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INTRODUCTION

The key role of phonons in superconductivity was
repeatedly noted [1–6]. The appearance of electric
fields is related to the energy of elastic waves and wave�
lengths λ, especially longitudinal tension–compres�
sion waves. When in resonance with electromagnetic
waves, such waves can cause superpolarizability and an
infinitely high permittivity, or superconductivity (as is
generally accepted). It should be noted that many
authors mentioned that the electron pairing hypothe�
sis can be erroneous [6–8].

The investigation of the phonon–electron inter�
action performed in this work will help one to
approach an understanding of the superconductivity
mechanism.

SIMPLE SUPERCONDUCTORS (NIOBIUM)

As was shown in [9], the first and second ionization
potentials of elements are close to the kinetic energy of

a longitudinal elastic wave, Ekin = M  where
M is the atomic mass and vL, 0 is the longitudinal elas�
tic wave velocity at 0 K (cm/s). For example, the first
ionization potential of niobium (I1 = 6.77 eV/at)
almost coincides with Ekin, and velocity vL, 0 is
expressed as (EY/ρ)1/2, where EY is Young’s modulus

(GPa) and ρ is the density (g/cm3). We have  =
6.73 eV/at (difference is 0.6%). Longitudinal wave

velocity vL =  where B and G are the

bulk modulus and the shear modulus, respectively,
determines the second ionization potential of niobium

(I2 = 13.82 eV/at), and we have  = 13.26 eV/at
(difference is ~4%). Using the data on Fermi energy
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EF [9] determined from a renormalization condition
[6], we calculated the frequency related to an electro�
magnetic wave, νel = EF/h = 2.26 × 1015 s–1, where h is
Planck’s constant. Then, the electromagnetic wave�
length is λel = vF/νel = 11.59 × 10–8 cm. It is known
that the maximum of the electromagnetic energy den�
sity is located at λel/4; in our case, it corresponds to a
distance of 2.898 × 10–8 cm. This distance is close to
2rNb (2.86–2.92 for a coordination number (CN) of 8)
and to the interatomic distance in the niobium lattice

a' = a  = 2.853 Å (〈110〉 direction). A strong
phonon–electron interaction can be expected at this
distance.

The anomaly preceding the superconducting tran�
sition in niobium, i.e., a lattice instability in the 〈110〉

direction (〈00 〉 polarization), was also detected in its
analogs (V, Ta) in a weaker form [10–12].

Since critical temperature Tc for niobium is
9.301 K for a single crystal, 9.26–9.29 K for a poly�
crystal, and ~10.7 K at a high pressure [13], it is inter�
esting to study the elastic behavior of pure polycrystal�
line niobium and to compare it with certain data for
single�crystal niobium. Note that the critical temper�
ature of niobium in the nanocrystalline state (thin
nanowires) changed weakly: it even decreased to Tc ≈
6 K and to Tc = 2 K in a field of 11 T [14].

A 100 × 10�mm niobium sample for studying the
elastic properties was fabricated from a rod grown
upon electron�beam melting and heat treated in vac�
uum according to the following schedule: heating to
900°C, holding for 3 h, and furnace cooling.

The measurements were carried out on an Elasto�
mat device in the temperature range 295–77 K in
cooling and 295–625 K in heating. The vibration
damping was measured at longitudinal frequencies
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and was expressed in percentage. The initial values at
295 K were EY = 109.9 GPa and G = 39.6 GPa; that is,
the Poisson ratio was μ = 0.39 and the damping con�
stant was Δ = 0.07%. This is a rather high value of μ: it
is close to the value of the solid phase near the phase�
transition points in the metal, including melting, and
characterizes a significant anisotropy, which also
determines the electronic behavior of niobium
[15⎯17]. The elastic anisotropy coefficient of niobium
is A = c'/c44 = 1.95, where c' and c44 are the microelas�
tic constants (GPa).

Using the temperature dependences of the elastic
and electron wavelengths in niobium, the authors of
[9] showed the possibility of their resonance and,
hence, the generation of persistent currents in the
superconductor near Tc of niobium.

The idea of the quantum�mechanical resonance of
covalent bonds, as applied to superconductivity, was
proposed by Pauling [2, 3]. However, he did not con�
sider the resonance of elastic and electron waves: he
only assumed that superconductivity occurs via a
phonon–electron interaction.

As was noted in [9], the anomalies in the depen�
dence of the frequency spectrum of vibrations of sin�
gle�crystal niobium on wavevector q also manifest
themselves in the temperature dependence of elastic
constant c44 in the form of a gentle minimum at
~450 K [12]. As follows from the results of that work,
this minimum is also observed for polycrystalline nio�
bium in approximately the same temperature range,
and it is less pronounced in the curve of shear modulus
(Fig. 1).

