
ISSN 0036-0244, Russian Journal of Physical Chemistry A, 2020, Vol. 94, No. 1, pp. 171–176. © Pleiades Publishing, Ltd., 2020.
Russian Text © The Author(s), 2020, published in Zhurnal Fizicheskoi Khimii, 2020, Vol. 94, No. 1, pp. 125–130.

PHYSICAL CHEMISTRY
OF SURFACE PHENOMENA
A Pseudo-Second Order Kinetic Equation for Sorption Processes
R. Kh. Khamizova,*

aVernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia
*e-mail: khamiz@mail.ru

Received February 28, 2019; revised March 12, 2019; accepted April 9, 2019

Abstract—The problem of substantiating a pseudo-second order equation in the kinetics of sorption processes
is considered. A simple way is presented of transforming the Langmuir kinetic equation written for a process
within a limited volume into a polynomial relation in the form of the sum of difference terms of first- and
second-order kinetic equations. It is shown that such a relation is reduced to a good approximation of a
pseudo-second order equation over a much wider range of conditions determined by the equilibrium and
kinetic characteristics of the sorbent and the experimental parameters than was predicted earlier. It is estab-
lished that the errors of such a theoretical approximation are either negligible or do not exceed the corre-
sponding errors at the initial stage of kinetic experiments within a confined space. It is concluded that the
applicability of the pseudo-second order model is independent of the mechanisms determining the rate of
sorption and does not require concepts of chemisorption or special equations of kinetics controlled via chem-
ical reactions or diffusion.
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INTRODUCTION
The kinetic model of sorption based on a pseudo-

second order equation became extraordinarily popular
after the works of Ho and McKay [1, 2], which
demonstrated a simple and almost universal way of
describing experimental data. Most current studies of
the kinetics of sorption processes use this model, and
dozens of articles are published annually. We shall
refer only to a few reviews and original works of recent
years with a great many cited sources [3–6]. A uniform
approach to describing the sorption kinetic has
emerged: Experimental results are compared to linear-
ized integral forms of kinetic equations of the pseudo-
first and pseudo-second orders:

(1)

(2)

where qt and qe are the averaged current and equilib-
rium concentrations, respectively, in a sorbent; and k
with different subscripts are rate constants. If the
experimental data are better described by model (2), it
is concluded that the process proceeds via chemisorp-
tion or is controlled by chemical reactions [3]; other-
wise, diffusion control is most often assumed. One
reason for such an approach (which cannot be consid-
ered correct) is the lack of theoretical substantiation of
the pseudo-second order kinetic equation dqt/dt =

k2(qe – qt)2 and the conditions of its applicability to
sorption processes. Another reason is probably that
this form of the equation was first proposed as an
empirical relation for describing the kinetics of sorp-
tion in processes that were interpreted as heteroge-
neous chemical reactions [7].

Among studies that have made an important con-
tribution to developing the theoretical concepts of the
equations of the pseudo-first and pseudo-second
orders were the works of Azizian [8] and Liu and Shen
[9], which showed the possibility of approximately
deriving these equations using the Langmuir kinetic
model [10]. However, we consider these derivations to
be mathematically cumbersome, incapable of com-
pletely substantiating the conditions of different mod-
els’ applicability, and contradict one another in pre-
dicting such conditions. Another problem is the need
to correctly interpret Langmuir’s classic work [10] in
the context of modern knowledge. It can be seen from
his reasoning and comments that he treated any
adsorption on the surface of a material from the view-
point of early twentieth century science as a “pseudo-
chemical” or chemical process. However, few notice
that the kinetic and equilibrium relations formulated
in [10] do not require assumptions of the process’s
mechanism because they were derived using a model
of the condensation of components on a surface and
their subsequent evaporation.

