STRUCTURE OF MATTER AND QUANTUM CHEMISTRY

Experimental Spectroscopic and Theoretical Studies of New Synthesized Sulfonamide Derivatives

M. T. Bilkan^{*a*,*}, S. Alyar^{*b*}, and H. Alyar^{*a*}

^aDepartment of Physics, Faculty of Science, Çankırı Karatekin University, Çankırı, 18100 Turkey ^bDepartment of Chemistry, Faculty of Science, Çankırı Karatekin University, Çankırı, 18100 Turkey *e-mail: mtbilkan@gmail.com

Received January 21, 2019; revised April 24, 2019; accepted June 18, 2019

Abstract—In this paper, two new Schiff bases (L_1 and L_2) derived from substituted salicylaldehyde and sulfamethoxazole/sulfisoxazole were synthesized. The synthesized structures were elucidated by experimental spectroscopic methods such as FT-IR, ¹H-¹³C NMR, ¹H, and ¹³C shielding tensors, and elemental analysis. The theoretical vibrational modes and nonlinear optical (NLO) properties have been computed by DFT/B3LYP/6-311G(*d*,*p*) method. Theoretical ¹H and ¹³C shielding tensors were calculated with GIAO methods in CDCl₃ with same level of theory. The results have shown that there is perfect harmony between the calculated parameters and recorded experimental data. The first order hyperpolarizabilities of the new synthesized compounds are 201.79 and 113.14 times larger than that of urea (0.3728 × 10⁻³⁰ esu), respectively. According to evaluated results, the L₁ and L₂ present large nonlinear optical activity and are candidate molecules for nonlinear optical applications.

Keywords: sulfonamide derivatives, spectroscopic and theoretical studies, Schiff bases

DOI: 10.1134/S0036024420010045

INTRODUCTION

Sulfonamides together with various pharmacological agents with antibacterial, anti-carbonic anhydrase, diuretic, and hypoglycemic activities constitute a significant group of drugs. With the progressivity in the technology and analysis techniques, considerable influences of sulfonamides in living tissue have been elucidated. Sulfonamide and its derivatives have multifunctional chemistry and so interests are increasing has been made to synthesize the new Schiff base ligands and its complexes. [1]. The enzyme, which has the strongest inhibitory effect of sulfonamides, is known as carbonic anhydrase (CA). This enzyme is found in plants, animals and humans; it catalyzes the conversion of carbonic acid to carbon dioxide. Numerous studies have been conducted on the inhibition of carbonic anhydrase enzyme and the treatment of diseases such as diuretic, glaucoma, epilepsy, acute mountain sickness and obesity and cancer in recent vears [2–8]. Additionally, Schiff bases and complexes from commercial drugs of sulfamethoxazole and sulfoxazoline have been investigated in terms of biological activity in many studies.

In our previous papers, different sulfonamides were synthesized and antimicrobial activities of the compounds were investigated [9–12]. Moreover, structural and spectroscopic properties of methanesulfonic acid hydrazide, [13] methanesulfonic acid 1-methylhydrazide [14] and some methanesulfonylhydrazone derivatives were also studied with the conformation analysis of them [15, 16]. In this paper, two new Schiff bases compound have been synthesized since the abovementioned importance. Synthesized compounds were named as (2E)-2-[4-(dimethylamino)phenyl]-2-($\{4-1(4-methanediidy1-5-methy1-2H-1\lambda^3, 2-oxazo1-$ 2-id-3-yl)sulfamoyl]phenyl}imino)ethane-1,1-diide (L_1) and $(2E)-2-(\{4-[(3,4-dimethyl-1,2-oxazol-5$ yl)sulfamoyl]phenyl}imino)-2-[4-(dimethylamino)phenyl]ethane-1,1-diide (L_2) . They were derived from sulfamethoxazole (S1)/sulfisoxazole (S2) and substituted salicylaldehyde. Synthesized compounds have been characterized by using elemental analyses. FT-IR and ¹H-¹³C NMR methods. The theoretical vibrational modes and nonlinear optical (NLO) activity have been investigated by B3LYP/6-311G(d,p)level of theory. ¹H and ¹³C NMR calculations of the compounds were performed with GIAO/DFT/B3LYP/6-311G(d,p) methods in CDCl₃.