This dependence can follow from the Voigt–
Reuss–Hill (VRH) approximation, which takes into
account the contribution of each microscopic con�
stant [18]. For example, according to Voigt, crystalline
grains in a polycrystal undergo the same elastic defor�
mation and the contribution of constant c44 is signifi�
cant. In this case, for Young’s modulus we have

(1)

The Poisson ratio is high over the entire tempera�
ture range (see Fig. 1). Its estimation from the micro�
constants results in the following expression at abso�
lute zero [19]:

(2)

If  = 215.26 and  = 133.98 GPa [18], we

have μ0 = 0.384. Good results are also obtained when
the shear modulus at 0 K is estimated from the
microelastic constants [18]. In the VRH approxima�

tion, we obtain G0 ≈ 40.47 GPa at  = 254.22,  =
133.98, and c44 = 30.90 GPa (see Fig. 1).

Bulk modulus B and its reciprocal quantity, com�
pressibility, play a significant role in the superconduc�
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Fig. 1. Temperature dependences of (a) Young’s modulus
EY, (b) shear modulus G, and (c) Poisson ratio μ for poly�
crystalline niobium and (d) bulk modulus B for high�purity
niobium: (�) calculation from microconstants for single
crystals [12], (�) the same for polycrystal, (�) the same for
extrapolation to 9 K, and (×) calculation by Eqs. (3) and (4).



878

RUSSIAN METALLURGY (METALLY)  Vol. 2014  No. 11

BELOUSOV et al.

With Eqs. (1) and (2), at absolute zero we can write

(4)

i.e., B0 = 174 GPa (point × in Fig. 1d). In the B curve
plotted from the data in [12], a weak decrease is seen
beginning from ~100 K and the calculated values of B
are then close to those measured on polycrystalline
niobium in that work. However, the authors of [12] did
not analyze the transition from 10 K down, i.e., from
the normal to the superconducting phase of niobium.
Having no possibilities to perform measurements in

B0
1/3 c11

0 2c12
0+( ),=

this temperature range, we extrapolated the elastic
vibration frequencies to this range and obtained the
following result. The elastic constants near Tc are

 = 114 GPa and  = 41.57 GPa; as a result, the

Poisson ratio is  = (EY/2G) – 1 = 0.371. Here, we

have B = 147.3 GPa (Fig. 1d, square point). Thus, the
transition of niobium into the superconducting state at
10 K or below is likely to be related to an increase
(softening) and subsequent decrease of compressibil�
ity χ (stiffness), which is likely to be part of the mech�
anism of transition of the normal metal into supercon�
ductor. Comprehensives measurements are to be per�
formed in this temperature range. The results of
measurements performed at 77 K indicate a certain
decrease of μ (see Fig. 1c).

Figure 2 shows the temperature dependence of
constant c44 (single crystal) and damping Δ at the lon�
gitudinal natural oscillation frequencies (polycrystal�
line sample). The strong peak of Δ corresponds to
~600 K and the weak peak, to 360 K. The peak tem�
peratures correspond to the decrease of the c44(T)
curve on either side of the gentle minimum (~450 K),
which is also characteristic of the polycrystal
(Figs. 2a, 2b). Constant c44 continues to grow upon
heating up to 2500 K [12], whereas macroscopic mod�
uli E and G decrease uniformly above 600 K (see
Fig. 1). The damping peaks (internal friction) in Fig. 2
point to the structural instability of niobium that pre�
cedes the phase transition at Tc. From a theoretical
standpoint, another peak, which is related to the tran�
sition below 10 K, should exist, and its detection needs
investigations at lower temperatures.

Thus, using niobium as an example, we showed
that the anomalies of its elastic spectrum manifest
themselves in the EY, G, Δ, and B curves, including the
polycrystalline state of the material [9].

The calculation of the electron and acoustic wave�
lengths indicates that a resonance between them is
possible (Fig. 3) [9]. This resonance enhances the
instability effect provided that the defect concentra�
tion is significant: it leads to an irreversible change in
the bond lengths and the bond angles. This instability
precedes the transformation of the substance into
superconductor, which was repeatedly noted by
researchers. These concepts can also be applied to
amorphous substances, which have free volume
related to a high defect concentration increasing Tc.

The longitudinal acoustic wavelengths or their
multiple lengths become comparable with the inter�
planar spacings, i.e., the shortest interatomic dis�
tances, which ensures the interaction of phonons with
the electron charges connecting atoms. At a certain
degree, this specific feature also reflects the concept of
resonating bonds in a substance, e.g., an electron pair
coupling resonance [2, 3]; however, in the case of
superconductivity, it should be preceded by the reso�
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Fig. 2. Temperature dependences of (a) elastic constant c44
of niobium (single crystal) [12] and (b) damping constant Δ of
longitudinal vibrations in niobium (polycrystal).
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nance (or synchronization) of acoustic and electron
waves.

