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Abstract—Definitions of the equilibrium surface tension (ST) existing in thermodynamics are analyzed along
with reasons for their ambiguity. A molecular statistical analysis of the concept of equilibrium ST at the
vapor–liquid interface is given and a procedure for calculating it within the simplest microscopic model of
statistical physics (the lattice gas model) is formulated. Equilibrium ST is shown to be a mechanical charac-
teristic calculated under the condition of a rigorous phase equilibrium over three partial equilibria (mechan-
ical, energy, and chemical). Violation of the chemical equilibrium results in non-equilibrium ST. The emer-
gence of metastable STs is due to the artificial introduction of a foreign film boundary into the model through
the Laplace equation, which distorts the real properties of the system. Means of statistical physics for obtain-
ing existing definitions of equilibrium ST in the theory of integral equations for f luids and molecular dynam-
ics are discussed along with a criterion for distinguishing between equilibrium and non-equilibrium STs,
metastable and otherwise. Analysis shows that none of the current means of statistical physics ensures correct
calculations of equilibrium STs with regard to all molecular features of the considered systems.
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INTRODUCTION

Surface tension (ST) is one of the main character-
istics of multiphase systems, and its role grows as
phases shrink [1–9]. The question of interpreting it
during experimental measurements and calculations
for evaluating predictions remains relevant. Existing
representations of the key term in the theory of surface
phenomena are reflected most by the statement that
ST (interface tension) is a mechanical and thermody-
namic characteristic of the interface [10]. This defini-
tion is of a dual nature that reflects the simultaneous
use of concepts of continuum mechanics [11] and
thermodynamics [1–8]. It should be noted that
mechanics and thermodynamics deal with different
numbers of variables of a system’s state. Variables such
as temperature and chemical potential are missing
from mechanics while they are key in considering the
thermodynamic functions of two- and multiphase sys-
tems. This is imperative when discussing the meaning
of equilibrium ST.

The concept of ST (σ) was first introduced by
J. Segner (1752), who explained the spherical shape of
a droplet on a non-wetting surface and the cylindrical
shape of a moving jet [10]. In these systems, the
vapor–liquid boundary is free, with no mechanical
stresses on it. The mechanical (or mathematical) the-

ory of capillary phenomena was developed on the basis
of this concept in [5, 7], where only the effect of
potential interactions between molecules was consid-
ered.

The thermodynamic concept of ST was given by
Gibbs [1] through an excess of free energy for two-
phase equilibrium systems forming a given interface.
The qualitative distinction between the thermody-
namic and mechanical definitions of ST is that it
requires the chemical equilibrium of two-phase sys-
tems, which is missing from the mechanical defini-
tion. Recall that the condition of a two-phase equilib-
rium contains three types of partial equilibria [1]:
pressure (mechanical equilibrium), temperature, and
the chemical potential of components. The last is
responsible for there being no material f lows between
phases [12]. The introduction of ST in thermodynam-
ics is closely associated with the concept of Gibbs
phase approximation when describing the equilibrium
properties of heterogeneous systems [1], in which a
real heterogeneous system us replaced by a set of
homogeneous regions that have identical internal
properties. Each region is limited by its surface, and its
contribution to the thermodynamic functions of the
full system grows as phases shrink.

If there is a curved interface of coexisting phases α
and β in a two-phase system, elementary work dW
2318
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performed by the system when its volume (dV) and
interface area (dA) are changed, is written as

(1)

where R is the radius of the separating surface. It was
considered in (1) that the position of the separating
surface affects the area of the interface, and thus the
ST [3]. This derivation is based on the inequality of
pressures in the neighboring phases generating meta-
stable droplets that is postulated in classical thermo-
dynamics. Expression  determines distinc-
tions between different ways of describing a thermody-
namically spherical interface. A so-called tension
surface is introduced using this expression for meta-
stable droplets:  (where ρr is the radius
of a reference separating surface). On this tension sur-
face, pressure jump Pα − Pβ = 2σ/R (the Laplace
equation), Рα > Рβ, and the pressure at the boundary
inside the f luid differs from the vapor pressure outside.
For a f lat boundary, the ST does not depend on the
position of the separating surface, and changes in the
latter do not affect the area of the interface. There is
thus no summand  in (1), since

 for large droplets.
The free Helmholtz energy of an open system with

a curved boundary is therefore expressed as

(2)

where sc is the number of system components; μi is the
chemical potential calculated for a molecule of the ith
component, which must be constant over the entire
system if it is in chemical equilibrium; and Ni is the
number of molecules of the ith component.

