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Abstract—The contributions at a temperature of 500 and 600 K of the chemical, elastic, vibrational, magnetic,
electronic, and configurational energies to the Gibbs energy of mixing of bcc alloys without regard for the
contribution of a short-range order are calculated as functions of composition and temperature using physi-
cal–empirical models. The temperature dependences of the heat capacity of an alloy in both one- and two-
phase states are calculated. The heat capacity jumps calculated for alloys of various compositions can be used
to estimate the equilibrium solubility boundaries of Fe–Cr alloys, which can hardly be found from experi-
mental data because of the slow diffusion processes that occur when an equilibrium state is reached. The cal-
culated solubility boundary of bcc solid solutions and the spinodal and the heat capacity of Fe–Cr alloys are
compared with the experimental data and the calculation results obtained in other works. The agreement and
discrepancy between these data are discussed.
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INTRODUCTION
This work is a continuation of work [1] on the

application of physical–empirical models to estimate
the contributions to the Gibbs energy of mixing of the
ferromagnetic bcc solid solutions in the Fe–Cr sys-
tem. The Fe–Cr system is the basis for creating ferritic
corrosion-resistant steels due to the presence of chro-
mium in an iron-based solid solution. Moreover, a
thin chromium oxide film, which prevents further oxi-
dation, is known to form on the surface of an Fe–Cr
alloy under the action of an aggressive surrounding
medium. When the chromium content in the alloy
reaches ~10 at %, the corrosion resistance of ferritic
steels increases by several orders of magnitude [2].
bcc Fe–Cr alloys are model alloys for creating that
materials that have a high corrosion and radiation
resistance and can operate at high temperatures of
about 1000 K, which is the temperature at which next-
generation reactors (fast reactors) should operate.
These alloys can also be used as first-wall materials in
the next-generation thermonuclear reactor.

Moreover, the addition of chromium to an iron
matrix strongly changes the mechanical properties of
iron-based alloy, the swelling and creep resistance,
and the formation of radiation-induced pores. It is
important that most physical (Curie temperature,
Debye temperature, average magnetic moment), struc-

tural (short-range order [3, 4]), chemical (change in the
sign of enthalpy of mixing [5–9]), and mechanical
(bulk modulus [8]) properties of bcc Fe–Cr alloys are
characterized by nonmonotonic behavior when the
chromium concentration changes: they reach their
extrema at a chromium concentration of about 10 at %.

Although the Fe–Cr system is based on a bcc
structure over the entire concentration range, it con-
tain alloys in stable and metastable (for a rather long time)
states. In the temperature range 273–573 K, the estimated
experimental Fe–Cr phase diagram [10] exhibits bound-
aries of solubility of chromium atoms in an iron matrix
beginning from 5–10 and ending in 90–95 at % Cr. The
following two ranges are present inside this region: two
ranges of a metastable state of alloys, where ∂2G/∂x2 > 0,
and one range of absolute instability (spinodal decom-
position), where ∂2G/∂x2 < 0 (G is the Gibbs energy
and x is the mole concentration of the second compo-
nent). The first two ranges are located along the edges
of the second range and extend through 20 at % on
either side. The decomposition of alloys in the second
range occurs according to the spinodal mechanism.
Since this range has no thermodynamic barriers, the
decomposition of alloys is a purely diffusion process.
Note that the boundaries of spinodal decomposition
are important from a practical viewpoint: knowing
these boundaries, researchers can create materials
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with a fine microstructure, which substantially influ-
ence their physical properties [11–28]. These materi-
als should operate at relatively low temperatures,
where the operation time does not exceed the diffusion
time it takes for phase equilibrium to be reached.

During thermal annealing, either the precipitation
of the high-temperature σ phase in an alloy or the
phase transformation with the formation of α- and
α'-phase precipitates can occur. For example, 2 vol %
precipitates form in an Fe–20 at % Cr alloy upon
annealing at T = 773 K for 50 h, which inevitably cause
local stresses in its crystal lattice [13]. Changes in the
structural properties on a microscale can cause signif-
icant changes on a macrolevel or, in other words,
embrittlement at 475°C; that is, these changes can
substantially influence the mechanical properties of
the alloy.