It would seem that the possibility of deriving a
pseudo-second order equation from Langmuir’s clas-
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sic model, which was shown by Azizian [8] and Liu
and Shen [9], was perceived by many researchers as
additional proof of the relationship of this equation to
the chemisorption mechanism. This was noted by Pla-
zinski et al. [11], who analyzed their theoretical works.
They also showed [12] that the pseudo-second order
equation can be applied to diffusion-controlled pro-
cesses in sorbent granules. In [13, 14], a first-order dif-
ference equation for obtaining an approximate
description of diffusion processes was used to prove
there was no relationship between the control mecha-
nism and the form of the corresponding kinetic equa-
tions, and to demonstrate the possibility of obtaining
an approximate derivation of the pseudo-second order
equation from it. It was shown that such a derivation is
possible if the initial kinetic equation becomes nonlin-
ear when two conditions are met simultaneously: (1)
the boundary concentration of a component being
sorbed is not constant over time, which is characteris-
tic of kinetic experiments in a confined space (the
batch technique) and (2) the equilibrium sorption iso-
therm is nonlinear.

This work continues the study on substantiating the
relationship between the pseudo-second order equa-
tion to known kinetic models and determining specific
features of this equation and its conditions of applica-
bility.

MODELING THE KINETIC PROCESS
In analogy with the equation for the kinetics of the

accumulation of an adsorbate from the gas phase on
the surface of an adsorbent that was presented in
Langmuir’s fundamental work [10], sorption from liq-
uid can be described by the equation

(3)

where qt is the current concentration of the compo-
nent in the sorbent phase; kL,1(time−1 concentration−1)
and kL,2(time–1) are the kinetic coefficients of the
sorption and desorption processes, respectively; qΣ is
the maximum number of sites accessible to the com-
ponent being sorbed in the sorbent; (qΣ – qt) is the
concentration of free (unoccupied) sites; and ct is the
current concentration of the component in the solu-
tion.

Once equilibrium is reached (qt = qe, ct = ce), the
right- and left-hand sides of Eq. (3) become zero, pro-
ducing the familiar expression for the Langmuir equi-
librium isotherm

where A = kL,1/kL,2 is the Langmuir constant (concen-
tration−1). Kinetic equation (3) must be solved in
order to describe sorption before equilibration. If the
concentration of the component in the solution during
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the mass-transfer process does not change and
remains equal to the initial concentration, we have
constant boundary condition ct = c0 = const. In prac-
tice, this condition can be satisfied to a good approxi-
mation in, e.g., a dynamic or static process (in a col-
umn or a reactor) of contact between sorbent grains of
total volume ωv (or weight ωm) with large volume V of
solution:

(4)
where qe is the equilibrium concentration in the sor-
bent.

It was shown in [13] that the kinetics of such pro-
cesses, regardless of the type of the isotherm, can be
described by the familiar first-order kinetic equation

(5)

which is more convenient than Eq. (3) because it
includes only one kinetic constant and has simple
integral form (1). Note that the formulations of kinetic
equations (3) and (5) are not based on concepts of
mechanisms that could be either physical adsorption
or chemisorption controlled by diffusion or chemical
reactions. 

Equation (5) was first proposed by Lagergren in
[15] and was then substantiated by a number of
researchers, including Glückauf and Tikhonov, in
solving dynamic diffusion problems [16, 17].

If condition (4) is not met (i.e., if the kinetic exper-
iment is performed in batch mode), the concentration
of the solution changes (falls over time) during the
mass-transfer process, and material balance condition
ΔcV = Δqω yields

(6)

We can now rewrite Langmuir kinetic equation (3)
for a confined space as

(7)

Equation (7) can be written as

(8)

Under equilibrium conditions dqt/dt = 0 and qt =
qe, it follows from Eq. (7) that

(9)

Simple transformations of Eq. (8) with allowance
for Eq. (9) yield

(10)
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where

(11)

(12)

The dimensions of the parameters in Eqs. (8)–(12)
should match one another. For example, if we choose
dimensions q, mg/g; c, g/L (mg/mL); V, L (mL); ω =
ωm, g; and t, s, which are widely used in practice,
Langmuir constant A has the dimension L/g
(mL/mg). The corresponding coefficients are kL,1,
s−1 L/g (s−1 mL/mg) and kL,2, s−1; and the kinetic coef-
ficients of Eq. (10) are k1, s−1; and k2, s−1 g/m.

