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Abstract—An analysis is presented of one of the key concepts of physical chemistry of condensed phases:
the theory self-consistency in describing the rates of elementary stages of reversible processes and the equi-
librium distribution of components in a reaction mixture. It posits that by equating the rates of forward and
backward reactions, we must obtain the same equation for the equilibrium distribution of reaction mixture
components, which follows directly from deducing the equation in equilibrium theory. Ideal reaction sys-
tems always have this property, since the theory is of a one-particle character. Problems arise in considering
interparticle interactions responsible for the nonideal behavior of real systems. The Eyring and Temkin
approaches to describing nonideal reaction systems are compared. Conditions for the self-consistency of
the theory for mono- and bimolecular processes in different types of interparticle potentials, the degree of
deviation from the equilibrium state, allowing for the internal motions of molecules in condensed phases,
and the electronic polarization of the reagent environment are considered within the lattice gas model. The
inapplicability of the concept of an activated complex coefficient for reaching self-consistency is demon-
strated. It is also shown that one-particle approximations for considering intermolecular interactions do
not provide a theory of self-consistency for condensed phases. We must at a minimum consider short-range
order correlations.
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INTRODUCTION
Upon moving from equilibrium to nonequilibrium

thermodynamics for macroscopic unit volumes dV,
the condition of local equilibrium must be fulfilled
and the combined equation of equilibrium thermody-
namics dU = TdS − PdV mist be written in the form
dU ≤ TdS − PdV [1–9]. Here, all of the initial state-
ments of equilibrium thermodynamics are transferred
to nonequilibrium processes. To discuss classical ther-
modynamics from a single point of view, it is logical to
consider both types of processes together. The initial
statements of classical thermodynamics were therefore
supplemented by two refinements in [10]. They were
implicitly introduced earlier, but it is essential they be
refined for a clearer combined consideration of equi-
librium and nonequilibrium processes.

Refinement 1. The need for a self-consistent descrip-
tion of the kinetics and equilibrium state of a system.
Refinement 1 is implied in the second law of thermo-
dynamics in discussing the possibility for the system to
leave and return to the equilibrium state [1–9]. It is
also a prerequisite for introducing the concept of

affinity in chemical thermodynamics, which is valid in
both equilibrium and nonequilibrium states [2, 4]. It
also underlies introduction of the concept of thermo-
dynamic functions in nonequilibrium states [6], since
when a system transitions to an equilibrium state,
these functions are automatically transformed into its
equilibrium functions.

Refinement 2. The need to consider distinctions
between characteristic relaxation times τ in the transfer
of different properties: impulse (τimp), energy (τener), and
mass (τmass). Refinement 2 reflects the experience
from experimental studies of dynamic processes near
equilibrium and is required for considering relaxation
processes in real systems [5, 11].

Refinement 1 is needed to introduce unified unit
volume dV in equilibrium and nonequilibrium ther-
modynamics, and as a criterion for the correct deriva-
tion of molecular models of kinetic stages and elemen-
tary stages. The value of dV was determined in [12]. In
this work, we discuss which models and chemical
kinetics equations ensure the self-consistent descrip-
tion of elementary stages in nonequilibrium processes
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1116 TOVBIN
within the microscopic theory for three aggregate
states. With equality of rates of reversible reactions in
the forward and backward directions, these models
should yield the same expressions for equilibrium con-
stants as those for the equilibrium constants within
equilibrium distributions. The rates of mass evolution
processes are slowest among the three abovemen-
tioned properties in Refinement 2, and the possibility
of establishing complete equilibrium in a system
depends on them.

The concept of a self-consistent description of
dynamics and equilibrium states has long been known
for ideal reaction systems: It is the law of mass action,
which was substantiated for ideal gas mixtures and
diluted solutions. For ideal systems, the following
expression for the chemical potential can be written

, where and ci are the chemical
potential for the standard state and the bulk molar
concentration of the i component. The equilibrium
constant is then found from the condition

The collision model was first used to calculate the
stage rate constants, but was later replaced by the abso-
lute reaction rate theory (ARRT) [13, 14].

For ideal reaction systems, the rates of elementary
stages of mono- and bimolecular reactions are
described within the law of mass action:

(1)

where Ki and Kij are the rate constants of elementary
processes (stages) that characterize the specific rates
of elementary processes:

(2)

where  and  are the preexponentials of rate con-
stants,  and  are the energies of activation of the
reaction i → product and i + j → products; Fi and Fj
are the statistical sums (the sums over internal states)
of the initial molecules; and  and  are the statis-
tical sums of the activated complex (AC), calculated
over all degrees of freedom except the reaction path.

Let us recall that the self-consistency principle was
used in Langmuir’s work [15] to obtain an adsorption
isotherm from the condition of equality of adsorption
and desorption rates. A statistical derivation of the
Langmuir isotherm was first made by Temkin [16] and
later repeated by Fowler [17]. The authors of the BET
isotherm [18] followed in the same way. In the kinetic
theory of rarefied gases, the requirement for consis-
tency of new equations developed in gas kinetics with
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the equations of the equilibrium state of gases is one of
its necessary elements [19, 20]. This essential stage was
missing from the kinetic theory of condensed phases
because (1) in deriving kinetic equations, the principle
of detailed equilibrium is assumed from the very
beginning (but not checked to what degree it is ful-
filled after all averaging procedures) and (2) there are
no equations of states for comparison.