Compound	С, %	Н, %	N, %	S, %
L ₁ (calc.)	59.85 (59.36)	5.21 (5.24)	14.25 (14.57)	8.58 (8.34)
L ₂ (calc.)	60.85 (60.28)	5.21 (5.56)	14.25 (14.06)	8.58 (8.05)

Table 1. The C, H, N, and S analyses of the compounds

EXPERIMENTAL

Synthesis and Spectroscopic Measurements of the Compounds

The general method of synthesis of Schiff bases is as follows. To a solution of 4-dimethylaminobenzaldehyde in 20 mL super dry ethanol sulfisoxazole/sulfamethoxazole was added and was stirred at room temperature for 15 min followed by reflux for 24 h. Yelloworange precipitate appeared and was filtered, washed with ethanol (3×15 mL). The product was dried and crystallized from ethanol at. For both of the compounds, experimental mid-IR spectra were recorded on Perkin Elmer Spectrum 100 FT-IR spectrometer with ATR (Attenuated total reflection) equipment at 4000–400 cm⁻¹ region. The C, H, N, and S analyses of the compounds were done on a LECO CHNS 9320 analyzer. Elemental analysis results are presented in Table 1.

COMPUTATIONAL METHOD

The molecular geometry optimizations, nonlinear optical (NLO) activity and vibrational modes were computed by with the help of the Gaussian 09 [17] and Gaussview [18] visualization program. The 6-311G(d,p) basis set was used for the all calculations. The geometries were fully optimized without any constraint with the help of an analytical gradient procedure implemented within the Gaussian 09. The molecular structures of the compounds were given in Fig. 1. Vibrational modes and NLO activity were calculated using optimized structures. The fundamental vibrational modes were characterized by their PED (potential energy distribution) obtained by using the VEDA4 program [19]. The calculated frequencies

were scaled by 0.9668 to correct the differences between the recorded and calculated data. In the calculation to ¹H and ¹³C NMR chemical shifts in CDCl₃, the GIAO method was used.

RESULTS AND DISCUSSIONS

Conformational Analysis of the Compounds

In this study, the synthesized compounds are conformationally non-rigid molecules with internal rotation. In this case, these molecules can exist in the form of several conformers and so it is necessary to describe the conformational composition of the compounds. In Fig. 2, it is seen four stable conformers of L_1 and L_2 . The total energy calculated for the most stable structure of L_1 is -1579.1352 Hartree. For the most stable structure of L₂, the total molecular energy was calculated as -1618.4549 H. The energy differences calculated for each of the conformations are given in Fig. 2 as kcal/mol. For L_1 , the energy differences between the conformations have been calculated as 2.53, 2.55, and 4.22 kcal/mol, respectively, for L₂, as 1.87, 1.88, and 2.88 kcal/mol. The energies of the second and third conformers are quite close to each other. All calculations and investigations in the following sections of the paper are made for the most stable versions.

Vibrational Modes of the Compounds

 L_1 molecule has 47 atoms and 135 vibrational modes, L_2 has 50 atoms and 144 vibrational modes. They belongs to the point group C_1 . Experimental and simulated mid-IR spectra of the compounds were given in Figs. 2 and 3. The selected some important experimental and theoretical vibrational frequencies

Fig. 1. The molecular structures of L_1 and L_2 in vacuum.

Fig. 2. Conformational structures and energy differences of L_1 and L_2 in vacuum.

and IR intensities of the compounds were also given in Tables 2 and 3 together the with PED % assignments.

It is seen from Table 1 that both structures have N–H stretching modes. These vibrations were observed at 3282vw for L_1 and calculated at 3432 cm⁻¹. For L_2 , it was recorded at 3382 cm⁻¹ and calculated at 3454 cm⁻¹. The main reason for the differences between the calculated and experimental results for both structures is that the calculations are made for a single molecule isolated in the gas phase but the experimental measurements are made in the solid phase and there are too many intermolecular interactions [20].