Equation (2) is the fundamental Gibbs equation for
a two-phase system, which can be considered to define
ST σ on the tension surface in an open system [3]. If
free energy F is the function of volume, temperature,
interface area, and the number of molecules, σ can
easily be calculated using the relation

(3)

where N represents the set of numbers Nl, N2, …, Ns.
Separating contribution Fb from the transitional
region of the system defined as , we
have
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where  is the excess number of
molecules of the ith component in the transitional
region with respect to  and  in the coexisting
phases.

Unlike σ, such excess values as Fb and , depend
on the position of the separating surface. By selecting
a separating surface on which

(5)

expression (4) is simplified:

(6)
With a one-component system, this special sepa-

rating surface plays an important role in the theory of
ST and is known as an equimolecular separating sur-
face.

The literature describes four ways of defining ST in
vapor–liquid systems for metastable droplets [3, 4, 9].
Two mechanical ways of introducing ST were pro-
posed in [3, 13]: (1) through the work performed by
the system in creating the surface and (2) through the
definition of ST on a separating surface determined by
the equilibrium with respect to the resultant force
moment. There are also two thermodynamic defini-
tions of ST: (1) according to Gibbs, this derivative
implies displacement of the position of the separating
surface at all fixed external parameters of the system
[1, 4]. (2) According to Kondo [3, 14], this derivative
corresponds to mental displacement of the separating
surface at a fixed density concentration profile.

A detailed list of features of each definition of ST
within the theory of LGM was given in [15], in addi-
tion to the results in [9] that confirm the numerical
distinctions in different definitions of ST.

Formally, these definitions can be duplicated upon
moving from a vapor–liquid system to solid–vapor
and solid–liquid systems, since Gibbs separated the
processes of creating a new interface for a solid due to
a mechanical perturbation/impact and those of chem-
ical crystallization and dissolution (γ and σ respec-
tively) [1]. Concepts of a dynamic ST have used this as
well [3, 16, 17]. This indicators there is no consensus
on the subject, meaning it cannot be used as long as
there are no direct ST measurements.

We refer here to the equilibrium and dynamic dis-
tributions of mobile components in polydisperse
materials (e.g., adsorbents, absorbents, catalysts,
membranes, and composites) with high degrees of
heterogeneity caused by porous, grain, and mixed
porous-grain structures of existing materials [18–24].
ST in this case determines the spatial distribution of
mobile phases inside solid cores of polydisperse matri-
ces. With a macroscopic vapor–liquid system, ST is
always assumed to be based on experimental values
regardless of how it is defined, so the way in which it is
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done is not of fundamental importance. Since it is
impossible to directly measure ST, however, the way in
which it is calculated is very important. This applies to
problems of the behavior of small droplets in different
phases [1–8, 25–28] and that of an adsorbate in
porous materials [4, 5, 18–24].

The discovery of equilibrium droplets [9, 29, 30]
changed the situation qualitatively. The concept of
equilibrium droplets assumes a rigorous equilibrium
between a liquid droplet and the surrounding vapor,
provided there are three partial equilibria: mechanical,
thermal, and chemical. Gibbs obtained these condi-
tions of phase equilibrium for macroscopic phases [1]:
Under isothermal conditions (T = const), the internal
vapor and liquid pressures are equal in equilibrium
droplets (Pα = Pβ) as are their chemical potentials
(μα = μβ). The concept of a tension surface as one on
which there is a pressure jump according to the
Laplace equation does not apply to equilibrium drop-
lets.

Equilibrium droplets are forbidden in classical
thermodynamics. The discovery of equilibrium drop-
lets exposed a fundamental error in classical thermo-
dynamics and statistical theories of curved surfaces
based on it for surface phenomena and small systems.
It was later found [9] that this error was due to incor-
rect use of experimental data on the periods of relax-
ation of momentum and mass transfer processes, τP
and τμ. The general relationship between these periods
is always valid: τP  τT  τμ. In both classical and sta-
tistical thermodynamics, the assumption that τP  τμ
is now universally used for curved interfaces, while
under real conditions the relationship between periods
of relaxation times is the reverse: τP  τμ.