Non-ideal systems. In a great many experimental
systems, the reaction systems cannot be considered to
be ideal, and the problem arises of how stage rates can
be calculated. Eyring and Temkin proposed two
approaches:

According to Eyring’s ARRT [14, 21–23], inter-
molecular interactions in non-ideal reaction systems
are considered using thermodynamic relationships
known from the theory of non-ideal solutions [4]. This
approach is associated with maintaining the concen-
tration factor used as the law of mass action (through
the reagent concentration product) in the expression
for reaction rates as in formula (1), and with a change
in the reaction rate constants in the form

(3)

where  is the activity coefficient of i-sort molecules,
 and  are the AC activity coefficients at mono-

and bimolecular stages; constants  and  are given
in (2). As usual, the activity coefficient is defined
through the relation , where  is the activity
of the i component in solution, which depends on all
concentrations of solution components (under the
definition of the total concentration as ) and
their molecular properties, including their energies of
intermolecular interaction.

This means a coefficient of activity analogous to
the one for an ordinary solution component is intro-
duced for AC, and we are able to consider the transi-
tion from the gas phase to the condensed phase. The
internal contradictions of this approach are due to the
ai value depending on all concentrations of solution
components and their molecular properties. The rate
constant is thus related to all physicochemical proper-
ties of the reaction system through the activity coeffi-
cients. However,  cannot be always determined and
substantiated. To derive it, we need to average all
neighboring molecules over all possible states, and a
change in a neighbor alters the conditions of the path
of the reaction, which contradicts the concept of the
transition state the AC is in. The Eyring interpretation
has been widely used in calculating liquid phase reac-
tion rates [21–23].

Temkin’s point of view was different [24–26]. He
argued it was necessary to directly consider interparti-
cle interactions and their effect on the elementary
stage rate, through (among other things) the interac-
tion with the AC stage (the history of considering the
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SELF-CONSISTENCY OF THE THEORY OF ELEMENTARY STAGE RATES 1117
non-ideality of reaction systems was presented in
detail in [27]). Temkin demonstrated this using the
example of heterogeneous reactions [25] at ambient
pressures, and he illustrated it vividly by describing the
synthesis of ammonia at elevated pressures (above 300
atm) [26]. For high pressures in the gas phase, the
pressures themselves must be replaced with volatilities,
and the rate constants in the elementary reaction rates
must be modified by considering the effect the shift in
adsorption equilibrium has on the catalyst’s surfaces.
In [26], this was done by indirectly considering a
change in the equation of state of the adsorbed layer
(through the introduction of effective energies of acti-
vation associated with the non-ideality of the adsorp-
tion layer and its compressibility), but without intro-
ducing the concept of an AC activity coefficient. This
approach was later developed as an elaboration of the
theory of non-ideal reaction systems [28], which is
applicable to all three aggregate states of matter [27–
30]. This concept is related to the representation of a
rapid overcoming of the AC barrier.

The molecular-kinetic theory for the three aggre-
gate states is based on multiparticle distribution func-
tions introduced by Bogolyubov in [31]. It reflects the
discrete spatial distribution of molecules on the scale
of their size as they form cells, and a continuum
description of the molecular distribution inside cells
with volume v0. This theory can be applied to matter in
three aggregate states, so only it provides equally accu-
rate descriptions of three interfaces. The principles of
this theory have been published a number of times
[27–30] and are therefore omitted here.

Reduced system of kinetic equations. Below, we pres-
ent a set of kinetic equations of the discrete continuum
(Master Equation) approach, obtained after averaging
the kinetic equations in the full Liouville phase space
over the thermal rates of all components [19, 20, 30,
31] and contains expressions for elementary stage rates
α (where α is the number of the process stage) in their
right sides. This set consists of equations for the local
concentrations of components (reagent and solvent
molecules)  (characterizing the molar fraction of
f-type sites occupied by i-sort particles) and the equa-
tions for pair distribution functions (DFs)  char-
acterizing the probability of a pair of i and j particles
being at distance r at f and g sites [27–30]. Particle
concentration ci is related to numerical density  (or
the molar fraction of the i component on the surface or
in the bulk) as . The closed system of equa-
tions can be written as

(4)
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(5)

where  denotes the rates of elementary one-site

processes i ↔ b at an f site, and  are the rates
of elementary two-site processes i + jα ↔ b + dα at f
and g sites at distance r. Equations (5) contain

 and  summands that corre-
spond respectively to one- (i ↔ b) and two-site
(i + m ↔ b + c) reactions of an i particle in the pres-
ence of neighboring j particles. A j particle does not
react itself, but it does alter the activation barrier for
the interacting i particle in the one-site process or the
reacting i and m particles in the two-site process. The
second summand in  describes stage i + m ↔ b +
c at neighboring f and h sites at distance r.