This transition should be accompanied by a
decrease in volume and an increase in stiffness down
to very low temperatures.

COMPLEX SUPERCONDUCTORS 
(HIGH�Tc SUPERCONDUCTORS (HTSCs))

After the discovery of lanthanum�based ceramic
HTSCs in 1986, many researchers studied the elastic
constants in yttrium ceramic YBa2Cu3O7 – x and the
temperature anomalies in the temperature range from
Tc to 300 K. Although an electron–phonon interac�
tion is considered to be the main factor influencing the
stability of such materials and the appearance of
superconductivity, its role and, especially, the driving
forces are still unknown [20].

Since most earlier works do not present the abso�
lute values of the elastic constants, which are neces�
sary to calculate may properties, and only give their
relative values for the limited temperature range 4.2–
300 K [21–23], we present the results of measure�
ments in a wider temperature range from 77 to 800 K
in order to understand and calculate the elastic energy,
acoustic wavelength λ, and the Debye frequency.

Experiments were carried out on an yttrium ceramic
sample of sizes L = 76.33 mm and d = 11.98 mm.
The sample density at 293 K was ρ = 5.582 g/cm3 (tab�
ulated density is ρ = 5.72 g/cm3).

It should be noted that ceramic HTSCs, in partic�
ular yttrium HTSCs, have a martensitic twinned struc�
ture [23], and they exhibit the pseudoelasticity charac�
teristic of metallic shape�memory alloys [24].

The absolute values of the elastic constants of
yttrium ceramic HTSCs depend strongly on the heat�
treatment conditions, the oxygen content, and the
content of the nonsuperconducting tetragonal phase

(i.e., the ratio of its content to the superconducting
orthorhombic phase content). Therefore, Young’s
modulus at 293 K can vary in the range 91–102 GPa
and can be even higher (EY = 110–150 GPa [23]),
although these differences are incompletely under�
stood.

Figure 4 shows the results of measuring EY and G by
a dynamic method in the temperature range 295–77 K,
i.e., upon cooling. Using these data, we calculated the
Poisson ratio and bulk modulus B.

The initial value of Young’s modulus at 295 K is
EY = 91.72 GPa. Cooling to 210 K led to a certain
increase of EY, which then changes weakly. However,
an anomaly related to an increase of EY to 94.8 GPa is
detected in the temperature range 175–150 K. The
segment in the range 150–100 K is almost linear with
EY ≈ 94 GPa. EY begins to grow sharply at ~90 K and it
grows more smoothly from ~83 K. Upon cooling from
295 to 160 K, shear modulus G increases almost lin�
early, a certain convexity toward the ordinate axis
appears to ~90 K, and a sharper increase takes place
upon cooling to 77 K. The Poisson ratio at 295 K is μ =
0.25. At low temperatures, it is close to 0.26–0.25,
which is in agreement with other reported data. For
example, the authors of [21] presents μ = 0.29 for
yttrium ceramics with EY = 90.8 GPa; in other samples
of such ceramics (EY = 101.8 GPa), we have μ = 0.198,
which is close to 0.20.

In the temperature range from 160 to 280 K, μ
increases significantly (to 0.28 or higher) and then
again decreases. A less pronounced anomaly was
detected in the transition range. As will be shown
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Fig. 3. Temperature dependences of the elastic and elec�
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below, this behavior strongly affects bulk modulus B,
since μ is used for its calculation (see Eq. (3)). The
anomaly of μ (in arbitrary units) was also noted in [23].

Figure 5 shows the results of measuring damping
constant Δ upon cooling in the temperature range
under study in percentage. This dependence has a
complex character, which reflects the processes that
occur in yttrium ceramic in this temperature range
[20–29]. For example, damping anomalies were
detected at ~70–125 K [25]. In [28], internal friction
peaks were detected at ~110 and 230 K, and the peak
intensities decreased with decreasing oxygen content
in a sample with an orthorhombic structure and disap�
peared in a sample with a tetragonal (nonsupercon�
ducting) structure. Nevertheless, the peaks at 88 and
260 K did not change when the oxygen stoichiometry
changed. It was noted that the peaks at 88 and 100 K
characterize the relaxation processes that are related
to the Cu(1)–O(1) (i.e., axis a of the orthorhombic
lattice) atomic chains and the peak at 88 K character�
izes the processes related to the Cu(2)–O(2) (axis c)
chains. The peak the onset of which corresponds to
~260 K can be associated with oxygen deficiency
(phase transition; see Fig. 5). The authors of [27]
detected three damping peaks at 80, 170, and 210 K
(these peaks also correlated with the changes of the
shear wave velocity), and the authors of [30] described
damping at longitudinal and transverse frequencies
and a temperature of ~220 K and noted that the corre�
sponding peak reflects a structural order–disorder
transition. The effects related to the redistribution of
oxygen cations and atoms during the structural disor�
dering in YBa2Cu3O6.93 ceramic and the influence of
the grain size on this disordering were revealed in [31].