C–H stretching modes were observed between $2860-3150 \text{ cm}^{-1}$ in experimental IR spectra for both structures and these modes were calculated between $2890-3156 \text{ cm}^{-1}$ in accordance with experimental results. C–C and C=C stretching vibrations were calculated in the range of $1530-1627 \text{ cm}^{-1}$. These modes are in the range of $1530-1650 \text{ cm}^{-1}$ in the experimental spectra. In the literature, these bands are observed between 1400 and 1625 cm⁻¹ [21]. These modes are

supported by the literature. In previous studies performed, S-O stretching modes have been shown in the range of $1100-1150 \text{ cm}^{-1}$ [22]. In this study, while the S–O stretching mode of L₁ was calculated as two bands in 1117 and 1126 cm⁻¹, this mode was calculated as overlapped in 1262 cm⁻¹ for L₂. We think that the reason for differences between calculated modes for the two structures is that the placement and position of the isoxazole ring of L_2 are different from that of L_1 . Because of this position difference, intermolecular interactions are different for both samples and there are serious differences between the vibration modes. The other important stretching vibrational modes are the N-C stretchings. N-C stretching modes for L₁ were calculated alone at 1627 and 1340 cm⁻¹. In addition, they were calculated at 1600, 1510, and 1486 cm^{-1} in combination with C-C and H-C-C vibrations. In the experimental spectrum, respectively, 1615w, 1333m, 1602w, 1509m, and 1492m were labeled. L₂ for, these modes were calculated alone at 1344 cm⁻¹ and were calculated at 1627, 1562 cm^{-1} with the com-

Fig. 3. (a, c) Experimental and (b, d) calculated mid-IR spectra of L_1 (a, b) and of L_2 (c, d).

Fig. 4. (a, c) 1 H NMR of L₁ (a), L₂ (c); (b, d) 13 C NMR of L₁ (b), L₂ (d).

binations of C–C. These bands were observed at 1336s, 1650m, and 1578m in the experimental spectrum. It is also seen from the table that all of the stretching, bending and torsional modes calculated are good agreement with experimental results.

NMR Studies

The NMR spectra (${}^{1}H^{-13}C$) of L_{1} and L_{2} were measured and interpreted in DMSO. Theoretical NMR calculations were performed with B3LYP/6-