The right sides of Eqs. (4) and (5) contain the ele-
mentary stage rates of the chemical transformation
and the average rates of the thermal translational and
rotational motions of molecules. They describe the
system’s dynamics at the molecular level. Expressions
for the rates of elementary processes are written below
in the quasi-chemical approximation (QCA) for con-
sidering the interactions through unary and pair DFs.
The set of equations (4) and (5) describes a wide spec-
trum of non-equilibrium states of reaction systems.
Here, these equations are given to illustrate that
despite any degree of a system’s nonequilibrium,
expressions for elementary reaction rates must always
be consistent with its equilibrium state.

Rapid Overcoming of the Barrier

In the molecular theory of non-ideal reaction sys-
tems, we must consider the entire spectrum of config-
urations of neighboring molecules that could affect
the course of a reaction for reagents at the central sites
under study, and weight the probability of an elemen-
tary stage occurring for each configuration of neigh-
bors on the surface [27–30]. Lateral contributions
affect the probability of AC formation via a change in
the energy of activation, so the number of neighbors
and their arrangement are important for the process
rate. Figure 1 presents the entire spectrum of configu-
rations of А particles in the first coordination sphere
around a central (not shown) particle on lattices z = 4
and 6: А are blackened circles; the other sites of the
first coordination sphere are vacant (or occupied by
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1118 TOVBIN

Fig. 1. Configurations of А particles in the first coordina-
tion sphere around a central particle on lattices z = 4 and
6. Black dots are adsorbed А particles; n is the number of А
particles; σ(n) is the type of configuration at a fixed n
value; R = 1 [27–30].
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Fig. 2. Schemes of approximate calculations of multiparti-
cle configurations of neighboring molecules for lattice z =
6: 1 is the mean field and chaotic approximations (through
the concentrations of all molecules); 2 is the polynomial
approximation (through the concentrations of the neigh-
boring molecules); 3 is the QCA (through the probabilities
of pairs of molecules); 4 is considering indirect correla-
tions in the QCA and triple correlations (through the prob-
abilities of triples of molecules) [27–30].
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particle V). Symbol θi(nσ) denotes the probability that
n particles А with arrangement σ are in the first coor-
dination sphere of the central i-sort particle; i = A
and V.

Lateral interactions are almost always considered
approximately (Fig. 2). The first variant of the approx-
imation corresponds to mean field and chaotic
approximations when the probability of a multiparticle
configuration is expressed through the product of
probabilities of a site being occupied by i sort particles
θi (or through unary DFs). In this approximation,
there are no correlations, and the particle arrangement
indicated by σ plays no role.

The second variant of the approximation is also
one-particle. In it, the multiparticle configuration of
the neighbors around the central particle is approxi-
mated by the product of unary DFs (a polynomial
approximation). A distinction from the first way of
disengagement is that the correlations between the
central particle and its nearest neighbor are preserved
in it.

The third variant of the approximation is that the
probabilities of multiparticle configurations θi(nσ) are
approximated by local probabilities θi of detecting i
particles (unary DFs) and pair DFs θij. This is the so-
called Guggenheim QCA [32] or the Bethe approxi-
mation [33]. The correlation effect is explicitly consid-
ered through pair DF θij. Here, the weights of config-
urations with different σ values (at n = const) are
equally probable, or σ does not affect the calculations
of θi(nσ).

The fourth variant of the approximation is the sim-
plest example of considering the correlation effects
from three molecules (a discrete variant of the so-
called Kirkwood superposition approximation [34]).
Within this approximation, σ determines the contri-
butions from pairs of particles at different distances.
RUSSIAN JOURNAL O
When the superposition approximation is used, the
problem is also closed through the equations for unary
and pair DFs. The structure of the fourth approxima-
tion allows us to go beyond the frames of only pair
approximation if we assume that additional equations
are deduced for the probabilities of triple configura-
tions. However, this approach drastically increases the
dimensionality of the set of equations that must be
solved to find the equilibrium particle distribution
[27–30].

In the QCA for a mixture with any number of com-
ponents, we obtain expressions for the rates of mono-
and bimolecular elementary processes:

(6)

(7)

where , and  is the parameter of
interaction between AC (an i particle at an f site in the
transition state) of elementary process α and neigh-
boring particle k at a neighboring g site; where

 is the conventional probability of a j particle
being near the i particle, which is calculated in the
QCA. In deducing expressions (6) and (7), rate con-
stants  and  were assumed to depend weakly on
density. In functions , summation is performed over
all sorts of neighboring particles. Functions  are fac-
tors of the function of the non-ideality of a reaction
system  that reflect the effect each neighbor-
ing particle has on reaction.

A similar situation is observed for bimolecular
reaction (7). The structure of functions  is not asso-
ciated with the type of lateral interaction potential
functions or the radius of the potential; it is deter-
mined by using the QCA to consider the interactions.
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The number of functions  in the reaction rate in the
form of factors is determined by size z of the coordina-
tion sphere. For bimolecular reactions, this number of
neighbors virtually doubles around two reagents of
2(z − 1). A difference between expression (7) and for-
mula (6) is that the effect of intermolecular interactions
is exhibited not only through the functions of non-ide-
ality but also through a change in the probability of
encountering reagents, described by function .

