quasi-stationary and nonstation-
ary conditions, were found in [13–16] and [17–19],
respectively.

However, the simulation of solidification using a
binary system the concentration of which describes all
solutes cannot always be performed. The influence of
the main impurity and other components should often
be taken into account to describe the solidification of
a multicomponent solution. If the second dominating
component can be distinguished among them, this sit-
uation corresponds to a ternary system. Based on the
experimental data from [21], Andersen [20] proposed
a mathematical model to describe the directional
solidification of ternary systems with a linear phase
diagram. The authors of [22] and [23, 24] then found
its exact analytical solutions under quasi-stationary
and self-similar solidification conditions, respectively.

The experimental and theoretical studies [25–27]
showed that the nonlinearity of a phase diagram can
radically change the solidification characteristics. For
example, we [26] studied binary systems and showed

that, when the nonlinearity of a phase diagram is taken
into account, the mushy zone length increases more
than twofold (as compared to the linear phase dia-
gram). In this work, we continue to study the solidifi-
cation of ternary systems and investigate the influence
of the nonlinearity of a phase diagram on directional
solidification.

MODEL FOR THE DIRECTIONAL 
SOLIDIFICATION OF A TERNARY SYSTEM

We consider the directional solidification of a ter-
nary system along spatial axis z (Fig. 1) Let B and C be
the concentrations of two substances dissolved in sol-
vent A (A + B + C = 1). Since the parent substance
undergoes a phase transition in the region that does
not coincide with the phase transition region of the
second substance, two two-phase zones, namely, par-
ent and cotectic zones, appear during solidification.
Let their lengths be δP and δC. Since the phase diagram
of this system was discussed in detail in [20, 22–24],
we will not dwell on liquidus, cotectic, and eutectic
equations and refer the reader to those investigations.
It is important that the relaxation time of the tempera-
ture field τT ~ l2/κ is much shorter than the character-
istic relaxation times of concentration fields τB ~ l2/DB

and τC ~ l2/DC, i.e., τT  τC and τT  τB. Here, l is the
characteristic length scale; κ is the thermal diffusivity;
and DB and DC are the diffusion coefficients of impu-
rity components B and C, respectively. As follows from
this estimate of the relaxation time, the derivatives of
temperature with respect to time t are much smaller
than the other terms of the corresponding model
equations. Allowing for this circumstance, we write a
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mathematical model for the process using the results
from [22–24].

In the liquid phase of the system (melt), impurity
concentrations B∞ and C∞ and temperature gradient
GL are given,

(1)

(2)

where T is the temperature and V is the constant solid-
ification rate. Moreover, the following impurity diffu-
sion equations are fulfilled in the liquid phase:

(3)

The boundary conditions at the main mushy
zone–melt interface, which have the physical mean-
ing of heat and mass balance and continuity condi-
tions, are written as follows:

(4)

(5)

Here, LV is the latent heat of solidification;  = kLχ +
kS(1 – χ); kL and kS are the thermal conductivities of
the melt and the solid phase, respectively; χ is the frac-
tion of the liquid phase; and ϕA is the fraction of the

solid phase of component A. Symbol  indicates the
jump of the corresponding quantity at the boundary.

, , ,B B C C z∞ ∞→ → → ∞

, ,L C P
T G z Vt Vt
z

∂ = > + δ = + δ + δ
∂

2 2

2 2, , .B C
B B C CD D z Vt
t tz z

∂ ∂ ∂ ∂= = > + δ
∂ ∂∂ ∂

[ ]

[ ] [ ] [ ]

,

0, ,

V A
TL V k
z

T B C z Vt

+
+
−

−
+ + +
− − −

∂⎡ ⎤ϕ = ⎢ ⎥∂⎣ ⎦

= = = = + δ

[ ]

[ ]

,

, .

A B

A C

BBV D
z

CCV D z Vt
z

+
+
−

−
+

+
−

−

∂⎡ ⎤ϕ = χ⎢ ⎥∂⎣ ⎦

∂⎡ ⎤ϕ = χ = + δ⎢ ⎥∂⎣ ⎦

k

[ ]+
−⋅

In the main mushy zone (where component A
undergoes a phase transition (χ = 1 – ϕA)), heat-and-
mass transfer equations are written as

(6)

(7)

where TM is the phase-transition temperature of the
pure substance and mB and mC are the slopes of the liq-
uidus equation.