Moreover, a diamagnetic signal, which corresponds to

temperature  (~92 K) of this ceramic, was
detected. This temperature agrees well with the tem�

perature (  = 92.5 K) calculated in [9].

The damping peaks in Fig. 5 correspond to 89, 104,
226, and 250 K, the initial value of Δ tends to increase
up to Tc, and an anomaly is visible at 150 K (it corre�
lates with the anomaly of EY in Fig. 4). Below Tc, Δ
decreases gradually down to 77 K. Its further possible
decrease (dashed line) also correlates with the
reported data (see, e.g., [9]). This part of the damping
curve (below Tc) is likely to be described similarly to
the curve plotted using the measured values of damp�
ing constant, e.g., for tin for the Bardeen–Cooper–
Schrieffer (BCS) or the Bragg–Williams calculation
[9]. However, the choice of the order parameter is not
obvious and the measurements should be performed
down to 4.2 K.

In this work, Young’s modulus was measured upon
heating of the described yttrium HTSC sample in a
Förster furnace in an air atmosphere from 293 to
~800 K at a heating rate of ~20°C/min (Fig. 6).

The character of curve is analogous to that during
an order–disorder transition in, e.g., brasses [32],
where it is controlled by elastic energy to a certain

temperature. The critical transition point is  ≈
720 K (447°C) and we have  = 67–68 GPa (see

Fig. 6). For β brass, we have  = 727 K at  =

70 GPa (another value is  = 736 K (463°C) [33]).
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Fig. 5. Temperature dependence of the damping constant
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ment results.
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It is possible that, in the case of HTSC, copper
atoms and their partial transition from the divalent
into the univalent state in disordering play a key role.
Then, using the dependence of order parameter R on

reduced temperature T/  we can plot EY versus R
(Fig. 7). The revealed linear dependence of EY on
order parameter R corresponds to the temperature
ranges 0–83, 83–302, and 302–648 K. In other words,
the order–disorder process is controlled by elastic
energy in the temperature range 0–648 K, and diffu�
sion processes are likely to be predominant above
648 K. This curve can also explain the anomalous
behavior of the properties of the ceramic in the tem�
perature range 300–90 K, where processes have a
shear character, which manifests itself in the micro�
structure of twins [23].

The temperature dependence of EY in the range
below Tc belongs to the normal phase–superconduct�
ing phase transition (inset to Fig. 6), and the order
parameter can be represented by, e.g., Landau dis�
placement ui, i.e., λ = ui/a, where a is the lattice
parameter [34]. This displacement can be caused by
the phase transition, which determines both lattice
softening and the character of anharmonic vibrations.

This approach is likely not to be approached to all
substances: for example, superconducting tungsten
has Tc = 0.012–0.015 K and is elastically isotropic
down to temperatures close to 0 K, and the elastic
anisotropy coefficient is A = 1 for the estimation at
T = 0 K [18]. Obviously, the surface should be consid�
ered as a macrodefect in this case, and the elastic
wavelengths should be calculated for the case of so�
called Rayleigh surface waves [35].

Figure 8 shows the variation of Debye temperature
θD of the yttrium ceramic calculated from the mea�

Tc'

sured elastic constants in the temperature range 0–
720 K. This dependence is close to a linear function up

to ~648 K and then decreases sharply:  = 346 K at
absolute zero, 338 K at Tc, 320 K at 648 K, and 276 K

at . The value calculated in [23] from the elastic
constants is θD = 344 K, and this temperature for the

yttrium ceramic according to [9] is  = 345 K.

We now apply the relaxation concepts developed by
Zener and Ke Tinsui and generalized to metals and
their alloys in [36] to YBa2Cu3O7. When calculating,
e.g., EY, rel and Grel, we can estimate the relaxation
Debye frequency at Tc = 90 K (θD,rel,90 = 271 K). This
temperature differs from  = 276 K for the disor�

dering point by approximately 2%.

Thus, the conditions that correspond to the disor�
dered state of the ceramic structure and the related
characteristics of phonons (wavelength, frequency)
can appear during relaxation vibrations. These condi�
tions can result in the resonance of elastic and electron
waves [9]. Such vibrations are considered as time�
dependent imperfections, and they play a key role in
superconductivity [37]. Moreover, they cause the
damping of ultrasonic waves near Tc. As noted above,
the elastic anomalies are most pronounced in the tem�
perature range 80–300 K, i.e., in the range where dif�
fusion processes in ordering are retarded and longitu�
dinal elastic modulus EL and related longitudinal
waves (tension–compression waves), which are sensi�
tive to such anomalies, play a key role [27–29]. The
main factor here is bulk modulus B, since we have

(5)

The quantity that is reciprocal to B (compressibility χ)
is known to determine thermal expansion, and bulk
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Fig. 7. Young’s modulus vs. order parameter R (Bragg–
Williams approximation) for YBa2Cu3O7 – x HTSC in the
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Fig. 8. Change of Debye temperature θD of YBa2Cu3O7 – x
in the temperature range 0–720 K.