Self-Consistency of the Rates of One-Site Stages

Let us consider the elementary stage of chemical
transformation A ↔ В, to which the equality of rates in
the forward and backward directions UA(α) = UB(α)
corresponds in equilibrium. The structure of equa-
tions for the rates is UA(α) = KA(α)VA(α), where KA(α)
is the reaction rate constant and VA(α) is the concen-
tration component of the reaction rate. For an ideal
reaction system, VA(α) = θА (1); for a non-ideal reac-
tion system, it is described by formula (6). The ratio of
rate constants determined by formulas (2) yields equi-
librium constant K and excludes the AC statistical sum
from the pre-exponentials of the rate constants of for-
ward and backward reactions [28, 35]. However, AC
characteristic  contained in function of
non-ideality  remains:

(8)

To verify the self-consistency of expressions, it is
required that the ratio of non-ideality functions

 not depend on the parameters of AC
interaction with neighbors . We therefore consider
the equations in the QCA for the equilibrium distribu-
tion of mixture components [28, 35]:

(9)

(10)

In , the lower index is the sort of the central par-
ticle under study, and the symbol in parentheses is the
basic sort of the mixture (this symbol often corre-
sponds to a vacancy), and .

Excluding exponential  from
Eqs. (9) and (10), we obtain the relationship between
pair and unary DFs:

(11)

From this expression, we can see that the denomi-
nator does not depend on the sort of neighboring mol-
ecule С, and the normalization condition is satisfied:

iS

θij

ε ≡ ε α* ( )ij ij

α( )iS

α α θ α= = =
α α θ α1

( ) ( ) [ ( )] .
( ) ( ) [ ( )]

z
A B B B

z
B A A A

K V SK
K V S

α α( )/ ( )B AS S
ε*ij

=

θ = θ β ν − ν

= β ε − ε∑
1

exp[ ( )] ( ) ,

( ) exp[ ( )],

z
A B B A B

V

B Bj Aj Bj
j

S A

S A t

−θ = θ β ν − ν + ε − ε 1exp[ ( )] ( ) .z
AC BC B A AC BC BS A

( )BS A

= θ θ/ij ij it

β ν − νexp[ ( )]i s

= β ε − εexp[ ( )]/ ( ).AC BC AC BC Bt t S A
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A  Vo
(12)

Using (11), we prove the identity

(13)

which allows us to move from one sort of central mol-
ecule to another. To prove this identity, it is sufficient
to insert A = n, B = i, C = j into (11) and substitute it
in the left side of Eq. (13). This identity is compactly
written as . (As a consequence of
(13), we find that  or .)

We rewrite the ratio in formula (8) as

This involves one AC between reaction products А
and В, so its properties are identical, or 

. From identity (13), we then obtain

(14)

which precisely equals the concentration component
of isotherm (9). This shows that despite the path of the
process (through a chemical reaction or molecular
exchange with the thermostat) the equilibrium state is
the same.

In the chaotic approximation, 
, and the analog of Eq. (13) has the form

[28, 35]
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tion, however, the analog of Eq. (13) is expressed as
[28, 35]

(16)

These expressions also demonstrate the self-con-
sistency of one-site reactions, due to the identity of AC
interactions with the neighbors in the forward and
backward reactions, . In the polyno-
mial approximation, the equations for the equilibrium
distribution and stage rates are cumbersome, so the
their self-consistency can be verified only through
numerical comparison [28].

SELF-CONSISTENCY OF THE RATES
OF TWO-SITE STAGES

The proof of the self-consistency of the rates of
two-site stages with the equilibrium distribution of
molecules differs from the above material by the need
to consider the effect of neighboring molecules
(through the function of non-ideality), and to relate
the probability of encountering the reagent to the law
of mass action through its concentration. Let us con-
sider stage А + С ↔ В + D and verify the self-consis-
tency of the description of the kinetics and equilibrium
of non-ideal reaction systems. Here it is essential to
follow the course of the elementary process, and to
show which product is obtained from the initial
reagent (i.e., indicate that С is obtained from А and D
is obtained from В). This is associated with the struc-
ture of the resulting AC, and its properties must not
depend on the reaction path. As above, we write

 and ; the neighbor
can be any  [28, 35]. For the two-site stage,
the rate is expressed as UAВ(α) = KAВ(α)exp(‒βεAB) ×
VAВ(α), where KAВ(α) is the pre-exponential of the rate
constant and VAВ(α) is the concentration component
of the two-site reaction rate; εAB is the energy of the
lateral interaction of the reagents. We must show from
equality UAC(α) = UBD(α) that the reaction’s equilib-
rium constant does not depend on the AC parameters:

(17)

Identity (13) or (14) is used in the last equation, since
it follows from the AC properties that 

, . Let us examine in detail a separate fac-
tor for one of the bonds from (z − 1) neighbors around
each reagent inside a central dimeric particle. The
ratio of concentration factors yields

(18)

which excludes the presence of AC properties in this
ratio, as in the case of one-site reactions.

To transform the pair functions in (10), we multiply
Eq. (10) on the right- and left-hand side by θAθB and
write

(19)

Since , we represent sought bond с in the
form (we see the general case of function  and )

(20)

and since , we again use identity (13) to
exclude sort В and obtain

(21)

Finally, the ratio of rate constants of the forward and
backward reactions is expressed through (18) and (21):
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With regard to redefining the meaning of the equi-
librium constant K2, the course of the two-site reac-
tion can formally be considered as two independent
one-site processes at different sites: А ↔ С and В ↔ D.
Expression (22) has the form of a product of two inde-
pendent processes, each of which is described by equi-
librium (8). The condition of reaction equilibrium
thus coincides with that of the medium as a whole [28,
35]. In the polynomial approximation, self-consis-
tency can be verified only numerically [28].