EXPERIMENTAL SPECTROSCOPIC AND THEORETICAL STUDIES

DFT/B		B3LYP				DFT/B3LYP		_		
Mode	ν	I _{IR}	Exp.	PED, %	Mode	ν	I _{IR}	Exp.	PED, %	
31	420	3.20	407vw	$\delta_{\rm CNC}(13)$	81	1153	43.02	1151sh	$\Gamma_{\rm HCNC}(10)$	
34	456	30.57	430w	$\Gamma_{\text{HNCC}}(41) + \delta_{\text{OSO}}(18)$	82	1158	25.16	1157vs	δ _{HCC} (21)	
36	486	8.38	470vw	$\delta_{\rm NCC}(10)$	83	1172	17.70	1182m	$V_{OC}(28) + \delta_{HCC}(27)$	
37	512	6.56	501m	$\delta_{\rm CNC}(26)$	85	1225	7.42	1207vw	$V_{\rm NC}(36) + V_{\rm CC}(18)$	
38	521	11.05	524w	$\Gamma_{\rm NCCC}(21) + \Gamma_{\rm CCCC}(15)$	86	1228	0.35	1226vw	$V_{OC}(24) + \delta_{HNC}(14) + \delta_{ONC}(13)$	
39	531	15.94	535w	$\Gamma_{\rm NNCC}(16) + \Gamma_{\rm NCCC}(11)$	87	1238	1.58	1249w	$\delta_{\text{HCN}}(21) + V_{\text{CC}}(20) + V_{\text{NC}}(13)$	
40	592	2.40	567vs	V _{SO} (17)	88	1267	0.97	1267vw	V _{CC} (65)	
41	598	25.01	588vs	$V_{SO}(23) + \delta_{SOC}(13)$	90	1297	11.15	1287vw	$\delta_{\text{HCC}}(46) + V_{\text{CC}}(12)$	
44	634	2.20	638vw	$V_{\rm CC}(37) + \delta_{\rm CCO}(18)$	91	1301	6.28	1305w	$\delta_{\text{HNC}}(40) + \delta_{\text{HCC}}(16) + \delta_{\text{CCO}}(10)$	
45	635	0.33	656vw	$\delta_{\text{CCC}}(18)$	92	1318	2.69	1321m	V _{CC} (24)	
46	682	0.60	683w	$\Gamma_{\text{CONC}}(37) + \Gamma_{\text{CCON}}(21) + \Gamma_{\text{ONCN}}(13)$	93	1340	78.73	1333m	V _{NC} (37)	
49	724	2.44	721vw	$\Gamma_{\text{CCCC}}(22)$	94	1361	2.53	1371 m	$\delta_{\text{HCN}}(54)$	
50	760	7.85	740vw	$\Gamma_{\rm HCCC}(77)$	98	1421	7.61	1413w	$V_{CC}(35) + \delta_{HCC}(13)$	
51	771	5.42	772sh	$V_{ON}(11) + \Gamma_{ONOS}(11) + V_{NC}(10)$	100	1433	16.08	1417w	δ _{HCH} (56)	
52	781	25.05	775w	$V_{OC}(20) + \delta_{CCC}(14)$	104	1450	47.71	1440w	$\delta_{ONC}(15) + \delta_{HNC}(15) + V_{NC}(12)$	
53	785	4.17	782w	$V_{SN}(42) + \delta_{ONC}(18)$	105	1468	0.45	1461w	$\delta_{\rm HCH}(54)$	
56	809	6.13	808w	$\Gamma_{\rm HCCC}(59) + \Gamma_{\rm HCCN}(13)$	106	1473	55.09	1476sh	$\delta_{\text{HCC}}(56)$	
57	828	6.89	823s	V _{CC} (14)	108	1486	7.26	1492m	$V_{NC}(67) + V_{CC}(13)$	
58	834	12.60	836m	$\Gamma_{\rm HCCC}(22) + \delta_{\rm CCC}(10)$	109	1510	48.95	1509m	$V_{NC}(16) + \delta_{HCC}(11)$	
59	873	4.18	872m	$V_{CC}(16) + \delta_{CCN}(14) + \delta_{CNC}(11)$	110	1533	22.96	1533m	$V_{CC}(21) + \delta_{CCC}(10)$	
60	907	3.41	896vw	$V_{ON}(46) + \delta_{CCO}(15)$	112	1573	53.25	1538m	V _{CC} (30)	
62	931	5.72	924w	V _{NC} (47)	113	1597	100.00	1566m	V _{CC} (30)	
64	946	0.11	947w	$\Gamma_{\rm HCCC}(80)$	114	1600	24.80	1602w	$V_{CC}(53) + V_{NC}(17)$	
67	977	2.09	975vw	$\begin{array}{l} \delta_{\rm CON}(27) + \Gamma_{\rm HCCC}(21) \\ + V_{\rm ON}(16) \end{array}$	115	1627	19.80	1615w	V _{NC} (58)	
70	996	1.12	995m	$V_{CC}(23) + \Gamma_{HCCC}(23) + V_{CC}(15)$	117	2890	25.76	2860vw	V _{CH} (96)	
71	1024	2.72	1030w	$V_{OC}(33) + \delta_{CCO}(25) + V_{NC}(13)$	119	2939	4.02	2917vw	V _{CH} (100)	
73	1044	5.13	1068w	$\Gamma_{\rm HCNC}(52) + V_{\rm NC}(32)$	126	3051	2.24	3043vw	V _{CH} (97)	
74	1083	2.89	1087m	$\delta_{\text{HCC}}(55) + V_{\text{CC}}(13)$	131	3094	1.15	3086vw	V _{CH} (99)	
77	1110	3.36	1117sh	$V_{SO}(52) + \delta_{HCC}(20)$	133	3104	3.53	3120vw	V _{CH} (87)	
79	1132	37.52	1126m	$V_{SO}(29) + \delta_{HCC}(26)$	134	3156	0.06	3143vw	V _{CH} (99)	
80	1140	25.02	1142sh	$\delta_{\text{HCC}}(43)$	135	3432	10.13	3282vw	V _{NH} (100)	

Table 2. Selected experimental and calculated vibrational modes of L_1 (v, cm⁻¹)

Table 3. Selected experimental and calculated vibrational modes of L_2 (v, cm⁻¹)

