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1. INTRODUCTION

To describe the deformation and fracture of new
materials with a micro� and nanostructure adequately,
it is necessary to develop models for deformed media
that take into account the structure of such materials.
This explains the development of deformation models
that go beyond the scope of the classical theory of elas�
ticity. Gradient theories of elasticity and plasticity,
which can comprehensively describe local short�range
interactions, are promising in this field.

The first versions of gradient deformation models
were likely to be developed in the early 1980s. In the
1990s, they were improved as gradient theories of elas�
ticity and plasticity [1–4]. These investigations then
served as a theoretical basis for applied gradient theo�
ries that take into account dislocation fields and dam�
ages during deformation, the interfacial properties
near interfaces in heterogeneous materials, and the
scale effects in the problems of the mechanics of com�
posite materials [5–7].

The authors of [7–9] showed that gradient theories
can be effectively used to describe the properties of
microstructures and the deformation of miniature
device components. In recent works [10–14], first�
order gradient theories were developed using consis�
tent variational models for media with conserved dis�
locations. These models are intended for predicting
the scale effects in the volume and the surface adhe�
sion properties of deformed media. The authors of
[15–18] proposed an applied model for an interface
layer; this model contains the minimum number of
parameters for simulating the adhesion interactions
between various components (adhesion damage at
contact boundaries) and only one additional physical
parameter to take into account the scale effect of a
cohesion field.

In this work, the interface layer model is used to
construct an asymptotic solution to a model problem
of fracture mechanics.

2. FORMULATION OF THE GRADIENT 
DEFORMATION THEORY

We now consider the applied linear theory of inter�
face layer that is a particular case of the gradient defor�
mation theories [13–17]. The mathematical formula�
tion of the edge problem of the interface layer theory
follows directly from the following variational model:

(1)

Here, A is the work of given external forces distributed
over volume V and surface V ' of the elastic body; E is
the potential energy of deformation; and EG and E∂G

are the potential energy densities of deformation in the
volume and on the surface, respectively. In this case,
we have

(2)

Here, εij = (Ri, j + Rj, i)/2 is the strain tensor, where
Ri, j = ∂Ri/∂xj and Ri is the displacement vector; θ =
Ri, kδik = divR is the spherical part of the strain tensor;
Dij = Aninj + B(δij – ninj) is the characteristic of the
adhesion stresses, where A and B are the physical con�
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stants that determine the “normal” and “shear” adhe�

sion;  = (∂Ri/∂xj)nj is the normal derivative of the
displacement vector, where ni is the vector of normal to
the surface; and C is the additional physical constant
that takes into account scale effects and determines
the contribution of local cohesion�type gradient inter�
actions to strain energy density EG in the body volume.

The gradient components in Eq. (2) are determined
by cohesion displacement vector ui [13, 15–17]; in the
interface layer model (Eqs. (1), (2)), it is determined
by the equality

where Lij(…) = μ(…), ppδij + (μ + l)(…), ij is the classical
Lamé operator, δij is the Kronecker delta, and μ and λ
are the Lamé coefficients.

Gradient component Cuiui determines the strain
energy versus the strain curvature. This follows from
the definition of gradient displacement field ui if we
take into account that

where Cijnm = λδijδnm + μ(δinδjm + δimδjm) is the elastic
modulus tensor.

It should be noted that, in the model proposed in
[3], the cohesion displacement field is determined in
terms of the Laplace operator rather than the Lamé
operator. This “simplification” is related to the
assumption of the equality of the scale parameters that
determine the lengths of the shear� and dilation�
induced local gradient effects.

Variational equations (1) and (2) give the following
set of equations for total displacement vector Rk for the
model under study (Euler equations):

(3)

where  is the vector of forces distributed in the
volume.

The general solution to Eq. (3) for full displace�
ment vector Rk can be represented as the sum of the
vectors of “classical” (Ui) and “cohesion” (ui) dis�
placements [14, 16],

(4)

where ui = –(1/C)Lij(Rj) and Ui = Hij(Rj).

Cohesoin field vector ui can be represented in the
form ui = –(1/C)CijmkRm,kj, which can be easily shown
if the equality Lij(Rj) = CijmkRm, kj is taken into
account. Then, with allowance for equality (4), the
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expression for the strain energy density in Eq. (2) can
be rewritten as

(5)

For the model under study, the tensor of the elastic
moduli of gradient interactions in the expression for
the strain energy density (Eq. (5)) has the simple form

The stresses in the gradient theory can be found by
Green’s formula. From Eq. (2), we obtain

With allowance for decomposition (4), stress tensor
σij can be written as the decomposition

where sij = CijnmUn, m are the classical stresses and tij =
Cijnmun, m are the cohesion stresses. Cohesion stresses tij

satisfy the equilibrium equations tij, j – Cui +  = 0 [14].