882

RUSSIAN METALLURGY (METALLY)  Vol. 2014  No. 11

BELOUSOV et al.

modulus is determined as the second derivative of
energy with respect to displacement,

(6)

where R0 is the equilibrium state and Ecoh is the binding
energy.

Figure 9a shows the change of B calculated by
Eq. (3) for the temperature range under study. The com�
plex character of the curve reflects the processes related
to internal friction (see Fig. 5) [20, 23, 26–31, 38]. The
anomalies of B depend strongly on a change of the
Poisson ratio (see Eq. (3)) [23]. The sharp increase of
modulus B, its subsequent decrease to a minimum at
about 90 K (Tc) (compressibility increases here), the
sharp increase in the segment to 83 K, and smother
increase to 0 K (dashed segment, estimated value is
shown by the triangle point) reflect a decrease in com�
pressibility (stiffness). The rectification of such curves
using, e.g., the data obtained by a pulsating echo
method at frequencies from 10 to 30 MHz gives a sig�
nificant discrepancy between these results and the

B
R0

2

2
����∂2Ecoh

∂R2
��������

R R0–

,–=

results obtained by, e.g., a direct measurement of the
frequencies of natural vibrations.

The inset to Fig. 9a shows the change of parameter
c of the perovskite lattice in the n → s phase transition
range. The X�ray diffraction pattern corresponded to
an orthorhombic structure, and lattice parameters a
and b changed only weakly in this case [39]. The sharp
increase of this parameter led to a noticeable change in
the unit cell volume from ~169.5 to ~178 Å3. There�
fore, the phase transition in the HTSC under study
cannot be attributed to a second�order phase transi�
tion, since it has signs of first� and second�order phase
transitions.

The curves in Figs. 9a and 9b are similar, the
change of longitudinal elastic modulus (Fig. 9b) cal�
culated by Eq. (5) is analogous to the change of bulk
modulus B (Fig. 9a), and it is clearly visible that the
n → s transition in HTSC proceeds with preliminary
softening of the orthorhombic modification of perovs�
kite.

It should be noted that the n → s transition is char�
acterized by a hysteresis upon heating and cooling. In
this case, the elastic moduli (especially B) and the
Poisson ratio exhibit significant changes in the range
~250–90 K (Tc) upon cooling and in the range 170–
300 K upon heating, and the transition point (Tc) is
not revealed upon heating [40].

Neutron diffraction of YBa2Cu3O7 – x demonstrates
the presence of a perovskite structure with oxygen
deficiency. At a low oxygen content (e.g., O6), the
structure transforms into the tetragonal (nonsuper�
conducting) structure. This transformation can also be
achieved upon heating (disordering). As is seen from
Fig. 6, Young’s modulus of the material increased to
EY = 98.2 GPa after heating to ~800 K (527°C) fol�
lowed by cooling to room temperature. After the first
week of storage EY was 95.4 GPa; after two weeks,
EY = 95.2 GPa; and after three weeks, EY decreased to
94.5 GPa. This behavior demonstrates that reversible
processes, which restore the initial state of the alloy,
occur in yttrium ceramic at 295 K.

In most works, the stability of the orthorhombic
lattice of perovskite is related to the Cu(1)–O and
Cu(2)–O bond chains and the corresponding planes
[21, 28]. Therefore, bond lengths l can be compared to
the longitudinal elastic wavelength λL = νL/νD calcu�
lated in this work. However, one�third of this wave�
length is comparable with the Cu(2)–O(4) bond
length, which is responsible for the distance along axis c
in perovskite (Fig. 10) [21]. This bond length is
~2.306 Å [21, 28]. As is seen from Fig. 10, we have

(1/3)λL ≡ l(Cu(2)–O(4)) at point , i.e., at the dis�
ordering temperature, where longitudinal wave λL is in
resonance with this bond. The change of this bond
length at temperatures below Tc demonstrates that lat�
tice parameter c, as lattice parameter a, can play a key
role in the superconductivity of HTSC.