We now write boundary conditions at the second
interface between the cotectic and the main two-phase
zones. These conditions reflect the heat and mass bal-
ance and the continuity of the temperature field and
the impurity concentration fields and are written in
the form [20, 22–24]

(8)

(9)

(10)

where ϕB is the fraction of the solid phase of compo-
nent B.
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Fig. 1. Schematic diagram of the directional solidification of a ternary system with two phase transition regions.
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Then, heat-and-mass transfer equations in the
cotectic mushy zone, where components A and B (χ =
1 – ϕA – ϕB) undergo a phase transition, are written as

(11)

(12)

(13)

where TE, BE, and CE are the known temperature and

the impurity concentrations at the eutectic point of the

ternary system, respectively, and  is the tempera-
ture at the eutectic point of the binary system.

The boundary conditions at the surface between
the solid phase and the cotectic zone have the form

(14)

(15)

(16)

In the solid phase, we have a constant temperature
gradient GS, i.e.,

(17)

The set of Eqs. (1)–(17) is a closed system of equa-
tions and boundary conditions for searching for the
solution to the problem of the solidification of a ter-
nary melt at a constant rate.

METHOD FOR SOLVING 
THE NONLINEAR MODEL

We now pass to the coordinate system moving at
constant velocity V. In this new coordinate system,
solidification is a steady process and all unknown
functions are time-independent.
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Diffusion equations (3) under boundary condi-
tions (1) have the following integrals:

(18)

where B1 and C1 are the constants of integration. Inte-
grating heat-and-mass transfer equations (6) and (7)
in the main mushy zone, we find the derivatives of the
impurity temperature and concentration,

(19)

(20)

where  A2, and A3 are

constants of integration and GPL and  the tem-

perature gradient and the fraction of the solid phase at
y = δ determined on the side of the main mushy zone.
These unknowns will be found later. When combining
Eqs. (19) and (20) with liquidus equation (6), we
determine the relation between the B and C concen-
trations in the main mushy zone,

(21)

From Eq. (20), we find the dependence  in the

main mushy zone,

(22)

We now consider the case DB ≠ DC. We find dB
from Eq. (21) and substitute it into Eq. (22). As a
result, we obtain the expression
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(23)

Relationship (23) is a differential equation. A
boundary condition for solving this equation will be
derived later from Eq. (10). Finding function C(ϕA) in

the main mushy zone, we obtain an expression for the
other unknowns. Combining Eqs. (20) and (23), we
obtain the dependence of the coordinate on the frac-
tion of the solid phase and the mushy zone thickness,

(24)

(25)

Equations (21)–(25) represent the parametric solu-
tion to the problem in the main mushy zone. Here, the
fraction of the solid phase ϕA (or χ = 1 – ϕA) of the com-

ponent solidifying in this zone is a parameter.

Substituting the found solutions into conditions (4)
and (5), we derive the following equations, which
determine the unknown constants:
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We now solve the problem in the cotectic zone. Integrating Eqs. (11) and (13) one time, we obtain the expres-
sions
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Differentiating Eq. (12), we find the relation

between   and  Substituting Eqs. (30) and
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Note that only one of the two solutions to Eq. (33)
lies in a unit segment. Plotting both solutions, we

choose only one of them, namely, the physically
allowed solution

(35)

Equation (31) is used to obtain the dependence of

the coordinate on the fraction of the liquid phase and

the cotectic two-phase zone thickness,
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The solutions in the cotectic two-phase zone have
been found. Substituting these solutions into bound-
ary conditions (14)–(16) and taking into account tem-
perature gradient (17), we obtain the following rela-
tionships for the unknown constants:
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From Eqs. (38), (39) and (41), (42), we now determine

(48)

(49)

(50)

 and  are found from Eqs. (44) and (45), and

 is then found from Eq. (43) at known  Differ-
ential equation (43) can be solved now since

 is known. Expressions (26), (28), and

(29) are combined to obtain equations to find  C1,

and B1. The boundary values on the right of the solid

phase–cotectic zone boundary are found from distri-

butions (32) in the form  and

 Moreover, distributions (32) also

determine the boundary fractions of the solid phase of

components A and B   on the left of the
boundary between the cotectic and the main mushy

zones,  and 

INTERDENDRITIC SPACING

In some practical problems, the determination of
the impurity concentration in a solid phase is reduced
to measuring the interdendritic spacing and calculat-
ing the concentration at the boundary with the solid
phase. In our case, the impurity concentration is
exactly known as a function of the spatial variable. The
interdendritic spacing can be analytically determined.
To this end, we write the following equation, which
relates these two parameters [28]:

(51)

Here, ρ is the radius of curvature that corresponds to
stable dendrite growth and is specified by the criterion
[6, 29, 30]

(52)

where

(53)

(54)

a2 =  and σ0 are constants to be

experimentally determined, d0 is the capillary length,

Vd is the dendrite tip velocity, β is the increase param-

eter,  is the slope of liquidus, Ci is the impurity con-

centration on the dendrite surface, k0 is the impurity

distribution coefficient, Q is the latent heat per unit
volume of the solid phase, cp is the heat capacity, DT is

the thermal conductivity, DC is the diffusion coeffi-

cient, and Pg is the Peclet number.