The only definition of ST suitable for all three types
of interfaces in a three-aggregate system was given in
[31, 32] on the basis of equilibrium droplets. The only
correct way of calculating the ST of equilibrium sys-
tems according to Gibbs’ thermodynamic definition
using excess free energy has several requirements that
are the same for any interface curvature.

(1) Bulk states of coexisting phases must satisfy the
strict equality of chemical potentials (the Yang–Lee
theory [33–35] of a vapor–liquid system and Landau
relationships of symmetry with the participation of
solid phases [36]), which excludes the concept of
metastability.

(2) The phase equilibrium must satisfy three partial
equilibria: mechanical, thermal/energy, and chemical,
along with additional requirements for the boundary.

(3) The same three types of partial equilibria must
be inside each point of the transitional region. This is
impossible in thermodynamics, since it does not deal
with boundary states. This point is also missing from
all other definitions of ST in microscopic theory.

(4) There must be no excess adsorption of mole-
cules in the transitional region. With a mixture, this

� �

�

�
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means using the standard Gibbs condition that the
sum over components for the product of the chemical
potential of a component on its excess concentration
must be zero.

I proposed [31, 32] a way of determining how nec-
essary and sufficient the thermodynamic Gibbs defi-
nition was for calculating ST (i.e., without considering
the specific mechanical properties of vacancies) or
whether ST could be an clear thermodynamic func-
tion of the thermodynamic parameters of phase states
and the transition regional. This approach differed
qualitatively from the classical thermodynamic defini-
tion of ST [1–10] in that the requirement of observing
the relationship between the periods of relaxation of
momentum and mass transfer processes, which are
missing from both classical thermodynamics (dealing
with the Laplace equation for curved boundaries) and
statistical thermodynamics (see details below), was
transferred to the transitional region [3, 7, 9]. This
specificity of the LGM leads to the use of average local
chemical potentials and pressures inside local regions
of the boundary rather than their tensor components
in calculating ST. However, results from analyzing the
thermodynamic definition of ST [37] showed that the
way of calculating ST was as unclear for equilibrium
droplets as it was for metastable droplets.

In this work, we discuss the ambiguity of ST defini-
tions in the approach in [31, 32] and give the general
definition of ST for arbitrarily shaped interfaces.
Molecular statistical theory based on the LGM was
used in [9, 18, 34, 35, 38] to solve this problem. It is the
only theory of statistical physics that provides equally
accurate descriptions of the three aggregate states of a
compound [39], including their three types of inter-
faces. LGM is used most widely to study the phase
states of compounds, and the most important results
on the theory of phase transitions, including critical
regions of a vapor-liquid system, were obtained with it
[40–45]. This model has long been used to study f lat
interfaces [38, 46–51]. Approaches were later devel-
oped within the LGM to describe curved surfaces
(spherical and cylindrical droplets) [9, 29, 30, 52, 53]
and curved vapor–liquid interfaces with complex
geometry in three-aggregate systems [18, 54, 55].

The central problem of this analysis is thus the rea-
son for the ambiguity of defining the ST as a thermo-
dynamic function in [31, 32] and the possibilities of
statistical physics to correctly calculate equilibrium
ST. The LGM and expressions for the concentration
profile and excess free energy are briefly described
below along with the relationship between ST and
individual contributions from particles to the free
energy of a heterogeneous system and the features of
the LGM explaining the unclarity of the ST definition
and its true nature. We also discuss the possibilities of
other means of statistical physics to calculate equilib-
rium ST and the correctness of calculations made with
current models of statistical physics. For simplicity, we
F PHYSICAL CHEMISTRY A  Vol. 96  No. 11  2022



ANALISYS OF METHODS FOR CALCULATING THE EQUILIBRIUM SURFACE TENSION 2321
consider a pure f luid (the generalization of the consid-
ered approaches to mixtures has been demonstrated in
many works [1–9, 18]).

PRINCIPLES OF THE LGM
In [37], the simplest variant of the LGM [34, 35,

38] was used in calculations with allowance for the
interaction between nearest neighbors in the quasi-
chemical approximation (QCA) on a rigid lattice
structure with number of neighbors z. A two-phase
system consisting of a droplet with radius R and a
vapor–liquid interface (limit case R → ∞ corresponds
to a f lat interface) was considered at fixed temperature
Т [9]. The transitional region of the interface was
divided into monomolecular layers with width λ (the
average distance between molecules in the liquid
phase) and homogeneous properties. These layers are
denoted as q, which is the number of the site corre-
sponding to the considered monolayer, 1 ≤ q ≤ κ,
where κ is the width of the transitional region plus one
monolayer from bulk phases (q = 1 corresponds to the
liquid and q = κ corresponds to vapor).