The variational equation that corresponds to the
requirement of stationary Lagrangian in Eq. (1) has
the form (with allowance for Eqs. (2) and (5))

(6)

where nj is the unit vector normal to the body surface

∂G and  and  are the vectors of the given forces
distributed over the volume and surface of the body,
respectively.

The vectors of the classical and cohesion displace�
ment components are determined in terms of total dis�
placement vector Ri(Ri = Ui – ui) using the formulas

3. FORMULATION OF THE PROBLEM 
OF FRACTURE MECHANICS

We now consider the simplified problem of fracture
mechanics for a mode I crack in the case of plane
strain state. The elastic body with a crack to be studied
is assumed to be incompressible along the longitudinal
coordinate. A semi�infinite crack propagates along the
longitudinal coordinate axis (x ≥ 0, y = 0). In this case,
the displacement field is determined by only one dis�
placement vector component R(x, y) = U – u along
axis OY,
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where {Xi} and {Yi} are the coordinate axis vectors in
the independent orthogonal coordinate system.

We also assume that mass and surface forces are
absent. Therefore, the work of external forces in
Eq. (1) is taken to be A = 0. The surface properties of
the crack edges are not taken into account, i.e., Dij = 0
and, hence, E∂G = 0 (see Eq. (2)).

For the model problem under study the expression
that determines the strain energy density in the volume
in Eq. (2) taks the simple form

Then, we take into account Eq. (5) and easily find
that the fundamental solution corresponding to total
displacement vector R(x, y) satisfies the equilibrium
equation (Euler equation in Eq. (6))

 (7)

Here, ∇2(…) = ∂2(…)/∂  + ∂2(…)/∂y2 is the plane
Laplace operator in “extended” coordinates, where

=  is extended coordinate x and lE =

 is the scale parameter.

Recall that the only displacement R component in
the particular case under study is represented as
decomposition into classical and cohesion displace�
ment components; that is, R = U – u,

(8)

The fundamental solution that corresponds to the
classical displacement component satisfies the equation

(9)

Here, U = UiYi = U  is the desired component of
the classical displacement vector and Yi is the unit vec�
tor of axis OY.

The fundamental solution for the cohesion dis�
placement has the form

(10)

where u = uiYi = u  is the desired component of
the cohesion displacement vector.

The fundamental solutions to Eqs. (7), (9), and
(10) are constructed in the polar coordinate system
{r, ϕ}, where r is the radius vector of the point under
study and ϕ is the angle measured counterclockwise
from the upper crack edge.

For the model problem under study, the normal
stresses along axis OX are zero. Normal stresses σy ≡ σ
alog axis OY and shear stresses τ are written with
Green’s formulas as
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4. CLASSICAL SOLUTION FOR A MODE 
I CRACK

To achieve the classical solution, we assume that
lE = 0 and, correspondingly, C–1 = 0. Then, for the
model problem of a mode I crack, it directly follows
from variational equation (6) that the classical stresses
(s = σ, U = R) should be zero, i.e., σ = (2μ + λ)R, y at
the crack edges (x ≥ 0, y = 0). We can easily show that
the following asymptotic solution takes place in this
case in the vicinity of the crack tip:

(11)

where KI is the stress intensity factor.
We now search for the trajectories of the critical

stresses, i.e., the stresses for which the operating
stresses become equal to the ultimate tensile strength
or the yield strength (σ = σc). Let σ = σc and KI = KIc,
where KIc is the critical stress intensity factor (fracture
toughness), in Eq. (11). Then, from Eq. (11), we
obtain the following equation for the critical stress tra�
jectory:

(12)

where q =  and z = r/

We now determine the characteristic size d of the
region that can be exfoliated when the critical stresses
are reached. To this end, we average the dependence
r = r(ϕ) over the angle. From Eq. (12), we obtain

(13)

It is important that the following relation between
the yield stress and the characteristic region size,
which is analogous to the Hall–Petch relation, follows
from Eq. (13):

We take into account Eq. (13) and rewrite the
expression for the stress in Eq. (11) in the form

(14)

It can easily be seen from Eq. (14) that the stresses
inside the region r < d become higher than the critical
stresses and that they are infinite in the vicinity of the
crack tip (r → 0). Thus, the classical theory can predict
the mechanism of brittle fracture characterized by the
separation of the fragment that is symmetrically
located in front of the crack tip and has characteristic
size dc.