N 1	DFT/I	DFT/B3LYP			Mada	DFT/B3LYP		F		
Mode	ν	I _{IR}	Exp.	PED, %	Mode	ν	I _{IR}	Exp.	FED, 70	
33	408	0.10	414vw	$\Gamma_{\rm HCCC}(72)$	82	1112	0.77	1112s	$\delta_{\text{HCC}}(39) + V_{\text{CC}}(26)$	
34	419	0.59	430vw	$\Gamma_{\text{HCCC}}(15) + \delta_{\text{HCC}}(14)$	83	1147	25.64	1132vs	V _{CC} (43)	
35	424	0.16	438w	$\Gamma_{\text{HCCC}}(55)$	84	1151	11.49		$\delta_{\text{HCC}}(23)$	
36	460	0.15	472m	$\delta_{\text{HCC}}(41)$	86	1160	13.33	1167s	$\delta_{\text{HCC}}(52) + V_{\text{CC}}(10)$	
37	476	1.75	477sh	$\delta_{\text{HCC}}(21)$	87	1193	4.48	1192m	$\delta_{\text{HCC}}(20) + V_{\text{CC}}(15)$	
39	509	3.70	509sh	$\delta_{\text{HCC}}(23)$	88	1226	4.17	1228w	$V_{CC}(56) + \delta_{HCN}(12)$	
40	519	2.78	518sh	$\delta_{\text{HCC}}(30) + \Gamma_{\text{HCCC}}(10)$	90	1262	7.30	1265s	V _{SO} (68)	
41	524	0.89	530m	$\Gamma_{\text{HCCC}}(52)$	94	1298	6.72	1301sh	$\delta_{\text{HCC}}(38) + V_{\text{CC}}(10)$	
42	555	9.55	556sh	$\Gamma_{\text{HCCC}}(23)$	95	1321	1.63	1317s	V _{CC} (40)	
43	557	21.43	576vs	$\delta_{\text{HCC}}(33)$	97	1344	50.78	1336s	V _{NC} (38)	
44	588	2.95	592s	V _{CC} (10)	98	1363	0.95	1362s	$\delta_{\text{HCC}}(38)$	
45	622	0.03	618w	$\delta_{\text{HCC}}(57)$	102	1402	1.16	1395s	$\delta_{\text{HCN}}(47) + \delta_{\text{HCH}}(29)$	
46	630	0.06	626w	$\delta_{\text{HCC}}(27)$	104	1423	6.67	1426s	$V_{CC}(22) + \delta_{HCN}(13) + \delta_{HCC}(13)$	
47	634	1.00	640w	$\delta_{\text{HCC}}(32)$	109	1443	3.61	1435s	$\delta_{\text{HCC}}(58)$	
49	680	3.58	673sh	$\delta_{\text{HCC}}(12) + \Gamma_{\text{HNSC}}(11) \\ + \Gamma_{\text{HNCC}}(10)$	112	1465	6.22	1456s	$\delta_{\text{HCC}}(36) + _{\text{VCC}}(12)$	
50	687	22.00	682s	V _{CC} (56)	114	1482	9.52	1474s	$\delta_{\text{HCC}}(67)$	
51	700	1.15	703w	$\Gamma_{\rm HNSC}(23)$	117	1531	25.40	1549s	V _{CC} (48)	
52	721	0.09	717m	$\Gamma_{\text{HCCC}}(69)$	119	1562	100.00	1578s	$V_{CC}(57) + V_{NC}(18)$	
53	725	0.34	731m	$V_{CC}(29) + \delta_{HCC}(12)$	120	1596	51.34	1604vs	$V_{CC}(58) + \delta_{HCC}(11)$	
54	782	10.90	741m	$\delta_{\rm HNS}(30)$	121	1625	16.32	1650m	V _{CC} (63)	
56	793	13.85	783sh	$V_{CC}(30) + \delta_{\rm HCH}(16)$	122	1627	9.66		$V_{CC}(21) + V_{NC}(19)$	
58	808	3.85	803m	$\Gamma_{\rm HCCC}(13)$	124	2897	10.92	2859w	V _{CH} (79)	
59	819	6.34	821sh	$V_{CC}(39) + \delta_{HCC}(10)$	126	2921	3.80	2914vw	V _{CH} (97)	
60	821	4.69	828s	$\Gamma_{\text{HCCC}}(21) + \Gamma_{\text{HCCN}}(15)$	127	2932	2.46	2930vw	V _{CH} (100)	
61	869	5.79	882m	$\delta_{\text{HCC}}(46)$	130	2970	1.79	2971vw	V _{CH} (97)	
62	908	2.65	907w	V _{CC} (47)	135	3034	5.02	3013vw	V _{CH} (94)	
64	931	2.64	927m	V _{CC} (45)	140	3097	0.13	3042vw	V _{CH} (99)	
69	977	3.52	980m	$\Gamma_{\rm HCCC}(42) + \Gamma_{\rm HCNC}(37)$	141	3105	1.32	3062vw	V _{CH} (95)	
73	1018	0.19	1010m	δ _{HCC} (69)	142	3107	1.81	3080vw	V _{CH} (99)	
74	1038	0.10	1030m	$V_{CC}(48) + \delta_{HCC}(11)$	143	3108	0.07	3117vw	V _{CH} (94)	
77	1086	26.79	1067sh	V _{CC} (59)	144	3454	5.90	3382vw	V _{NH} (100)	
79	1098	36.38	1085vs	$\delta_{\text{HNS}}(46)$						