Using the Langmuir kinetic equation written for a
limited volume, expression (10) was thus derived in
virtually one line, in the form of the sum of difference
relations of the pseudo-first and pseudo-second
orders with coefficients that depend on the experi-
mental conditions and characteristics of the sorbent.
The derivation made in this work differs from the more
awkward procedure performed by Liu and Shen [9] in
that parameter qe is not eliminated from the expres-
sions for kinetic coefficients k1 and k2. This elimina-
tion seems useless, since the other sides of final equa-
tion (10) contain this parameter anyway. If necessary,
the qe value can be calculated from the initial experi-
mental data using Eq. (9) if we know Langmuir con-
stant A and maximum sorbent capacity qΣ.

Azizian [8] was the first to show the possibility of
obtaining an approximate derivation of individual
equations of the pseudo-first and pseudo-second
orders from the Langmuir kinetic equation. However,
these mathematical transformations are very cumber-
some and require numerous assumptions. This was
likely behind the conclusion [8] that the first-order
kinetic model is more characteristic of high initial
concentrations of the component sorbed in the solu-
tion, and the second-order kinetic model is better at
low c0. This conclusion turns out to be wrong, as was
proven in [13, 14].

CONDITIONS FOR THE APPLICABILITY 
OF THE MODEL BASED 

ON THE PSEUDO-SECOND ORDER 
EQUATION

In the above rigorous derivation of Eq. (10), it is
important to determine the conditions under which it
can be reduced to individual equations of the first or
second orders. From a formal mathematical view-
point, Liu and Shen’s trivial estimate [9], which states
that at k2(qe – qt) @ k1 the process kinetics can be
approximately described using the pseudo-second
order equation. This inequality of course requires the
validity of the milder condition k2qe @ k1. However,
many experimental data suggest this condition could
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be invalid, but the kinetics of sorption can still be
described with the pseudo-second order equation [6,
14, 18].

Let us show that the wide applicability of the
pseudo-second order kinetics model is due to specific
features of integral equation (2) used for the lineariza-
tion of experimental data, and to specific features
related to errors in kinetic experiments within a con-
fined space.

1. Unlike other models (including ones based on
the first-order equation) whose range of applicability
limited to the interval of variation in qt(t), Eq. (2) also
describes to a good approximation the equilibrium
part, since t/qt ≈ t/qe follows from qt ≈ qe. For inexpe-
rienced researchers, this creates an opportunity to
“improve” the applicability of the pseudo-second
order kinetic model by including more equilibrium or
near-equilibrium experimental points in an analysis.

2. In contrast to, e.g., constructing experimental
curves using Eq. (1), in which all the points of the
kinetic curve are of equal importance for the correla-
tion coefficient, the initial points are virtually unim-
portant in constructing the curves with Eq. (2): the
closer the process is to equilibrium, the more import-
ant value t/qt at the corresponding point is to con-
structing the linearized experimental curve. Parameter
1/kII  (the third term of Eq. (2)) is incommensurably
small when compared to the values at such points, as
can be seen in curves t/qt = f(t).

3. It is at the initial points of the kinetic curve,
where ct ≈ c0, that the experimental errors in perform-
ing kinetic experiments in a confined space to obtain
data based only on measuring the current concentra-
tion of the component being sorbed in a solution can
be quite high. This problem was analyzed in detail in
[13, 19]. It was found that the relative error in deter-
mining current concentration qt of the component in
the sorbent is, along with parameter t/qt, found as

where Δc/c is the relative error in measuring the con-
centration of the component in the solution using one
analytical means (instrument) or another.

Returning to the problem of describing the kinetic
process for batch sorption (under varying boundary
conditions) with the equilibrium Langmuir isotherm,
note that Liu and Shen’s [9] condition of applicability
for the pseudo-second order equation, k2(qe – qt) @ k1
is functional and cannot be used in practice.

Let us try to find a practically useful condition. Let
k1 = αk2qe, where α is a certain positive number.
Instead of Eq. (10), we can now write
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(13)

If the condition

(14)

is satisfied, we can write the sought pseudo-second
order equation instead of Eq. (13):

(15)

We rewrite condition (14) in the form

(16)

assuming that the difference between the absolute val-
ues of the left- and right-hand sides is an order of mag-
nitude. Inequality (16) has a simple solution: α ≤
0.925. We can therefore write the first condition under
which the kinetics of the sorption process within a
confined space according to the Langmuir isotherm is
described to a good approximation by the pseudo-sec-
ond order equation