One-particle approximations. This type of approxi-
mation closes the sets of equations for equilibrium and
kinetic processes through unary DFs (i.e., only
through the concentration of components). All pair
functions are in this case expressed as , and
they require no additional equations for the pairs. The
same is true for DFs with higher dimensionalities.
Through derivation, however, the bimolecular reac-
tion rates are still expressed as UAВ(α) =
KAВ(α)exp(−βεAB)VAВ(α), into which  must
be substituted. This results in the relations [28, 35]

(23)

where non-ideality functions  do not con-
tain parameters of AC interaction. The right side of
expression (23) (1) is not decomposed into two inde-
pendent processes with concentration factors

 and , as follows from (8),
and as it would be for independent one-site stages, and
(2) there are energy factors that alter the energies of
activation of elementary stages ЕAC and EBD in the pre-
exponentials of rate constants KAC and KBD.

Analysis of the expressions for chaotic and mean
field approximations thus shows they do not ensure
the self-consistent description of equilibria and kinet-
ics because analogous equations for isotherms are not
obtained in the same approximations as a result of
equating the reaction rates. These approximations
therefore cannot be used to describe kinetic processes.
Even in individual instances, migrations according to
the vacancy mechanism of an exponential with
parameter εiV = 0 vanish, but this does not compensate
for the absence of exponent (z − 1) instead of z [28,
35]. The density functional equations often used for
molecular distributions also belong to this type of one-
particle approximations. They also lack the correlation
effects and do not satisfy the requirement of the self-
consistency of expressions for the rates of elementary
stages.
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NON-IDEAL HETEROGENEOUS SYSTEMS

In the distributed model of a nonuniform lattice,
each site is considered a separate type of the region of
a molecule’s location; this is the most general type of
nonuniform lattices [27–30, 36]. Let us consider the
problem of the self-consistency of expressions for the
rates of elementary reactions (stages) that proceed at
one and two sites, and for the equilibrium state of a
reaction system in the QCA with any radius R of the
interaction potential between neighbors on the distrib-
uted model of a nonuniform lattice system. To do this,
we deal with particular individual sites, i.e., before the
averaging procedure with DFs of nonuniform surfaces
different in compositions and structures. Averaged
models are obtained from expressions for the distrib-
uted model by weighting with the functions discussed
in [27–30].

One-site reaction. Consider a reversible reaction
between adsorbed particle А and gas particle В: ZA +
B ↔ ZC + D, occurring at a q-type site with number f.
The equation for the one-site stage rate has the form
[27, 37]

(24)

where М is the number of sites of the distributed sys-

tem;  is the rate constant of the elementary reac-
tion between adsorbed particle А and gas particle В,
which involves the product with the partial pressure of

component В in the gas phase РВ;  is the param-
eter of interaction of a neighboring j particle in the
ground state at distance r from the AC of the reacting
i molecule; the upper index means the expression for
the rate includes pressure factor РВ for a particle from
the gas phase (not reflected in the symbol of the f site);

 is the parameter of interaction between two
neighboring particles in the ground state at distance r.
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In the equilibrium condition, the equations for the
forward and backward reaction rates  =  yield
the relation

(25)

With no interaction, function = 1 and  is an
effective equilibrium constant for the f site of an ideal
adsorption system;  = PВ/PD, where  is the
true equilibrium constant of the one-site stage А ↔ С.

In the QCA for a nonuniform lattice, we have the
following relations for pair DFs instead of (11):

(26)

where .
Then

(27)

Since the AC properties are independent of the

reaction’s direction (  =  for any j index), it
follows from relations (24) and the equations for the
QCA relations (25) that

(28)

so ; i.e., the right-hand side of
expression (25) does not depend on the interaction
between the AC and its neighbors, and the effective
equilibrium constant is expressed only through the
interaction parameters of particles in the ground
(rather than transition) state and the equilibrium
concentrations of particles. This is entirely consis-
tent with the concept of the equilibrium particle
distribution, and expression (25) is the equilibrium
constant for a nonuniform system. This means the
equilibrium distribution equation is obtained
regardless of how it is derived: from kinetic consid-
eration or directly for the equilibrium state of a mix-
ture’s molecules.

Two-site reaction А + В ↔ С + D. The AC of the
reaction occupies two neighboring lattice sites
(denoted as n and k) and interacts with the neighbor-
ing particles in the rth coordination sphere ( )
with respect to both the n site with the А particle and
the k site with the В particle. We introduce the concept
of a common rth coordination sphere of the dimeric
АВ molecule as a combination of sites at the same dis-
tance r from the nearest А or В site. The coordination
spheres of isolated sites overlap, so the common rth
coordination sphere contains some sites that belong
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only to the rth coordination sphere of one of the n or k
sites and a some sites that belong to the (r + λ) coordi-
nation sphere of the neighboring k or n site. The λ
value depends on the lattice’s dimensionality and the
number of nearest neighbors [27, 28, 38].