Tc'

115

110
240200120800 40 160 T, K

EL, GPa

65

60

B, GPa

11.4

9478 86 T, K

c, Å

11.6

11.8

(a)

(b)

Fig. 9. Temperature dependences of (a) bulk modulus B
and (b) longitudinal elastic modulus EL in the range 0–
300 K for ceramic YBa2Cu3O7 – x. In inset, the change of
lattice parameter c of the ceramic in the n → s transition
range [39].
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Another characteristic directly related to interpla�
nar spacing a in the perovskite structure is the Cu(1)–
O(1) bond length, which corresponds to (1/3)

i.e., one�third of the wavelength determined through
Young’s modulus, and (2/3)  = a, Å (see Fig. 10).

This is a very important result. It demonstrates that
lattice parameter a is fully controlled by elastic forces
over a wide temperature range, the Cu–O bond of the
given length has a 47% ionic character, and supercon�
ductivity can be achieved in such chains resonating via
an interaction with acoustic phonons (i.e., during the
transitions of a partly ionic (ionic–covalent) into a
metallic bond) [3]. When considering relaxation lattice
vibrations and assuming that the equation characteristic
of metals and alloys is also valid for the ceramic under
study, we can calculate (1/3)λL at, e.g., point Tc, i.e., for
the metal → superconductor phase transition, [36]

(7)

where  = vL at Tc. Then, we have (1/3)λL, 90 =
2.36 Å (indicated by point ×); that is, a resonance can
be achieved at temperature Tc for the bonds directed
along axis c in the case of relaxation vibrations. It is
interesting that the Debye temperature calculated for
this case is θD, 90 = 271 K, whereas we have θD = 276 K

at point . Thus, such vibrations can be related to a
reversible order–disorder transition. When the grain
size decreases, the positions of oxygen atoms in super�
conducting layers change significantly [31]. As a result,
wavelength λ, the bond lengths, and the bond angles are
likely to be changed, which can influence Tc.

We now compare the data of energy calculations
obtained from studying the elastic constants in yttrium
ceramic to the characteristics of, e.g., free copper
oxide Cu–O, where copper is divalent (the same was
detected in the O–Cu⋅⋅⋅O–Cu chain [2, 3]). As noted

above, we have  = 720 K for yttrium ceramic, which
is close to the temperature of disordering of, e.g., brass
(736 K) [32, 33]. Thus, we can easily calculate the
energy of such a transition using the Bragg–Williams
approximation [33]. Assuming Z = 1 in the equality
ZV

ε
 = 2NAkBTc, where Z is the number of particles and

V
ε
 is the ordering energy, we have V

ε
 = 11.979 kJ/mol.

It is interesting that this result is close to the enthalpy
of melting of copper oxide (11.805 kJ/mol; the dis�
crepancy is 1.5%) [41]. Moreover, CuO decomposes at
~1300 K, which is very close to the melting tempera�
ture of pure copper (1357 K), at which the bonds in
pure copper break in the amount that is proportional
to the change of the volume upon melting [35].

We now calculate the shear elastic energy at the
critical point of the n → s transition; that is, we deter�

mine ε = M  for relaxed vibrations at critical

temperature Tc and perform a similar calculation for

λEY
,

λEY

νL rel, vL
0 1 μ+( ) 1 2μ–( )/ 1 μ–( )[ ]1/2

,=

νL
0

Tc'

Tc'

νt rel Tc, ,

2

, since the difference between the shear moduli for

them is small (  = 24.84,  = 24.53 GPa). As a

result, we have  = 239.611 kJ/mol and  =

236.622 kJ/mol; that is, the shear elastic energies of

relaxed shear vibrations at temperatures Tc and  are
close to each other. We compare these values with the
defect formation energy in CuO using the method
proposed in [9], where H

v
 = TmSm is equal to the dis�

sipative part of the free energy of the solid phase at the
melting point. For a melting temperature Tm = 1720 K
and a melting entropy Sm = 138.14 J/(mol K), we
obtain H

v
 = 237.597 kJ/mol. In both cases, the dis�

crepancy between the values of , , and H
v
 is

about 0.6%.

Thus, we can preliminarily conclude that a revers�
ible break of one of the two copper–oxygen bonds in a
chain can occur during relaxation vibrations in the
structure of HTSC, as was demonstrated in [2, 3]. In
this case, the phonon�induced conduction has a
metallic type. By analogy with exoelectron emission, it
can be attributed to endoelectron emission, which
determines persistent currents in the superconductor
provided acoustic and electron waves are in resonance
[9]. Here, critical temperature Tc is determined by the
defect concentration (i.e., the number of broken
bonds), i.e., the bonds in which the bond length and
the bond angle change during relaxation vibrations.