The structure of the f luid in the bulk phase is char-
acterized by values  denoting the number of the
nearest neighboring sites of layer p around sites of layer

q:  = z. The total balance of bond sites
between the neighboring molecules is written as

 = z. For spherical droplets in the ther-
modynamic version of the model, the structural num-
bers of curved lattice zqp(R) are expressed through sim-
ilar numbers for f lat lattice  as corrections that
depend on the radius of the monolayer in the transi-
tional region [9, 29]:

(7)

In the asymptotic limit of large drops, all zqp(R) values
tend to their limits  for a f lat interface.

To analyze the thermodynamic definition of ST, it
is enough to limit ourselves to a binary mixture of the
lattice system in which the components are molecules
А and vacancies V corresponding to a pure f luid.
Molecular distributions of particles А (and thus vacan-
cies V, ) are determined by densities  of
particles А in layer q, 1 ≤ q ≤ κ, which are described in
the QCA by the equations

(8)
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of layer q: ,  = 1 +

,  =  + , where

 is the probability of particle pair АА being in
neighboring cells of monolayers q and p, respectively;
P is the pressure in the system; ,

, where  is the universal gas constant and
 is the energy of interaction for particle pair АА,

described by the Lennard–Jones potential function.
There is no interaction with vacancies, so

. Normalizing relations for pairs are

written .

Equations (8) on local densities  are a concentra-
tion profile of the vapor–liquid interface. It is based
on the condition of the equality of chemical potential
μА of particles А in all layers 1 ≤ q ≤ κ. Equations (8)
with z identical sites are states of the bulk phase that
serve as their boundary conditions. In the LGM, one-
particle contributions  are introduced into free
energy F of component i at sites q of a heterogeneous
system with an interface. The difference between these
contributions  contains statis-
tical sums of internal motions of components i and
chemical potentials [38] for vacancies, . Or 
in Eqs. (8) determines the chemical potential of a
compound in different strata of q.

In the bulk phase, the free energy of a lattice system
is written in the normalized form per system site as

, where  is the molar fraction of
particles of component i in a homogeneous phase,

. In the lattice system, s = sc + 1 compo-
nents, since vacancies that are particles of type i = s are
included. Chemical potential μs of vacancies
( , where  is the cell volume) corresponds
to vacancies.

The dimensionality of the Eqs. (8) with respect to
local densities  equals the number of layers (κ – 2)
in the transitional region between the vapor and the
fluid. It is solved via Newton iteration at fixed densi-
ties q = 1 for the vapor and q = κ for the f luid. The
accuracy of the solution for this system is no less than
0.1%. Densities of coexisting vapor and liquid phases
in the bulk and equilibrium pressure P in the system
were found using Maxwell derivatives [34, 35, 38].

Knowing the solution to equations for the concen-
tration profile, we can calculate ST. In [56, 57], it was
found that the free energy of the transitional region
can be written in normalized form as

(9)
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where number N of sites corresponds to those in the
transitional region consisting of κ monolayers, 1 ≤ q ≤
κ. The Мi(k) values in (9) characterize contributions
from components i to the free energy of the bulk phase
(q = 1 and κ) and the same components to locally het-
erogeneous regions q of the boundary through which
STs are calculated. For spherical droplets, zqp(R) (7) in
each monolayer q depends on droplet radius R (below,
R in zqp(R) is omitted for the sake of simplicity). Letter
k corresponds to the way of obtaining function Mi

q(k),
where k = 1 means the regrouping of summands in the
expression for F with the pair potential; k = 2 means
differentiation with respect to the molar fraction of
particles i at fixed number q of sites; and k = 3 means
the variable number of sites q [57]. All types of func-
tion  in (9) are associated with the chemical
potentials of system components in (2), (3), and (5).
Analysis of these equations reveals the relationship
between functions  with ST based on the ther-
modynamic definition of ST [31, 32].