Combining Eqs. (51)–(54), we can find function
λ(Pg) in an explicit form.

CONCLUSIONS

A new analytical method was developed to solve
the heat-and-mass transfer problem in a ternary sys-

tem. This method has all limiting transitions to the
formulations of the problem studied earlier. The
dependences of the impurity concentrations and the
fractions of solid and liquid phases were obtained for
the case of a linear liquidus equation. The influence of
the quadratic term in the liquidus equation on a phase
diagram was studied.

Figure 2 shows the effect of coefficient n on the
deviation of the liquidus equation from a linear depen-
dence. The small deviations from a linear function at a
fixed impurity concentration in the mushy zone can
change the temperature by several degrees Celsius. It
should be noted that such deviations often take place
in practice. As follows from Fig. 2, temperature tends
to decrease when n decreases and tends to increase
when n increases.

Figure 3 shows the distributions of the fractions of
the solid and liquid phases over the entire phase tran-
sition zone, which consists of the cotectic and the
main two-phase zones. The fraction of the solid sub-
stance of component A (ϕA), which undergoes a phase

transition in regions I and II, decreases monotonically
in the phase transition region. However, the fraction of
the solid substance of component B (ϕB), which

undergoes a phase transition only in region I,
decreases only in the cotectic mushy zone. The length
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of cotectic region I is smaller than the length of the
main phase-transition region (region II). According to
these dependences, the fraction of the liquid phase χ
increases monotonically in the entire phase-transition
region (regions I and II). This fraction is determined
by the fractions of solid phase ϕA and ϕB in region I and

only by fraction ϕA in region II. Therefore, as function

ϕA(x), distribution χ(x) also has an inflection point in

the main mushy zone. Our calculations demonstrate
that the fractions of the solid and liquid phases at the
boundaries between regions I and II and regions II and
III are continuous (they are discontinuous only at the
solid phase–cotectic zone boundary).

Figure 4 depicts the impurity concentration distri-
butions over the entire phase transition region. The
basic impurity component have a concentration C(x)
and decreases monotonically in regions I and II due to
the rejection of the impurity by the solid phase grow-
ing in the system. In contrast to this dependence
(which has traditional behavior), the concentration of
the second component B(x) increases in the cotectic
region, intersects the boundary between regions I and
II, reaches its maximum in the main mushy zone, and
then decreases in this zone and the liquid phase
and tends toward initial concentration B∞. This, at

first glance unusual, behavior of impurity concentra-
tion B(x) is explained by the fact that component B
undergoes a phase transition in region I, which results
in a decrease in the concentration near the solid
phase–cotectic region boundary. Note that analogous
behavior of impurity concentration B(x) was obtained
during an analysis of nonstationary self-similar solidi-
fication in [3–7]. However, the maximum in those
works was found at the boundary of regions I and II.
The shift of the maximum to region II is caused by the

fact that approximate Scheil impurity diffusion equa-

tions (equations without diffusion terms) were used in

[3–7]. Therefore, the shift of the maximum toward

the main mushy zone is explained by the effect of the

diffusion transport of impurity B(x) in a real ternary

system.

Note that the influence of coefficient n from the

liquidus equation is also visible in Figs. 3 and 4: the

behavior of curves did not change, but the mushy zone

length increased significantly as compared to the case

Fig. 3. Fractions of (solid and dashed lines) solid phase and
(dot-and-dash line) liquid phase vs. spatial coordinate.
Cotectic zone, main zone, and liquid phase are located in
regions I, II, and III (regions are indicated by vertical lines
for the lower axis), respectively. The thermophysical
parameters of the system to be calculated are given in the
table (y is measured in centimeters).

0

0.2

0

0.002

0.004

0.006

0.008

0.010

0.4

0.6

0.4

0.6

0.8

1.0

5

χ

10

1 2

y

y
ϕA ϕB

Fig. 4. Concentrations of impurities C and B vs. spatial
coordinate y = z – Vt. The designations and the calculation
parameters correspond to Fig. 2. δC = 2.168 cm and δ =
11.803 cm (y is measured in centimeters).
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Fig. 2. Effect of coefficient n on the deviation of the liqui-
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of a linear liquidus equation. In addition, the curves
elongated.

Figure 5 shows interdendritic spacing λ versus
Peclet number Pg. The interdendritic spacing is seen to

decrease with increasing Pg. This behavior agrees with

the well-known experimental data from [31, 32] and
the theory developed in [33].

The main result of this work is the conclusion that
even a small deviation of the liquidus equation from a
linear function can lead to a substantial change in the
solidification parameters. 
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