The table gives the lengths of some interatomic
bonds l in the superconducting structure of HTSC
presented in Fig. 11a in comparison with the length
(or its part) of phonon waves calculated from the mac�
roelastic constants [21, 38]. According to [23], the lat�
tice parameters of the superconducting orthorhombic
phase are (Å) a = 3.8493, b = 3.8629, and c = 11.6803.
They can slightly vary with temperature: at 740 K

Tc'

GTc rel, GTc'

εTc rel, εTc'

Tc'

εTc rel, εTc'

2.4

2.2

2.0

1.8

1.6
T, K6004002000 300100 500

Tc
T 'c

1

2

a, 1/3λL, 1/3 , ÅλEY

Fig. 10. Temperature dependences of the elastic wave�
length calculated from the longitudinal elastic moduli
((�) 1/3λL) and Young’s modulus (�) 1/3λY) in compari�
son with bond lengths (1) l(Cu(2)–O(4)) ≈ 2.306 Å and
(2) l(Cu(1)–O(4)) ≈ 1.942 Å. (×) Relaxed value.
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(which is higher than  only by 20 K), we have a =
1/3c; that is, the oscillations of these two lattice
parameters are synchronized in disordering. This is in
agreement with the values of c given in the inset to
Fig. 9a.

According to the tabulated data, the Cu(1)–O(1)
bond is responsible for axis a of the structure and the
Cu(2)–O(4) bond is responsible for the instability
along axis c, and its length can be approximately cal�
culated as the sum of the ionic radii of copper (1.57 Å)
and oxygen (0.73 Å). We obtain a bond length of
2.30 Å, and this bond can be considered as a metallic–
covalent bond. It is interesting that the body force of

Tc'

pinning of polycrystalline yttrium HTSC films at high
magnetic fields and a current�carrying ability of
~105 A/cm2 is determined by shear microconstant c66,
which leads to the deformation of a vortex lattice [42].
It is also important how strong the (020) interplanar
spacing changes when the majority of oxygen atoms,
which are likely to be responsible for the instability of
HTSC in the temperature range from Tc to 300 K, are
located in such planes (Fig. 11c) [29]. This distance
correlates with the longitudinal wavelength calculated
from modulus EY:  = 5.81 Å and  =

5.89 Å; in essence, it covers all possible distances from
300 K to Tc. These interplanar spacings are very
important for the interpretation of the behavior of
oxygen and lattice softening above 90 K. The authors
of [29] note that this loss of elastic stability plays an
important role in superconductivity. For example, we

have b/a = 1 upon heating to , which is important to
obtain high Tc (maximum deviation from tetragonal�
ity). Relaxation vibrations can strongly influence the
order–disorder transition in the ceramic under study
and can support the assumption [3] that conductivity
increases due to a resonance in the O–Cu⋅⋅⋅O–Cu
chain, which is achieved through an interaction with
phonons.

However, as is seen from the table, the Cu–O bond
lengths can vary in the structure of HTSC, and the
Cu(2)–O(2) bond (not given in the table) can be con�
sidered as an ionic–covalent bond. Its length is
1.929 Å and it can be obtained as the sum of the ionic
radius of oxygen (0.73 Å) and the covalent radius of
copper (1.17 Å). The bond length of 1.9 Å indicates
that bond metallization is unlikely in the Cu(2)–O(2)
chain.

Figure 11b shows the structure of the nonconduct�
ing tetragonal phase, which forms at high tempera�
tures [38]. In this structure, oxygen occupies site O(5).
As noted above, the action of phonons can cause the
breakage of one of the covalent copper bonds during
relaxation vibrations, which results in the metalliza�
tion of copper (appearance of conductivity and super�
conductivity). Energy calculations support this behav�
ior for the characteristics of copper and its oxide.
Many facts of changing the electrical conductivity of
substances with covalent bonds are known upon melt�
ing and some phase transitions. For example, the con�
ductivity of covalent germanium increases in melting,
which is associated with metallization, i.e., a change in
the character of bonding. In [9], we calculated critical
temperature Tc of arsenic and showed that Tc ≈ 50 K
for so�called pnictides, which was detected for doped
FeAs compounds.

To support these considerations, we calculate the

oscillator energy for temperature , i.e., order–dis�

λEY 90,

λEY 90,

rel,

Tc'

Tc'

Copper–oxygen bond lengths l as compared to phonon
wavelengths λ in the orthorhombic structure of yttrium
ceramic YBa2Cu3O7

 Bond l, Å λ, Å Note

Cu(1)–O(4) 1.843 1.830 1/2λi,

Cu(1)–O(1) 1.942 1.940 1/3

Cu(2)–O(4) 2.306 2.140 1/3λL

Cu(2)–O(3) 1.958 1.964 1/3λL, rel

λEY

a

b

c
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b
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Fig. 11. Crystal structure of YBa2Cu3O7 – x: (a) orthorhom�
bic (superconducting) phase and (b) tetragonal (nonsuper�
conducting) phase [38]. (c) Change of the (020) interplanar
spacing in the temperature range 300–80 K [29].
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order transition temperature (720 K), in HTSC with
 = 276 K,