(17)

instead of polynomial (10).
We now show that the approximate description of

Eq. (10) by the pseudo-second-order equation can
also be made (contrary to Liu and Shen’s opinion [9])
under another condition,

(18)

We integrate Eq. (10), reducing it to an expression
for a tabular integral:

We now transform it and obtain a solution in the
form

(19)

When k2qe ! k1, Eq. (19) is reduced to the relation
qt ≈ qe[1 – exp(–k1t)], an integral expression for
pseudo-first order equation (5). Using such an
approximation, we present the expression for qt as the
sum of individual integral kinetic equations:
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where qe – qe,I = qe,II, and  is
the result from integrating pseudo-second order equa-
tion dqt,II/dt = k2(qe,II – qt)2. Note that function qt can
be split into qt,I and qt,II in infinitely many ways at dif-
ferent ratios between quantities qe,I and qe,II.

Let us consider individual parts of expression (20)
in different time intervals of the kinetic process. In the
interval 0 < t ! 1/(qe – qe,I)k2, the part within the
square brackets is reduced to the expression

(21)

(since exp(–x) ≈ 1 – x when x ! 1).
Using expression (21), we can estimate characteris-

tic time t1/2 of the first of the two kinetic processes
described by sum (20):

(22)

It follows for qt,I that  or

.

The characteristic time of the second kinetic pro-
cess described by the last term of expression (20), a
pseudo-second order equation, is easy to find in the
form .

Under the accepted condition (k2qe ! k1), it is
obvious that .

To simplify further analysis, we assume that begin-
ning at a certain time exceeding the characteristic
duration of the first kinetic process ( ) (e.g.,
starting from t ≥ 1/k1), approximate equality qt,I ≈ qe,I
(the accuracy of which grows over time) is valid. We
can then write

(23)

Returning to various ways of splitting function qt into
qt,I and qt,II, we choose one that meets the condition
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Fig. 1. Integral kinetic dependences (1) t/qt,I = t/qe,I and (2)  =  +  and (3) the dependence  =  +

 for the total kinetic process qt ≈ qt,I + qt,II at t ≥ 1/k1 (left ordinate axis). The changes in the (4) theoretical and
(5) experimental errors with time (right ordinate axis). 
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Under condition (24), quantity qe,I in the numera-
tor of the last term of Eq. (21) can be ignored, since
this approximation has the maximum error at chosen
initial time t = 1/k1. Multiplying the inverse values of
the left and right sides of expression (23) by t we obtain

(25)

which, under chosen conditions (18) and (24), coin-
cides with the form of Eq. (2).

To completing this part of our analysis, let us con-
sider the validity of the above assumption qt,I ≈ qe,I.
The maximum theoretical error at initial point t = 1/k1
can be estimated in analogy with the transformation in
expression (22):

The maximum experimental error at the same point at
an average relative error of 5% in determining the con-
centration in the solution is
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at a denominator value of k2qe,II/k1 ! 1.
Our assumptions are thus within the possible

experimental error in a kinetic experiment in a con-
fined space.

Figure 1 illustrates linearized time dependences
t/qt corresponding to the pseudo-second order model
for the total kinetic process and its constituents.
Figure 1 also traces the change in the error of such an
approximation over time, relative to the change in the
possible experimental error.

Our analysis shows that under conditions (17) and
(18), the kinetic process modeled with the Langmuir
equation for a limited volume can be approximately
described by a pseudo-second order equation. For
practical purposes, condition k2qe ≤ 0.1k1 can be used
instead of (18). Note too that the above considerations
and mathematical transformations were made with no
assumptions about the mechanism of sorption and the
controlling kinetic steps.

CONCLUSIONS
Within the problem of substantiating the use of a

pseudo-second order equation for describing sorption
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176 KHAMIZOV
processes, it was shown how the kinetic Langmuir
model written for a limited volume at varying bound-
ary concentrations of the component can easily be
transformed into polynomial expression dqt/dt = k1(qe −
qt) + k2(qe − qt)2. If condition k1 ≤ 0.9k2qe or k2qe ≤
0.1k1 is satisfied, it can be reduced to a good approxi-
mation of a pseudo-second order equation. The possi-
bility of using this equation is unrelated to the kinetic
mechanism.
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