The approach described in part I of this work (see
[1]) is based on the hypothesis that the free energy of a
system (in particular, bcc solid solution) can be
expressed as the sum of the following energies of non-
interacting subsystems: the energy of chemical inter-
action during alloy formation at 0 K; the energy of
elastic lattice strains caused by the statistical displace-
ments of ionic cores with respect to the sites of an ideal
(mean) crystal lattice; the free energy of atomic vibra-
tions in a crystal lattice; the magnetic (or temperature)
component of the free energy, which takes into
account the contribution of the magnetic subsystem to
the heat capacity; the free energy of thermally excited
electrons, or the contribution of the electronic com-
ponent to heat capacity Cp(x, T) at x = const; and the
configurational entropy of a random solid solution
without regard for short-range order parameters [3, 4].
In [1], we presented the following approximations of
the collected experimental data: Debye temperature
θD(x), linear thermal expansion coefficients of pure
components, which were used to calculate the equilib-
rium volume of the crystal lattice V(x, T); electronic
specific heat coefficients Δγ(x); average magnetic
moment B0(x); and Curie temperature θC(x). The sim-
ulation of the behavior of a material under irradiation
is a complex problem, since the processes occurring in
this material are nonequilibrium. Various methods are
used to simulate the behavior of a material under irra-
diation. For example, these are ab initio principles,
which take into account an electronic structure;
molecular dynamics simulation; and the kinetic
Monte Carlo method. The last two methods need the
knowledge of potentials, which are fitted to the results
of ab initio calculations using empirical approaches.
This circumstance is a weak point of these two meth-
ods, since a reliable theoretical justification of the
applied empirical interatomic potentials is now absent.
The simulation of equilibrium phase boundaries,
which are boundary conditions for nonequilibrium
processes, using these two methods requires a huge
number of calculations to simulate the motion of a
time parameter to infinity. It is difficult to calculate
the physical properties, such as the temperature
dependence of the isobaric heat capacity of an alloy in
both one- and two-phase fields in a phase diagram,
using these two methods, since it is necessary to calcu-
late high-order derivatives of the free energy of mixing
with respect to alloy composition and temperature.

In principle, the technique proposed in this work
can be used to calculate these derivatives, the phase
boundaries in a phase diagram, and some physical
properties of alloys (bulk modulus, heat capacity, lin-
ear thermal expansion coefficient) as functions of the
alloy composition and the temperature, which is
important in designing new alloys.

PHASE EQUILIBRIUM CALCULATIONS
Figure 1 shows the results of calculating the energy

contributions to the Gibbs energy of mixing of ferro-

Fig. 1. Calculated energy contributions to Gibbs energy of
mixing at T = (a) 500 and (b) 600 K as functions of the
solution composition in the Fe–Cr system.
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magnetic bcc solid solutions that were calculated by
the formulas from part I of this work at temperatures
of 500 and 600 K, since the spinodal changes sharply
in this temperature range (Fig. 2). In Fig. 1, the calcu-
lated total free energy of mixing Gtot as a function of

composition (calculation by Eq. (1) from [1]) is shown
by the solid line, and the energy contributions (mag-
netic Gmagn, vibraitonal Gvib, elastic Gel, electronic Gelec,

chemical Gchem, and ideal (configurational) Gid ener-

gies) are shown by the dashed, dotted, and dot-and-
dash lines, respectively. As follows from the calculated
concentration dependences of the energy contribu-
tions, the stabilization of bcc Fe–Cr alloys in the tem-
perature range 500–600 K depends substantially on
the elastic, chemical, magnetic, and electronic contri-
butions. As the temperature increases, the influence of
the elastic energy caused by the statistical displace-
ments of ionic cores from the sites of the mean crystal
lattice weakens, and the influence of the energy of
thermally excited electrons strengthens.

TECHNIQUE
OF THE PHASE EQUILIBRIUM 

CALCULATIONS

The calculation of phase equilibrium is reduced to
the construction of a tangent to the total free energy
curve or, in other words, to the Gibbs energy of mixing
ααΔGα(x, T) at a fixed temperature. This is a procedure
for searching for the concentration points correspond-
ing to equilibrium phase compositions [14, 15].
According to this procedure, the spinodal points that
are the solutions to the equation of zero second deriv-
ative of the free energy of mixing with respect to com-
position are determined to separate roots. The compo-
sitions of these phases are then refined at a given accu-
racy [15]. This procedure is numerically performed

because of the complex dependence of the free energy
of mixing on the alloy composition and the impossi-
bility of its analytical form.