311G(d,p) level of theory in DMSO phase. Isotropic shielding tensors of ¹³C were changed into chemical shifts by using a linear relationship suggested by Blanco et al. [23]. A similar relationship proposed by

Silva et al. [24] was used to obtain chemical shifts for ¹H. The computed chemical shift values fit well with experimental values. The experimental and calculated chemical shift values are shown in Table 4. The ¹³C

	L ₁		L ₂			L ₁		L ₂	
	δ(exp.)	δ(calc.)	δ(exp.)	δ(calc.)		δ(exp.)	δ(calc.)	δ(exp.)	δ(calc.)
C1	10.76(CH ₃)	10.90	10.56	10.67	C19-20	19.00(NCH ₃)	19.22	12.48	12.78
C2	161.63	161.28	162.75	162.83	H1	1.63	1.77	2.28	2.19
C3	129.12	129.33	121.97	121.76	H4	1.04	1.07	_	_
C4	6.26(CH ₃)	6.11	—	_	H3	6.05	6.11	6.06	6.03
C5	161.64	161.26	154.66	154.38	NCH ₃	3.025	3.64	3.02	3.02
C6	154.66	154.02	153.72	154.21	NCH ₃	2.95	2.76	2.98	2.91
C7	124.12	124.66	123.61	123.36	H7	6.77	6.89	7.44	7.48
C8	113.08	112.87	124.98	124.44	H8	7.31	7.18	7.79	7.68
C9	111.32	111.51	95.73	96.21	Н9	7.34	7.51	6.77	6.82
C10	124.12	124.16	113.09	112.08	H10	7.67	7.44	6.13	6.09
C11	156.73	156.28	158.39	158.14	H12	8.41	8.78	8.38	8.45
C12	190.30(CN=N)	190.44	190.30	191.27	H15–H16	6.26	6.26	7.73	7.63
C13	104.71	103.18	111.87	111.43	H17–H16	6.57	6.43	6.06	6.05
C14–C15	131.99	132.23	131.98	131.30	H18	7.75	7.96	—	_
C16-C17	129.12	128.59	95.86	95.48	NH	9.65	9.47	11.32	10.88
C18	104.71	104.68	129.57	129.88					

Table 4. The experimental and theoretical ¹H and ¹³C NMR chemical shifts (δ , ppm) for ligands

NMR and ¹H NMR spectrums of the Schiff bases in DMSO are given in Fig. 4.

In the ¹H NMR spectrum of L₁; H1, H4, H12, and N(CH₃)₂ protons appeared at 1.63, 1.04, 8.41, and 3.83–2.95 ppm were calculated at 1.77, 1.07, 8.78, and 3.64–2.76 ppm. A signal were also observed at δ = 9.65 ppm of the N–H-group (calculated at 9.47 ppm). Signals in the range of δ = 6.26–7.75 ppm region belong to aromatic Ar–H protons. In ¹³C-NMR spectra of L₁; C1, C4, C12, and N(CH₃)₂ carbon signals are assigned at 10.76, 6.26, 190.30, and 19.00 ppm (calculated 10.90, 6.11, 190.44, and 19.22 ppm), respectively. Signals in the range of δ = 104.70–162.36 ppm region belong to aromatic Ar–C carbons.