Based on definitions [15, 31, 32], the expression for
the excess free energy Fb (5) related directly to ST by
formula (6) was obtained in the LGM [37]:

(10)

where Fq denotes the normalized weights of sites q
in the transitional region, and q* corresponds to the
reference separating surface:
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q* is used as the reference separating surface in the
equilibrium system for a flat or curved boundary. There
are layers with increased density when q ≤ q*, and layers
with reduced density when q > q*. The contribution
from each monolayer is expressed through weight func-

tions Fq = Nq/N, N = , 2 ≤ q ≤ κ – 1.

AMBIGUITY OF THE THERMODYNAMIC 
DEFINITIONS OF ST

ST values were compared in [37] using calculations
at the same state of coexisting phases and the same
density concentration profile. The calculations in [37]
showed that all functions (k), k = 1, 2, 2*, 3 lead to
different temperature dependences of ST for a f lat
boundary and different isothermal dimensional
dependences for spherical droplets of different radii.

The obtained ST values depend on the form of
functions (k), so let us discuss how these functions
appear in formula (10) for ST defined thermodynam-
ically. (k) are themselves local partial contributions
to the free energy. They are formally presented in (9)
as analogs of chemical potentials in the lattice system.
Let us rewrite formula (10) in the form of its summands
over components А and V and introduce the concept of
local chemical potential :

(15)

In bulk phases, 
(where  is the chemical potential of component А)
and  (where  is the chemical
potential of vacancies). Note that in the bulk phase,
the differences of the function , k = 1,
2, 2*, 3 have the same value regardless of how these
functions were derived (based on index k)
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However, functions  behave differently for
the transitional region of the boundary. For functions
with k = 1, 2, 2* we have

while . This automatically creates corre-
sponding distinctions in calculated STs in variants k =
3 and k = 1, 2, 2*. However, variants k = 1, 2, 2* differ
from one another.

We can see from formula (15) that since
, the first two summands

with local densities become zero, and different expres-
sions are obtained for ST that are associated only with
the contributions from vacancies through functions

, , and . In other words, expres-
sion (15) shows that different ST values are obtained
for a pure f luid with an equimolecular separating sur-
face. These values depend on the form of functions

(k) for vacancies.

The difference of functions  in

 do not turn the summands in (15) to zero before

local densities :  =  +
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being varied when determining derivatives (k = 3)
[57] while numbers Np of other types of sites remain
fixed. In the macro phase, this dependence on neigh-
boring sites of other types is automatically removed as
the number of phase sites increases.

Different ST values obtained in [37] from thermo-
dynamic Gibbs definition (6) or (10) testify to the
ambiguity of the concept of ST as a strictly thermody-
namic function (TF) at identical external parameters
of a system that characterize stratification as a func-
tion of temperature. This means ST is not a purely
thermodynamic characteristic of the system.

SPECIFICITY OF THE LGM 
AND THE NATURE OF ST

The plurality of ST values at the same phase states
and transitional regions is due to the use of different
functions  employed in different ways of deriv-
ing them [56, 57]. The LGM is based on a formal rep-
resentation of the free element of cell volume in the
form of vacancies as a discrete component of the lat-
tice structure. The total number of components is s =
sc + 1 (where sc is the number of real components in a
given system). The specificity of the LGM for different
components of the system results from different deriv-
atives having different physical meanings [56, 57].

For real components, derivatives of  with
respect to partial densities give the corresponding local
chemical potentials of components i for different types
of sites, and the derivatives correspond to mechanical
characteristics for vacancies. In the bulk of a material,

 corresponds to what is often called
expansion pressure. For a transitional region, it corre-
sponds to average local pressure .

This distinction means derivative
 is expressed as the differ-

ence between two functions:  for k = 1, 2, 2*, 1 ≤
i ≤ sc. From the viewpoint of changes in the occupancy
of LGM sites, it follows that the  derivative with
respect to particles А at k = 1, 2, 2* corresponds to
variation in the number of particles А at fixed number
Nq of sites due to exchanges with vacancies. This
scheme corresponds to the condition of a self-consis-
tent description of the kinetics and equilibrium in
kinetic processes [38].