The set of sites of the common rth coordination
sphere is divided into equivalent groups of sites that are
fixed by their orientation. The site orientation is deter-
mined by the angle formed by a straight line connect-
ing the central sites and a straight line between the
considered site in the rth coordination sphere of a
dimeric molecule and the point in between the central
sites.

We denote the number of different orientations in
the common rth coordination sphere as πr, and the
number of sites with this orientation ωr as κωr (1 ≤ ωr ≤
κωr). Figure 3 shows the site distribution on planar lat-
tices for R = 2. The AC interaction potential with the j
particle at a site of the rth common coordination
sphere of the АВ dimeric molecule with orientation ωr

is denoted as . The  values are
expressed through the pair potentials :

, where m is the number of
the site containing the j particle. For instance, for pla-
nar lattice z = 4 and R = 2 we have

The  values are deduced in a similar man-
ner for other z and R. If А = В, the same , 1 ≤
ωr ≤ πr/2 values to which double κωr values correspond
also correspond to the symmetric positions of sites of
the common rth coordination sphere, relative to the
plane passing through the middle of the straight line
connecting the central sites and perpendicular to this
straight line.

The two-site stage rates are written as

(29)
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Fig. 3. Distributions of planar lattice sites for z = 4 and 6 over the equivalent groups of the first two coordination spheres. For z =
4, the first coordination sphere contains sites 1–6 (π1 = 4); the second, sites 7–10 (πr = 4). Site 1 corresponds to ω1 = 1; sites 2
and 6, to ω1 = 2; sites 3 and 5, to ω1 = 3; site 4, to ω4 = 4; sites 7 and 8, to ω2 = 1; sites 9 and 10, to ω2 = 2. For z = 6, the first
coordination sphere contains sites 1–8 (π1 = 5); the second, sites 9–16 (πr = 4). Site 1 corresponds to ω1 = 1; sites 2 and 8, to
ω1 = 2; sites 3 and 7, to ω1 = 3; sites 4 and 6, to ω4 = 4; site 5, to ω1 = 5; sites 9 and 10, to ω2 = 1; sites 11 and 16, to ω2 = 2;
sites 12 and 15, to ω2 = 3; sites 13 and 14, to ω2 = 4.
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For large distances , which con-

sequently yields , 

 .

To confirm the condition of self-consistency, we
must prove the relation [27, 30]

(30)

where ωr, r1, and r2 are clearly related to one another.
The equilibrium distribution of molecules is then
independent of how it was established: through the
kinetics of forward and backward processes or by con-
sidering only equilibrium configurations. To prove
equality (30), we must remember that

 and , due to the AC
properties being independent of the process’s direc-
tion. Let us introduce 
and rewrite the left-hand side of formula (30) as

,

where . We must

show that ratio N/L =  is
independent of index j.

To do this, we express functions  and 

through  and  respectively, using the general

QCA relationships for pair functions (e.g.,  =

 and so on). This allows us to write

N/L = , where  =
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Since obvious equality  =
, we can see that the left-hand side of relations (30)

is . On the other hand,

formulas  =  and

 =  can be proved in a sim-
ilar manner, so by summarizing we obtain the proof
for Eq. (30).

The use of approximations that do not consider
spatial correlation effects (e.g., the mean field or cha-
otic approximations) does not correspond to the con-
ditions of self-consistency. This results in particular in
the renormalization of the process’s energy of activa-
tion by the value .

GENERALIZATIONS OF EQUATIONS (24) 
AND (29)

Below, we discuss models that consider additional
factors in comparison to Eqs. (24) and (29) for reac-
tion rates that consider lattice nonuniformity and
interactions between neighbors at distance R. We con-
sider the following generalizations associated with
considering the effects (1) of a neighboring particle
near the reagents at m central sites (m = 1 and 2) and
(2) the internal states of the reagents and AC. The first
case requires generalizations of AC states not affecting
the equilibrium state of system components (the equi-
librium constant is retained). Strongly nonequilibrium
systems, the inclusion of the environmental compo-
nents into the elementary reaction process (or solvent
reorganization), and the effect of the reaction being
initiated by collisions with an incident particle corre-
spond to the first case. The second involves consider-
ing the internal motions of particles, charges, and the
electronic polarization of the medium. The general

= =∑ ∑1 1
/

s sj j
h hj j
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way of proving the self-consistency of the derived
expressions remains the same for the first case, so we
limit ourselves to reducing these situations to already
considered models (24) and (29).

Strongly non-equilibrium systems. The first general-
ization is to consider the self-consistency of expres-
sions for reaction rates in the right-hand sides of equa-
tions (5) for pair DFs. Summands  and

 appear in them, which respectively corre-
spond to one- (i ↔ b) and two-site (i + m ↔ b + c)
reactions of an i particle in the presence of neighboring
j particles. The sorts of reacting particles are given in
the upper indices in parentheses (as above, the under
indices indicate the sites containing these reagents). A
neighboring j particle affects the activation barrier
value for the reacting i particle.

Expressions for the rates in system (5) are written as

(31)

through the products of rates of the respective reac-
tions  for a one-site stage and  for a two-
site stage (these rates and their self-consistency are
considered above) and additional factors  and

, which reflect the effect neighboring parti-
cles have on the reaction rate.