In the ¹H NMR spectrum of L₂; H1, H12, and N(CH₃)₂ protons appeared at 2.28, 8.38, and 3.02–2.89 ppm were calculated at 2.19, 8.38, and 3.02–2.91 ppm. A signal were also observed at $\delta = 11.32$ ppm of the of the N–H-group (calculated at 10.88 ppm). Signals in the range of $\delta = 6.06-7.79$ ppm region belong to aromatic Ar–H protons. In ¹³C-NMR spectra of L₂; C1, C12, and N(CH₃)₂ carbon signals are assigned at 10.56, 190.30, and 12.48 ppm (calculated 10.67, 191.27, and 12.78 ppm), respectively. Signals in the range of $\delta = 95.73-162.75$ ppm region belong to aromatic Ar–C carbons.

Nonlinear Optical Properties (NLO)

The optical properties of matter can be expressed as the response of the electrons to the electric field. As it is known, the electric field component of the light sent to the material poles that substance. The polarity of an atom or molecule is a measure of how easily the nucleus and electrons can shift from their equilibrium states. The reaction of an isolated molecule against an applied external electric field results in a reshaping of the dipole moment of the molecule:

$$\mu_{t} = \mu_{0} + \alpha_{ij}E_{i} + \beta_{ijk}E_{i}E_{j} + \dots, \qquad (1)$$

where μ is called the permanent dipole moment of the molecule, α is the linear polarizability, β_{ijk} is first order hyperpolarizability tensor components. First order hyperpolarizability is quantities that affect the nonlinear optical performance of matter. The mean polarizability $\langle \alpha \rangle$ is defined as [25]:

$$\langle \alpha \rangle = 1/3(\alpha_{xx} + \alpha_{yy} + \alpha_{zz}). \tag{2}$$

The calculation of first order hyperpolarizability from output given as follows [26]:

$$\beta_{\text{tot}} = [(\beta_{xxx} + \beta_{xyy} + \beta_{xzz})^2 + (\beta_{yyy} + \beta_{yzz} + \beta_{yxx})^2 + (\beta_{zzz} + \beta_{zxx} + \beta_{zyy})^2]^{1/2}.$$
(3)

Parameter	L ₁	L ₂	Parameter	L ₁	L ₂
μ_x	-6.3783	2.4938	β_{xxx}	76964.76	-43518.13
μ_{y}	3.1339	4.8305	β_{xxy}	-12207.33	-9129.41
μ_z	-2.4890	-0.1934	β_{xyy}	242.76	714.90
Μ	7.5299	5.4396	β_{yyy}	1687.08	518.10
α_{xx}	87.14	82.63	β_{xxz}	-138.66	2142.63
α_{xy}	-4.40	4.37	β_{xyz}	190.58	280.17
α_{yy}	35.88	39.65	β_{yyz}	264.71	183.84
α_{xz}	1.17	1.40	β_{xzz}	-2599.48	1613.56
α_{yz}	2.09	2.42	β_{yzz}	898.14	164.50
α_{zz}	35.78	31.31	β_{zzz}	-914.21	1092.27
$\langle \alpha \rangle$	52.93	51.19	β_{tot}	75230.07	42185.70

Table 5. The electric dipole moment (μ , D), the mean polarizability ($\langle \alpha \rangle \times 10^{24}$, esu) and the first hyperpolarizability ($\beta_{tot} \times 10^{33}$, esu) of L₁ and L₂

 α : 1 a.u. = 0.1482 × 10⁻²⁴ esu.

 β : 1 a.u. = 8.6393 × 10⁻³³ esu.

The calculated dipole moment μ , mean polarizability $\langle \alpha \rangle$, first order hyperpolarizability β_{tot} are reported in the Table 5.

First order hyperpolarizability of L_1 and L_2 was computed to be 75.23 × 10⁻³⁰ and 42.18 × 10⁻³⁰ esu, respectively. Urea is reference molecule for classification of good NLO organic molecules. It found that, the first order hyperpolarizabilities of L_1 and L_2 are 201.79 and 113.14 times larger than that of urea (0.3728 × 10⁻³⁰ esu), respectively. According to evaluated results, the L_1 and L_2 present large nonlinear optical activity and are candidate molecules for nonlinear optical applications.