For the derivative of  with respect to vacancy
densities  (for component i = s = V), we must use
another derivative related to a simultaneous change in
the number of V particles and the total number Nq of

sites q [57]. This generates functions ,
meaning this type of derivatives is defined only for
vacancies for which it determines the average local
pressure inside the transitional region in monolayer q.

i
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If the same type of derivatives is used for real particles
А and even for their differences with vacancies, they
are also not related in any way to the particles’ chemi-
cal potential μА. Finally, functions  are not
related in any way to the kinetics of the redistribution
of particles in a fixed volume, though MA(3) − MV(3) =
μА for macro phases. The formal transfer of the defini-
tion of the chemical potential μА to the local chemical

potential (3) is consequently not correct, due to
fixed number  of р-type neighbors (not involved

in taking a derivative with respect to  and ). The
derivative of  with respect to vacancy densities
(k = 3) is therefore an analog of deformation changes.

The equilibrium ST value thus has a complex char-
acter, and the real nature of ST is not purely thermo-
dynamic. Introducing (1) and (2) into thermodynam-
ics, the ST value becomes a mechanical characteristic.
This was initially assumed before the emergence of
thermodynamics, but could not be realized under the
conditions of a rigorous phase equilibrium of coexist-
ing vapor and liquid phases. These conditions are
directly related to the thermodynamics of phase tran-
sitions formulated later by Gibbs, and their three par-
tial equilibria.

To obtain the equilibrium ST value it we must sat-
isfy the ratio between momentum and periods of mass
relaxation τP ! τμ, which is consistent with the exper-
imental data; i.e., this is the inverse ratio of the periods
of relaxation of momentum and mass transfer pro-
cesses, which was introduced for metastable droplets
in Gibbs thermodynamics. With regard to require-
ments (1)–(4) and ST being a mechanical characteris-
tic, these two statements together allow us to obtain
the equilibrium ST value.

They correspond to the definition of ST given in
the first works on equilibrium droplets [9, 29, 30]
(based on the vacancies reflecting the mechanical
properties of a system), but without clear formulation
of requirements (1)–(4) for describing the state of a
transitional region. We finally obtain the expression
for the equilibrium ST value:

(17)

where functions  in (3) are defined in (13)

with  for any q.

Any deviation of the system from the equilibrium
state results in non-equilibrium STs, since the pressure
and/or ST values are clearly determined by the current
values of correlators calculated using equilibrium or
non-equilibrium models [58].
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CALCULATING ST

Requirements (1)–(4) for obtaining correct equi-
librium ST values are valid for all means of statistical
physics. Development of the molecular theory of the
vapor–liquid interface began in [59, 60], where the
final width of the transitional region of an interface
was used in comparison to the mathematical surface in
Gibbs thermodynamics. Works on statistical physics
began in the middle of the last century [3, 7]. Attempts
were made to interpret ST with capillarity theory [7,
61, 62]; integral equations (IEs) [3, 7, 63–67] and sim-
plified versions of them with no correlation effects—
i.e., density functional theory (DFT) [68–71]; and
molecular dynamics (MD) [72, 73], both Monte Carlo
(MC) [63] and the LGM [9, 29–32, 74, 75] (see
above).

The Van der Waals theory of capillarity and DFT
have become very popular because of great problems
in calculating when IEs are used. A growing number of
works now use MD. Difficulties in applying it to cal-
culate the characteristics of droplets were noted in
[73]. The above molecular means yield strongly differ-
ing results, so the thermodynamic approach remains
the main one for practical estimates of the energy of
nucleus formation in the kinetics of first order phase
transitions [1–10].

The key problem in calculating ST is how to deter-
mine free energy F. This characteristic is one of the
most cumbersome for practical applications because
of the difficulty of calculating it along with the chem-
ical potential [76–81], both of which are needed to
calculate ST with thermodynamic relations (4)–(6).
Technically, this is due to the current theory of the liq-
uid state being based on correlation functions (CFs)
[76–83]. The correspondence between IE theory and
items (1)–(4) is reflected in analyzing the approaches
to calculating ST in [15]. Direct use of thermodynamic
definition of ST (6) has never been discussed in IE
theory [7, 77], due to great problems in calculating the
chemical potential even in the bulk phase. The calcu-
lations must be made according to Kirkwood with a
parameter of interaction [76, 77] or considerable
efforts are required to move directly to calculating the
free energy [78, 79]. The hierarchy of Bogolyubov–
Born–Green–Kirkwood–Ivon equations [76, 77, 82,
83] contains no chemical potential in explicit form. In
order to employ definition (6), we must also satisfy the
requirement for a constant chemical potential inside
the transition region. Note that different technical
approaches are used in IE theory through the virial
theorem and the Bogolyubov hierarchy [7, 77, 82, 84–
86] when the mechanical definition of ST is used give
equivalent results [7]. This means there is no corre-
spondence between the numerical procedures of IE
theory and requirements (1)–(4) because molecular
statistical theories [3, 7, 9] are based on available ther-
modynamic approaches, and they all result in meta-
stable states of droplets even today. Another problem
F PHYSICAL CHEMISTRY A  Vol. 96  No. 11  2022
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of the IE theory is the difficulty of solving the equa-
tions themselves, resulting in the need to simplify
numerical procedures. DFT is now used to calculate
heterogeneous interfaces [68–71], in which there are
no correlation effects from interacting molecules.