The stresses in Eq. (14) reach the yield strength in
the trajectory of a fragment of critical size d = dc. The
equations of the theory of elasticity are considered to
be valid outside the fragment, at a certain distance
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from its contour. If the fragment has the sizes sufficient
for it can be taken as “representative volume,” the sce�
nario of its fracture should not differ from scenario of
the entire medium. If the medium has an internal
(e.g., polycrystalline) structure and the fragment size
is sufficiently close to the crystallite size, the scenario
of fracture should change substantially. At d < dc, the
nonclassical effects that cannot be explained in terms
of the classical theory of elasticity would be observed.
One of these characteristic effects is a systematic devi�
ation from the Hall–Petch relation, which is detected
for materials having a micro� or nanostructure, i.e.,
materials with a very small grain size. Such nonclassi�
cal scale effects are assumed to be simulated using the
gradient theory of elasticity.

5. GRADIENT SOLUTION

Let us consider gradient model (1) and construct
asymptotic nonsingular solutions for stresses. It can
easily be checked that the asymptotics of total stresses
σ = s + t for the model problem of a mode I crack
allows a simulation in the form of a linear combination
of the asymptotics of classical (s) and cohesion (t)
stresses [14],

(15)

where K1/2(z) is the cylindrical half�integer�order
Macdonald function and z = r/lE.

We take into account the asymptotic properties of
Macdonald function K1/2(z) at |z| → 0. We can easily
find with Eq. (15) that the total stress written as the
sum σ = s + t describes the nonsingular solution at the
crack tip |z| → 0 that has the asymptotics of classical
solution (11) at infinity (r → ∞),

(16)

Note that the corresponding displacements of the
crack edges can be obtained by integrating Eq. (16)
with allowance for the fact that ∂/∂y = ∂/(R∂ϕ) at the
crack edges. In [15], we showed that the expressions
thus derived describe the opening of the edges of a
mode I crack that corresponds to so�called equilib�
rium cracks. In this case, the angle between the crack
edges at the crack tip is zero.

We consider the equation of critical trajectories for
the obtained gradient solution. Assuming KI = KIc and
σ = σc in Eq. (16), we have

(17)

where q = KIc/ σc.

Note the following. An analysis of Eq. (17) shows
that there is the sufficiently low value of parameter q
such that this equation has no roots for ϕ = π. There�
fore, there is the characteristic size of a material struc�

s KIlE
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ture such that the scenario of fracture related to the
exfoliation of the material fragment symmetrically
located in front of the crack tip. In this case, fracture is
likely to be associated with the exfoliation of two or
more fragments. To refine the scenario of possible
fracture and to reveal its dependence on the scale fac�
tor, we consider the refined asymptotics of the solution
in the vicinity of the crack tip.

6. REFINED GRADIENT SOLUTION

Note that asymptotic regular solution (16) for
stresses was obtained from the assumption that the sin�
gularity of the classical solution is compensated for by
the singularity of the cohesion solution. However, this
solution is not unique and complete. We will find a
more complete asymptotic solution, which will refine
the stress distribution. To this end, we again consider
the problem of a mode I crack and write the solution
to Eq. (7) in the form

(18)

where A1 and C1 are constants to be determined below.

The total stresses are

(19)

where K1/2(z) and K3/2(z) are the half�integer�order
Macdonald functions.

Obviously, the requirement of the nonsingularity of
total displacements (18) is met under the condition

A1 =  In this case, we can check that the non�
singularity of total stresses (19) also takes place despite
the fact that to singularities appear in the stresses in the
general case. The first singularity is on the order of z–1/2

and the second is one the order of z–3/2. Nevertheless,
eliminating the classical singularity using the equality

 =  we can find that the
nonclassical singularity loses two orders of magnitude
due to the fact that the requirement of regularity of
total displacements was preliminarily met. Here, we
used the property of half�integer�order Macdonald
functions that allows on to express them in terms of
elementary functions.

As a result, the expressions for total displacements
and total stresses become nonsingular. Finally, the
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expressions for the displacements are reduced to
the form

(20)

The total stresses are written as

(21)

This solution takes into account higher variability
of the solution in the angular coordinate. Note that
this process of refining can be continued.

7. ANALYSIS OF THE SOLUTION

Equation (20) describes the profile of crack edges
and shows that the nonclassical solution gives a zero
opening angle between the crack edges at the tip. It is
well known that the opening angle at the tip for the
classical solution is π. Obviously, the function that
determines the displacement of the crack edges in
Eq. (20) has an inflection point. The coordinate of the
inflection point almost coincides with scale parameter lE.
Therefore, we can treat this parameter as a material
characteristic in the mechanics of brittle fracture.

Using solution (21), we write equations for critical
stress trajectories. For this purpose, we assume KI = KIc

and σ = σc and introduce critical parameter q =

 Then, an equation for the critical stresses
can be written as

(22)

where

R z ϕ,( )

=  2KIz
1/2– lE
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× 3ϕ/2( )sin 1 e z–+( ) ϕ/2( )sin+ } 1– .