(8)

where n = 1, 2, 3 (for one�, two�, and three�dimen�
sional oscillators, respectively) and ν is the acoustic
frequency that is identical to  i.e., corresponds to

Debye temperature  β =  From Eq. (8), we
obtain  = 12.126 kJ/mol at n = 2 (two�dimensional
oscillator). This value differs from the latent heat of
melting of CuO (11.805 kJ/mol), which is related to
bond metallization and an increase in the electrical
conductivity, only by 2.6%. This finding again demon�
strates that the processes of bond breaking and recov�
ery, which generate electromagnetic fields and electric
charge waves, can exist in the O–Cu⋅⋅⋅O–Cu chain
during the order–disorder processes induced by reso�
nance reversible atomic vibrations in the HTSC lat�
tice. When HTSC is loaded by an electric current, dif�
fusion processes related to oxygen depletion can occur
in it, and excess copper atoms are fixed in stable Cu2O
complexes with a melting (solidification) heat of
56.092 kJ/mol [41], which is fivefold that the melting
heat of CuO. In other words, the structure is thermo�
dynamically stable and has high elastic constants (EY ≥
150 GPa), as would be expected for oxide systems [18].
In turn, this decreases λL,  and λt, i.e., the corre�

sponding elastic wavelengths, and increases the fre�
quencies of elastic vibrations, which remove the lattice
softening effect before the transformation of the sub�
stance in the superconducting state. The supercon�
ductivity of this material should degrade in time,
which is observed experimentally.

The order–disorder process in the temperature
range 293–720 K is rather well understood, but this
process in the temperature range 0–90 K is unclear in
the sense of choosing an order parameter, which was
noted earlier in [43]. On the one hand, the process in
this temperature range can be described using the
standard Bragg–Williams approximation, as was done
for the ultrasound damping curve for tin at tempera�
tures below Tc. The calculated curve agrees with the
experimental curve even better than the BCS curve,
since the BCS theory has to take into account the
change of the energy gap with temperature. Figure 12
shows the results of measuring the upper critical mag�
netic field Hc2 of yttrium ceramic with a critical tem�
perature of 60 K [44]. This curve is well described by
the Tuin equation for the critical field,

(9)

where Hc(0) is the critical field at 0 K and Tc is the crit�
ical temperature of the n → s transition.

θTc'

ε n 0.5hν hν

eβ 1+
�����������+⎝ ⎠

⎛ ⎞ ,=

νD,

θD, θD/T.

ε

λEY
,

Hc T( ) Hc 0( ) 1 T
Tc

����⎝ ⎠
⎛ ⎞ 2

– ,=

A superdiamagnetization curve could qualitatively
correspond to the curve shown in Fig. 12b, since the
curve of a diamagnetic response has essentially the
same character [45]. The relative diamagnetic

response, i.e.,  = 1 at 0 K, and the character of its
change with reduced temperature T/Tc coincide fully
with the curve in Fig. 12b, and this dependence can also
be approximately described by Tuin equation (9).

This consideration would not contradict the fact
that, e.g., spontaneous magnetization is chosen as an
order parameter to describe the phenomena related to
magnetism. For example, the theory of zero�gap
superconductivity does not need energy gap εg to con�
sider damping in the temperature range Tc–0 K and an
order–disorder transition.

CONCLUSIONS

(1) The results of measuring the elastic constants of
niobium in the temperature range 77–625 K showed

λ0/λT
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T/Tc0.40.20 0.6

Hc2, A/m

0.6

0

R

0.4

0.2

0.8
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Fig. 12. (a) Possible change of order parameter R in the
temperature range 0–Tc (see inset to Fig. 6) and (b) tem�
perature dependence of upper critical field Hc2 for
YBaCuO HTSC [44].
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that the anomaly of the temperature dependence of
elastic constant c44 is also observed for polycrystalline
niobium. Elastic instability is reflected on damping
curves. The calculated temperature dependence of
bulk modulus B allowed an assumption to be made
about its role in superconductivity. Based on calcu�
lated data on the elastic and electron wavelengths, we
assumed that they are in resonance at critical temper�
ature Tc, which leads to the generation of a supercon�
ducting state in niobium.

(2) The elastic constants of yttrium ceramic
YBa2Cu3O7 were measured in the temperature ranges
295–77 and 295–800 K. Anomalies in damping and
properties were detected in the temperature range
295–77 K. The change in Young’s modulus in the
range 295–800 K was shown to reflect an order–disor�
der transition in the ceramic.

(3) Critical Debye temperature  bulk modulus B,
and longitudinal elastic modulus EL were calculated
for the temperature range 77–300 K. Based on the cal�
culated data on the acoustic wavelengths, we proposed
a mechanism for the appearance of superconductivity
and the character of the order–disorder transition in
yttrium ceramic YBa2Cu3O7.
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