The second and third derivatives, which are neces-
sary for this procedure, are calculated accurate to the

fourth order of expansion O(h4) using the following
formulas [16]:
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where f is a function, x0 is the concentration point
where differentiation is performed, and h is the differ-
entiation step. These formulas imply the application of
a uniform grid. The necessity of calculation of the
third derivative of the free energy of mixing with
respect to composition is caused by the determination
of the accuracy of calculating spinodal points
described by the formula [15]

When performing this procedure in the tempera-
ture range 0–1000 K, we found the boundaries of bcc
solution solubility and the spinodal line, which are
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shown in Fig. 2 along with the experimental data
obtained in numerous works. The technique of
spinodal line calculation is reduced to a numerical dif-
ferentiation of the mole energy of mixing of the bcc

α solution phase ααΔGα(x, T), which is described with
respect to the α phases of the pure components in x
(where x is the chromium concentration), and to find-

ing the points of extremum of function ∂ααΔGα(x, T).

RESULTS OF THE PHASE
EQUILIBRIUM CALCULATIONS

The calculated spinodal line agrees well with the
experimental data from [17, 18] for T = 800 K, from

Fig. 2. Calculated curves of (1) solubility and (2) spinodal
of the bcc solid solutions in the Fe–Cr system in compar-
ison with the experimental data (see points).
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[19] for 689 K, and from [28] for 743 K. The visible
differences between the calculated solubility boundar-
ies and the values obtained by other researchers, which
are seen in Fig. 2, can be explained by the presence of
the σ phase, which prevents an exact identification of
the α/(α + α') and α'/(α + α') boundaries. As noted
in [19], the slow diffusion processes at T = 700 K or
below can also cause the difference between the exper-
imental and calculated equilibrium solubility bound-
aries. The coordinates of the calculated critical point
are Tcr = 969 K and xcr(Cr) = 0.385 mole fraction. This

point is only of purely theoretical interest, since it
belongs to the metastable part of the phase diagram
and is “masked” by the phase fields caused by the
presence of the σ phase.

The calculated bcc fragment of the Fe–Cr phase
diagram is characterized by the prediction of area of
solubility of chromium atoms in an iron matrix, which

is of particular interest for practice. This area reflects
the alternating enthalpy of formation used in the cal-
culations [5–8].

CALCULATION OF THE TEMPERATURE 
DEPENDENCES OF HEAT CAPACITY

Cp(T) Calculation Procedure
After calculating the equilibrium phase boundaries

of bcc solutions, we calculated the temperature depen-
dences of isobaric heat capacities Cp(T) for various

alloy compositions. Cp(T) for the two-phase states of

the alloys was calculated by the formula [14, 15]

where β = α'. To describe the slopes of the one- and
two-phase boundaries in the phase diagram, we used
the van der Waals differential equations

The relation between the α(x, T) and β(x, T) phases
were determined using the well-known lever rule,

Results of Cp(T) Calculations
The results of Cp(T) calculations for alloy composi-

tions xi(Cr) = 6.7, 9.9, 13, and 21 at % are presented in

Fig. 3 along with the experimental data from [17, 18].
Note that, depending on temperature, the configura-
tion points of different alloy compositions fall in dif-
ferent fields in the phase diagram, which is reflected
on the temperature dependences of heat capacity.
First of all, the characteristic λ-type curves are visible.
They correspond to the Curie temperatures of alloys of
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different compositions at which these alloys transform

from a ferromagnetic to a paramagnetic state. As the

temperature decreases, the alloys transform from a

single-phase to a two-phase state, which is seen as heat

capacity jumps in the Cp(xi = const, T) curves.

In the temperature range 500–600 K, the tempera-

ture dependence of the heat capacity of the alloy with

21 at % Cr in the two-phase state is nonmonotonic,

which is caused by a sharp change in the solubility curve

of the chromium-rich alloys. This behavior of heat

capacity results from the use of the empirical Inden–

Hillert–Jarl model, which describes the magnetic con-

tribution to free energy and the influence of the concen-

tration dependence of the Curie temperature on the

alloy composition (see Fig. 4 in part I in [1]).