Figures 1 and 2 show the trajectories of the limiting
stresses for the classical and gradient solutions. These
trajectories are plotted using Eqs. (12) and (22) for
various values of critical parameter q. For each fixed
value of parameter q, z is explicitly found by solving
the corresponding transcendental equation. Such
solutions were obtained for fixed values of angle ϕi. In
the calculations, we used an angular step of π/18 and
derived dependences z = z(ϕ, q).

The limiting stress trajectories determine the
regions in the vicinity of the crack tip at the boundaries
of which the stresses reach critical values. Inside these
regions, the stresses exceed the critical values.

For low values of z, the critical stress trajectories
plotted according to the classical and gradient solu�
tions differ substantially. For high values of z, the ine�
quality e–z � 1 holds true. Therefore, the equation of
the critical stress trajectory in the gradient solution is
simplified in this case and can be explicitly written as

It can easily be seen that it coincides with Eq. (12),
which was derived using the classical solution (also see
Eq. (17)). Thus, the solutions found using the classical
theory of elasticity and the gradient model agree with
each other accurate to O(z–1) outside the region with
the characteristic size dc = (KIc/σc)

2. Correspondingly,
for higher values of z, the critical stress trajectories for
the classical and gradient solutions are close to each
other.

When analyzing the obtained dependences, we find
the threshold value of parameter q = qc at which one
rather than two roots exists for the case ϕ = π. We
found that qc = 2.489 and a single root (zc = 2.149)
exists in this case.

Note that the fracture mechanism changes qualita�
tively at qc = 2.489: two fragments instead of one frag�
ment are exfoliated from the medium symmetrically
relative to the crack plane (see Fig. 2).
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Fig. 1. Trajectories of the critical stresses for classical solu�
tion (12).
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Fig. 2. Trajectories of the critical stresses for gradient solu�
tion (22).
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At q > qc, we have a classical solution and the criti�
cal stress trajectory is closed. In this case, Eq. (22) has
two roots at ϕ = π.

At q = qc, the trajectory is self�intersecting and
Eq. (20) has one root at ϕ = π.

At q < qc, two closed trajectories that are symmetric
relative to axis OX appear in the upper and lower half�
planes. In this case, Eq. (22) has no roots at ϕ = π.

We now repeat the procedure of constructing the
analog of the Hall–Petch relation. To this end, we
average the z = z(ϕ, q) dependence over the angle. As
a result, similarly to Eq. (11), we can find the relation
between characteristic size d and parameter q,

From this equation, we can find the pairs of d and
q that determine parametric dependence d = d(q). The
inversion of this dependence leads to the classical for�
mulation of the relation, which can be called the gen�
eralization of the Hall–Petch relation,

(23)

As follows from a comparison of Eq. (23) with the
expression σc = KIcd–1/2 (see Eq. (13)), parameter q at
highvalues of d/lE has the asymptotics  =

(d/lE)1/2. Therefore, the classical Hall–Petch relation
does hold true at relatively high values of d/lE. How�
ever, it is clearly seen that Eq. (23) gives another fore�
cast at low values of parameter d/lE, i.e., at a small
characteristic size in a material structure: a decrease in
the characteristic structure element size results in a
decrease in the limiting stresses (yield strength) as
compared to the classical Hall–Petch relation.

8. CONCLUSIONS

An analysis of the scenarios of brittle fracture that
was performed with allowance for scale effects fully
supports the validity of the classification of nanostruc�
tured media proposed in [19]. According to this classi�
fication, the size series of nanocrystals is divided into
three groups, namely, large, medium, and small
nanocrystals, where different fracture mechanisms
dominate. These mechanisms are determined by a
predominant structural element, i.e., crystals, grain
boundaries, or triple junctions, respectively.

For example, at d ≥ dc and dc = (KIc/σc)
2, the frac�

ture mechanism is predicted in terms of a classical
solution and related to the exfoliation of a representa�
tive fragment in front of the crack tip. The dependence
of the yield strength on the characteristic structure ele�
ment size is described by the Hall–Petch relation.

d 2lE
1
π
�� z ϕ q,( ) ϕd

0

π

∫ d q( ).= =

σc
KIc

q d/lE( )lE
1/2

��������������������� .=

q d/lE( )
d/lE( ) ∞→

lim

At characteristic structure element sizes lE < d < dc,
the properties of the structure are determined by a
refined gradient model. In this case, the scenario of
brittle fracture is different: it is associated with fracture
along the boundary of two fragments, which is accom�
panied by the exfoliation of two regions. This situation
is characterized by a generalized nonclassical Hall–
Petch relation, which predicts a decrease of the yield
strength with decreasing characteristic structure
parameter as compared to the classical Hall–Petch
relation.

The case d < lE is also of particular interest; it is
most likely to belong to nanocrystalline materials.
This case should be considered with allowance for
high�order refinements, which can be obtained in
terms of a gradient theory. It can be shown that the tra�
jectories of the limiting stresses in this case point to the
exfoliation of three fragments.
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