Expressions (31) are used at any degree of deviation
from the equilibrium state, but they must retain their
form in the equilibrium state too. This is confirmed by
the zero value of all terms in parentheses in the right-
hand sides of (5). The allocation of  factors
reduces the problem to the relations between functions

. In a similar manner, the allocation of 

is reduced to relations between functions .
The proof of the self-consistency is derived like that
for reactions in heterogeneous systems. This is done
via Eqs. (26) and (30). The ratio of these conventional
probabilities under the condition of the equality of the
AC properties eliminates the AC characteristics, and
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the other concentration functions are transformed
through (26) and (30) into the non-ideality functions
of the respective reaction mixture for particles at fixed
sites.

Third particles. In the molecular statistical
approach, general schemes of elementary processes
are considered that can have different physical mean-
ings. The effect of a third particle can thus be
attributed to so-called solvent reorganization or a cat-
alytic center. Consider the scheme F + A ↔ B + F,
which corresponds to the monomolecular (m = 1)
stage A ↔ B, and where F is one of the system compo-
nents. If the F component is not involved in the chem-
ical equilibrium, it could be a process associated with
homogeneous or heterogeneous catalysis if it occurs in
the surface region [21]. This is also true for m = 2.
There are other cases as well: the local density depres-
sions described in the LGM as the presence of a neigh-
boring vacancy and allowing the local reorganization
of reagent molecules in the form of rotations or rear-
rangements, or such a change in the local structure
that enables the charged particle (electron, proton)
transition in accordance with the Franck–Condon
principle [22], which was introduced into the kinetics
of liquid phase processes from photochemistry.
Type (31) summands are in this case present in the
right-hand sides of Eqs. (4) (with F instead of j).

Initiation of a reaction by the kinetic energy of an
incident molecule. Close structure of the equations is
obtained in considering the effect of external initiation
caused by the kinetic energy of an incident molecule
on the elementary stage rate. This generally proceeds
not only in rarefied gas but also in a dense gas and a
relatively rarefied f luid. The incident molecule trans-
fers momentum to the central particle, changing the
rate and direction of its motion. The procedure for dis-
tinguishing a vacancy region in the dense phase along
which the neighboring molecule moves was formu-
lated as the introduction of a ρ-scale to specify the ele-
mentary act [39]. This allows us to transfer all deriva-
tions of the statistical theory of chemical reactions [40]
in dense phases to Мaster Equations (4) and (5). It
allows consideration of all three aggregate states of a
system (in dense liquids and solid phases, the contri-
bution from processes is leveled on the ρ-scale) up to
rarefied gases within the common set of equations (4)
and (5). The equations of the monomolecular stage
are written as

(32)

where  is the rate constant of a reaction initi-
ated by a collision with a k particle on the ρ-scale,
which is expressed through the statistical sums of AC
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 and initial particles  и , and the energy of

activation of this process . Let us recall that ρ
means not only the direction of the bond between the
f and ξ sites, but also the magnitude of this bond,
which depends on the system’s density [41, 42]. The k
particle on this bond is nearest to the f site;  is the
concentration component of the i → product one-site
reaction rate, which consists of three factors: , the i

reagent concentration; , the probability of a k par-
ticle colliding with the i reagent; and the non-ideality
function  for this process, which considers the
effect of intermolecular interactions at the AC stage:

(33)

In the hr product, there is no hr = ξ factor corre-
sponding to the k particle’s trajectory along the ρ-
scale. It is replaced with factor . The emergence of
the process initiation source is caused by i particle col-
lisions (on the ρ-scale) with the k particle in the gas
phase. This is reflected in a change in the expression
for the elementary stage rate. It contains  fac-

tors instead of  =  and  instead of

the  factor from the total func-
tion of non-ideality around the central reagents. The
difference between rate constants is due to the differ-
ent energy redistribution during the elementary stage,
and it is an intrinsic property of reagent particles
weakly associated with the non-ideal behavior of
neighbors. The second factor differs in that it has the
same exponential part but corresponds to molar frac-
tion xξ of the k component at a ξ site instead of numer-
ical density θξ. The condition of self-consistency fol-
lows from consideration of Eqs. (31) if we correlate
the k particle on the ρ-scale with the j particle in for-
mula (31). For each incident particle, the self-consis-
tency condition is thus satisfied, as was made clear
after formula (31). The self-consistency of the expres-
sion for two-site elementary stages is proved in exactly
the same way. Examples of direct and indirect initia-
tions were considered in [42, 43].

CONSIDERING THE INTERNAL
STATES OF MOLECULES

It was stated above that Fi (the statistical sum of
internal motions of the i molecule) differes from the
form of a particular configuration of the medium. In
the expressions for reaction rate constants 
(6), (7) the energy is similarly counted from the ideal
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solvent. All effects of the mutual influence of mole-
cules are formally attributed to the parameters of
interparticle interaction.