For clarity, we present isothermal sections for the
contributions to the free energy of mixing of alloys as
functions of the alloy composition at 500 and 600 K
(see Fig. 1).

DISCUSSION
OF THE CALCULATION RESULTS

Phase Boundaries of the Solubility of bcc Solutions
The results of calculating the boundaries of bcc

phase solubility, which are shown in Fig. 2, are com-
pared with the calculated experimental data obtained
in other works for temperatures of 500 and 700 K
(table).

The physical properties and the solubility boundaries
of the system under study were studied by CALPHAD

Calculated and experimental data for the phase boundaries of bcc Fe–Cr alloys at T = 500 and 700 K

(a) Estimation using the data in handbook [10] at 300°C (573 K); (b) at 713 K (invariant equilibrium temperature σ  α + α';
(c) obtained in [20] at T = 673 K using experimental data obtained by a method based on the Mössbauer effect via calculating the hyper-
fine magnetic field and the isomer shift for duplex steel (in wt %: 19.9 Cr, 9.98 Ni, 2.42 Mo, 0.69 Mn, 1.2 Si, 0.018 C) annealed at T =
673 K for 55 ths h. The authors of [20] stated that diffusion was completed in 22 ths h (result of studying the time evolution of the hyper-
fine magnetic field); (d) calculated in [17] using the results of quantum-mechanical simulation and CALPHAD calculation; (e) kinetic
Monte Carlo method using interatomic potentials, the parameters of which were related to the enthalpy of mixing at 0 K. Electron den-
sity functional calculation was performed at 800 K for Fe–Cr alloys containing 12, 15, and 18 at % Cr [22]; (f) obtained in [19] by Möss-
bauer spectroscopy at T = 688 K by calculating the hyperfine magnetic field in a sample annealed for 33 h; (g) obtained in [24] by
atomic force microscopy for the Fe–20 at % Cr alloy subjected to annealing at T = 773 K for 1067 h; (h) obtained in [25] for neutron
irradiation at a dose of 1.82 dpa at T = 563 K for model Fe–Cr alloys containing 3, 6, 9, 12, 15, and 18 at % Cr. The irradiated alloys
were studied by atomic force tomography (AFT); (i) obtained in [26], where an iron-based oxide-dispersed-strengthened PM 2000TM

alloy (in at %: 18.5 Cr, 10.1 Al, 0.58 Ti, 0.17 C, 0.28 O, 0.022 N, 0.228 Y) was studied. The alloy heat treated at T = 748 K for 3600 h
decomposes into the iron-reach α phase and the aluminum-rich α' phase. The introduction of up to 11 at % Al into the alloy composi-
tion was shown to cause aluminum accumulation in the α phase and the suppression of α-phase precipitation; (j) the authors of [26]
refer to the calculation of the equilibrium α' phase at T = 748 K in the ternary Fe–Cr–Al system that was performed by Scientific Group
Thermodata Europe (SGTE); (k) the authors of [27] studied binary and ternary alloys annealed at T = 748 K for 1000 h. The diffusion
multiple technique was used to accelerate diffusion, and the conclusion regarding the position of the α/(α + α') boundary was drawn
from the change in microhardness HV; (l) in [13], Cp of an Fe–20 at % Cr alloy was measured by drop calorimetry. The phase transition
α/(α + α') temperature was 702 ± 10 K, and the temperature of the magnetic transition from a para- into a ferromagnetic state was
925 ± 10 K; (m) in [23], the boundaries of solubility of the bcc solid solutions in the Fe–Cr system were calculated for the temperature
range 300–1500 K using semiempirical cohesion models with allowance for vibrational entropy.

Т = 600 K Т = 700 К

Investigation technique Source

0.03a 0.97a 0.08b 0.89b Estimation from experimental data [10]

— — 0.10c 0.93c Experiment (Mössbauer spectroscopy) [20]

0.02d 0.99d 0.19b 0.83b CALPHAD calculation [21]

— — 0.08e — Monte Carlo simulation [22]

0.08 0.97 0.135d 0.9d Quantum-mechanical simulation 

and CALPHAD calculation

[17]

— — 0.16–0.19f — Experiment (annealing, Mössbauer spectroscopy) [19]

— — 0.14g 0.83g Experiment (annealing, atomic force ionic microscopy) [24]