CONCLUSION

As a result of this study, the following decisions were obtained. Two new Schiff bases compounds L₁ and L₂ were synthesized and their structures were elucidated using elemental analysis and spectroscopic methods. Estimated structures of synthesized compounds were drawn in 3D and optimizations were performed. Based on optimized structures, theoretical vibrational modes, ¹H and ¹³C NMR and NLO calculations were done. The all calculated parameters were compared with the experimental ones and the structures of the compounds have clarified. Intermolecular hydrogen bond interactions causes serious differences between calculated and experimental N-H stretching vibrational modes. The first order hyperpolarizabilities of L_1 and L_2 are 201.79 and 113.14 times larger than that of urea (0.3728 \times 10⁻³⁰ esu). The compounds present large nonlinear optical activity.

REFERENCES

- Z. H. Chohan, H. A. Shad, and F. H. Nasim, Appl. Organomet. Chem. 23, 319 (2009).
- 2. A. E. Boyd, Diabetes. 37, 847 (1988).
- R. Kasımogulları, M. Bülbül, et al., Eur. J. Med. Chem. 45, 4769 (2010).
- 4. L. de Luca, S. Ferro, F. M. Damiano, et al., Eur. J. Med. Chem. **71**, 105 (2014).
- A. D. Wright, M. H. Winterborn, P. J. Forster, J. P. Delamere, G. L. Harrison, and A. R. Bradwell, J. Wilderness Med. 5, 49 (1994).
- L. Sun, Y. Wu, Y. Liu, X. Chen, and L. Hu, Bioorg. Med. Chem. Lett. 27, 261 (2017).
- H. Yoshino, N. Ueda, et al., J. Med. Chem. 35, 2496 (1992).
- 8. C. T. Supuran, Expert Opin. Drug Disc. 12, 61 (2017).
- 9. N. Özbek, H. Katırcıoglu, N. Karacan, and T. Baykal, Bioorg. Med. Chem. **15**, 5105 (2007).
- 10. N. Özbek, S. Alyar, H. Alyar, E. Sahin, and N. Karacan, Spectrochim. Acta, Part A **108**, 123 (2013).
- 11. F. Akyıldız, S. Alyar, M. T. Bilkan, and H. Alyar, J. Mol. Struct. **1174**, 160 (2018).
- 12. S. Alyar, T. Şen, Ü. Ö. Özmen, H. Alyar, S. Adem, and C. Şen, J. Mol. Struct. **1185**, 416 (2019).
- U. Özdemir, N. Karacan, O.S. Senturk, S. Sert, and F. Uğur, Synth. React. Inorg. Metal.-Org. Chem. 34, 1057 (2004).
- 14. N. Özbek, S. Alyar, and N. Karacan, J. Mol. Struct. **938**, 48 (2009).
- A.B. Gündüzalp, Ü. Ö. Özmen, et al., Med. Chem. Res. 23, 3255 (2014).

- N. Özbek, G. Kavak, Y. Özcan, S. Ide, and N. Karacan, J. Mol. Struct. 919, 154 (2009).
- 17. M. J. Frisch et al., *Gaussian 09, Revision B.01* (Gaussian Inc., C.T. Wallingford, 2009).
- 18. R. D. Dennington, T. A. Keith, and J. M. Millam, *GaussView 5* (Gaussian, Inc., 2008).
- 19. M. H. Jamróz, *Vibrational Energy Distribution Analysis* (VEDA 4, Warsaw, 2004).
- 20. M. T. Bilkan, J. Mol. Liq. 238, 523 (2017).
- 21. M. T. Bilkan, Russ. J. Phys. Chem. A 92, 1920 (2018).

- 22. A. Mahmood, T. Akram, and E. B. de Lima, J. Mol. Struct. **1108**, 496 (2016).
- 23. F. Blanco, I. Alkorta, and J. Elguero, Magn. Reson. Chem. 45, 797 (2007).
- A. M. S. Silva, R. M. S. Sousa, M. L. Jimeno, F. Blanco, I. Alkorta, and J. Elguero, Magn. Reson. Chem. 46, 859 (2008).
- 25. H. Soscun, O. Castellano, et al., J. Mol. Struct.: THEOCHEM **592**, 19 (2002).
- 26. K. S. Thanthiriwatte and K. M. Nalin de Silva, J. Mol. Struct.: THEOCHEM **617**, 169 (2002).