There is a similar situation with calculation proce-
dures in MD and MC, which are the most popular
means of statistical physics for calculating TFs of
many systems. Both essentially operate with spatial
distributions of molecules rather than deal directly
with statistical sums. To some extent, they are similar
to the CF model and differ from it by how the spatial
distributions of molecules are generated and their sub-
sequent averaging procedures. Existing manuals on
MD calculations are based on information about aver-
aging procedures developed in the last century [87]
that do not consider the fundamental results of ther-
modynamics on considering the periods of relaxation
of momentum and mass transfer processes [9]. This
obviously makes them unsuitable for calculating ST
values. There is the same incorrect attitude toward cal-
culating free energy, and no procedures at all for deter-
mining the average chemical potential [87].

When discussing how requirements (1)–(4) are
met in other means, we should distinguish between the
potential abilities of each way and the practical ver-
sions of them in the literature. From a formal stand-
point, each means of statistical physics can be funda-
mentally consistent with the above requirements,
since all models of statistical physics deal with the full
phase space of coordinates and momenta (or ener-
gies), while individual variants of calculations are
reduced to postulated rules of averaging in phase
space. At this stage, information is mainly approxi-
mated in deriving average values, expressed first
through CFs and then in subsequent averaging
through TFs.

In practice, all models of calculation are developed
by comparing them to earlier theories (and are ori-
ented toward classical thermodynamics) and other
techniques (particularly the theory of non-ideal gases
and fluids in a superpositioning approximation [76,
77, 88]). For MC algorithms, approaches have been
proposed in literature [89, 90] in which energy distri-
butions through which we can calculate free energy
were constructed directly. However, these were never
very popular because of the time they took (the latest
MC versions are in [91, 92]). When calculating ST and
properties of small droplets, thermodynamic repre-
sentations (usually the Laplace equation) are intro-
duced into stochastic models [92] and IEs [7, 66], dis-
torting the essence of small droplet calculations.

These distortions were introduced into the theory
of capillarity, DFT, and stochastic MC and MD mod-
els for the entire range of droplet radii. They manifest
in the dependences of ST σ(R) on droplet size R in all
available works. The criterion σ(R)/σ(bulk) = 1 was
therefore formulated [93] to separate the class of solu-
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A  Vo
tions for the profile of densities (8) corresponding to
equilibrium droplets from metastable droplets. If the
calculated ST σ(R) relative to the above line surpasses
the accuracy of calculating σ(R), it indicates the
model can be used to calculate metastable droplets
rather than equilibrium characteristics. This property
applies to all ways of calculating equilibrium and
metastable droplets.

Note that the LGM also has the potential to
improve the accuracy of TF calculations and consider
specific features of molecules in modified versions of
the f luid. Upon moving from the considered simplest
variant of the LGM to more accurate models of two-
phase systems and their STs that reflect allowance for,
e.g., the internal motions of molecules, anharmonism
of vibrations, and lattice softness, there are problems
in calculating free energy [80, 81] that require the
development of new numerical algorithms. Analysis of
discrete molecular distributions based on CFs is much
simpler in the LGM, and it is easier to study the prob-
lem of the ambiguity of calculating TF (these ques-
tions were considered in [80, 81].) This means there
are currently no ready ways of calculating equilibrium
ST that meet requirements (1)–(4) and provide a cor-
rect microscopic description of a f luid.