0.06–0.09h 0.82—0.9h — — Experiment (neutron irradiation, AFT) [25]

— — 0.17i 0.86i Experiment (annealing, AFT) [26]

— — 0.92j CALPHAD calculation [26]

— — 0.125k — Experiment (annealing, microhardness) [27]

— — 0.2l — Experiment (calorimetry) [13]

0.097m 0.906m 0.12—0.13m 0.87m Calculation using concentration-dependent interatomic 

potentials with allowance for vibrational entropy

[23]

0.145 0.975 0.214 0.732 Calculation with physical–empirical models This work
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calculation methods [17, 21], molecular dynamics
simulation [12], Monte Carlo simulation [12, 22],
experimental Mössbauer spectroscopy [19, 20, 29, 30],
isothermal techniques [13, 26], neutron diffraction [25],
and quantum-mechanical calculations [5–9]. Complete
dissolution of chromium in an iron matrix is predicted
in the calculations performed for iron-rich binary
alloys with up to 8 at % Cr at room temperature. How-
ever, according to the data of all other works, the bcc
solution decomposes into pure iron crystallites and
pure chromium crystallites at room temperature. The
existence of the predicted solid solution in our calcu-
lations is caused by the use of the physical model and
the results of quantum-mechanical calculations per-
formed in [5, 6] for the first time and then supported
in [7, 8]. An alternating run of the concentration
dependence of the enthalpy of mixing of bcc solutions
at T = 0 K was shown in those works.

Temperature Dependences of Iron-Rich Alloys

Figure 3 shows the results of Cp{T, xi(Cr)} calcula-

tions along with the experimental data from [17, 18].
The discrepancy between the first high-temperature
jumps in the calculated and experimental curves is
explained by an insufficiently accurate approximation
of the Curie temperature in [1]: a simple approxima-
tion function, which described the Curie temperature
over the entire concentration range, was chosen to
simplify the calculations. Nevertheless, the Cp(T)

jumps and the temperature ranges where they occur
coincide with the calculated values, which can be con-
sidered as a satisfactory result. During motion along
the temperature axis from high to low temperatures,
the first Cp(T) jumps for the alloys under study corre-

spond to phase transitions through the Curie tempera-
ture θC = 1000–1058 K, when the alloys pass from a

paramagnetic into a ferromagnetic state. The second
group of Cp(T) jumps appears when the temperature

decreases further and the alloys pass from the single-
phase α field to the two-phase α + α' field in the phase
diagram. The nonmonotonic behavior of the Cp(T)

dependence for the Fe–21 at % Cr alloy in the two-
phase field in the phase diagram is caused by specific
behavior of the spinodal and corresponds to a sharp
change in the spinodal, specifically, its motion from
the right boundary of solubility of chromium-rich bcc
solutions at T = 500–700 K.

Note that it is difficult to experimentally measure
the heat capacity jumps during passage through the
α/(α + α') phase boundary in the phase diagram at
room and moderate temperatures because of a slow
diffusion process. Therefore, the results of Cp(T) cal-

culations for various alloy compositions can be recom-
mended to perform experiments on measuring Cp(T)

for the alloy compositions and the temperature ranges
where equilibrium can be reached within the time

intervals that are reasonable and reachable in real
experiments.

CONCLUSIONS

Using the results of quantum-mechanical calcula-
tions, which predict an alternating run of the concen-
tration dependence of the enthalpy of mixing of bcc
solutions at T = 0 K, and physical models, we were
able to predict the solubility areas of the bcc solutions
in iron-rich alloys, namely, at temperatures from room
temperature to 750 K for the alloys in a stable state and
in the temperature range 750–969 K for the alloys in a
metastable state.

The temperature dependences of the heat capacity
Cp(T) of Fe–Cr alloys of various compositions in one-

and two-phase states were calculated. The calculation
results obtained in this work are in good agreement
with the experimental and calculated data of other
researchers. An analysis of the results of Cp(T) simula-

tion allowed us to develop an experimental technique
for testing the existing models and the experimental
curve of solubility for iron-rich alloys in the tempera-
ture range from room temperature to 475°C. The
detected solubility area has not been supported exper-
imentally because of slow diffusion and the long time
(several decades) it takes for an equilibrium state in the
alloys to be reached.
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