RESULTS AND DISCUSSION
The problem of the ambiguity of the definition of

equilibrium ST has existed ever since the thermody-
namics of curved boundaries was created. Gibbs’s
introduction of the Laplace equation for describing
the mechanical equilibrium between coexisting phases
with its pervasive influence relative to chemical equi-
librium resulted in metastable droplets and the multi-
plicity of determinations of the position of a separating
surface on which there is a pressure jump in the
Laplace equation. Primary interpretations of ST as a
mechanical characteristic were erroneous because
they were based on the use of the Laplace equation,
which distorts the nature of a transitional region by
introducing a hypothetic foreign film [9, 58].

This problem was not solved until the discovery of
equilibrium droplets that correspond to the rigorous
phase equilibrium. The existence of strictly equilib-
rium droplets allowed formulation of the question
about using the purely thermodynamic Gibbs defini-
tion of ST as the excess of the free energy due to the
occurrence of the boundary [31, 32]. However, analy-
sis of this approach has shown [37] that ST is not a
pure TF of the state parameters of coexisting phases
and a transitional region. It follows that the ambiguity
of the thermodynamic definition of ST is determined
by (1) the types of contributions (functions ) of
components i to the free energy of system (9) due to
different ways k of introducing them while preserving
the identity of system states with chemical potential μА

and a transitional region profile with excess  (4) for

( )i
qM k

A
bN
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k = 1, 2, 2* and (2) using an analog of local chemical
potential (3) in analogy with macro phases contain-

ing contributions  from real particles and 
from vacancies to the ST value.

Analysis of the concept of equilibrium ST at a
vapor–liquid interface has shown that equilibrium ST
is a mechanical characteristic that can be calculated if
there is a rigorous phase equilibrium over three partial
equilibria (mechanical, energy, and chemical). The
thermodynamic definition of ST as an excess of free
energy is a necessary but not sufficient condition. In
addition, we must remember that ST is a mechanical
characteristic and must be calculated with regard to
the relationship of the periods of relaxation of
momentum and mass transfer processes, which corre-
spond to experimental data (τP ! τμ). Violation of this
relationship (τP @ τμ) gives rise to metastable droplets
associated with the artificial introduction of a foreign
film boundary into the model through the Laplace
equation, which distorts the real properties of the sys-
tem. Instead of a monotonic change in the properties
of molecules inside the transitional region clearly
related to a monotonic change in their density from
vapor to f luid, the introduction of the Laplace equa-
tion means a pressure jump that breaks the relation-
ships between local pressures in a real system and its
chemical potential. Finally, when it is simultaneously
considered that equilibrium ST corresponds to the
condition of a rigorous phase equilibrium over all
three partial equilibria and the ratio of respective
relaxation times is observed, we obtain a description of
the system with no artificial distortion of its properties.

Elementary work dW performed by the system
when its volume (dV) and boundary area (dA) change
should in this case be formally written instead of
Eq. (1) for a two-phase system with a f lat boundary
(i.e., without indicating two different pressures in the
coexisting phases, since Pα = Pβ and there is no ten-
sion surface), allowing for the curvature of the separat-
ing equimolecular surface characterized by radius R

(18)
Expression (18) explicitly ref lects that both the ST

and surface element area dA depend on the curvature
of the boundary. To find the equilibrium ST, we must
reject formula (10) and use Eq. (17), which follows
from considering a vacancy as a mechanical character-
istic that is an analogue of pressure (expansion) in the
bulk phase.

Violation of the chemical equilibrium at the inter-
face results in non-equilibrium STs.

The problem of calculating ST is closely related to
the problem of calculating the free energy, which
remains a complex procedure in any means of statisti-
cal physics. Our results on the nature of ST follow
from the simplest model of statistical physics—the
LGM, which provides the best description of phase

μA
q

(3)A
qM (3)V

qM

= − σ( ) ( ).dW PdV R dA R
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states and interfaces. Other models (IE theory, MD,
and MC) do not ensure correct calculations of equilib-
rium ST with regard to requirements (1)–(4). So far,
these techniques have dealt only with metastable
droplets. Versions of the LGM modified with regard to
lattice structure softness, internal motions, and the
anharmonism of vibrations require the development
of new algorithms to allow for these molecular features
[81].

The formulated criterion for the size dependence of
droplet ST [93] separates equilibrium and non-equi-
librium STs, metastable and otherwise. The criterion
allows control of the development of calculation pro-
cedures for equilibrium ST by different means of sta-
tistical physics.
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