If we consider that the internal states of molecules
affect the equilibrium state of system components, this
changes the equations for the equilibrium constant
and the elementary stage rates. The internal motions
then depend on the particular configuration of the
neighbors, and the abovementioned independence of
the contributions of lateral interactions from the form
of configurations disappears. The equilibrium con-
stants and the elementary stage rate constants become
functions of the form of local configurations. These
models require a more complex description of particle
states inside a reaction cluster [44]. The general idea
behind these derivations was presented in [45, 46].
The technical solution to the problem is reduced to
organizing a complete enumeration of the configura-
tions of neighbors and the simultaneous tracing of the
displacements of the centers of masses inside a discrete
cell, the rotational and vibrational states of reagents,
and the solvent components or a solid matrix.

For a rarefied gas, any statistical sum of the i mole-
cule is usually written as  =

 [14, 40]. In dense
phases the abovementioned separation of the contri-
butions requires consideration of the effect the neigh-
boring molecules have on each type of motion, and we
must derive contributions , , and

 for each configuration. Considering the
effect of internal motions on the statistical sums of
particles in the ground and transition states in the con-
densed phase is associated with the dependence of sta-
tistical sums on the motions of the neighboring mole-
cules in the region of reaction cluster K1. Considering
the translational motion depending on the neighbor-
ing molecular environment was considered in [30, 47].
Displacements of the center of mass in the cell are
expressed through the cell volume accessible to the
center of mass. This reflects the effect of the volume of
the cell under study being blocked by neighboring par-
ticles. This model contains the dependence of the sta-
tistical sum of the translational motion  on

the conventional probabilities  of the pres-
ence of different particles λ in the nearest cells. The
problems in calculating  were discussed in
[46]. It is most difficult to consider the vibrational
motions that are collective, so for simplicity and clar-
ity we limit ourselves to considering the local vibra-
tions of molecules. In the approximation of stationary
neighbors for the statistical sum of vibrational motion

, in [48], expressions for the local Einstein–
Mie frequencies were obtained that varied for different
configurations of the neighboring particles. Particle
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vibrations are analogs of vibrational motion or a slight
displacement near the equilibrium position. We there-
fore have a similar dependence on the state of the
neighbors. The shift from collective motions to local
frequencies is due to rougher dynamic relations and
requires verification of their correctness according to
the final results for the thermodynamic characteristics
of the system.

The cluster approach used to obtain the expressions
of averaged characteristics [28] provides the same der-
ivation of distributions for the problems of calculating
the equilibrium and stage rates. The radical simplifi-
cation of the deduced equations is associated with the
use of QCA, which considers the effect of short-range
order correlations. To close the system in the QCA, we
must employ the approximation [27]

(34)

where  is the conventional probability of the m
particle occurrence at the gr site near the i particle at
the f site. Probability of multiparticle configuration

 is expressed through the product of unary and
pair DFs. It is given by a set of values characterizing
the numbers of m sort particles at g sites at distance r
from the central i particle (1 ≤ m ≤ s, 1 ≤ r ≤ R).
Approximations (34) yield (28) at a constant rate con-
stant. In considering internal motions, rate  is

replaced with local rate constants  corre-

sponding to a particular configuration . At the
same time, Eq. (9) for the equilibrium constant is
rewritten in the form used in [44], since the  value
becomes a function of the form of configuration

.
For a two-site reaction, the probability of a partic-

ular state of a reaction cluster with two central sites at
distance ρ is described by the function [27]

where the configuration of neighbors  is deter-
mined by the numbers of m-type neighboring particles
for h sites in analogy with single-center clusters; func-
tion  was defined in (29).

The key to proving the self-consistency of expres-
sions for stage rates is that there is a rigorous statistical
proof for the discrete particle distribution, and consid-
ering the continuum distribution of particles inside
cells introduces a relatively small perturbation. The
theory self-consistency is preserved if the configura-
tions are completely averaged while maintaining
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short-range order in the QCA. The components [44]
or characteristics of lateral interactions must in this
case be averaged over the internal states. Below, we
give an example of considering the contributions from
induced dipoles to the interaction of system compo-
nents, in which we obtain the averaged parameters of
potential interactions.

Moving to more accurate approximations for con-
sidering both internal motions and correlated particle
distribution results in much more cumbersome equa-
tions. Specific verification of continuum contribu-
tions to calculated characteristics is generally needed.
The same complication in writing equations compels
us to use the quantum chemical energies of clusters
instead of atom–atom potentials. Self-consistency is
normally verified numerically, in analogy with the
above verification of polynomial splitting for nearest
neighbors.

Slow Reactions

The characteristic time of an elementary slow reac-
tion is much longer than that of the reorganization of
neighboring molecules. The great mobility of neigh-
boring molecules around reagents corresponds to
Eyring’s hypothesis [14] about the existence of an AC
activity coefficient. By introducing the concept of AC
activity coefficient  (or ), we mean averaging over
all possible equilibrium states of the environment. It
was noted above that a change in the nearest neighbors
of reagents always alters the potential relief of a reac-
tion, and other channels for the reaction between the
initial reagents to proceed become possible in princi-
ple. In addition, there is a purely formal contradiction
in the QCA when defining the AC chemical potential
as an ordinary particle of a non-ideal mixture through
pair DFs  of neighboring i-sort particles [36]:

(35)

since neighboring pairs  for the AC of process α
are basically not defined in ARRT (summand 
describes the internal degrees of freedom of an i com-
ponent). Altogether, this makes the use of the Eyring
approach’s thermodynamic concepts contradictory to
the dynamics of reaction systems.

Molecular theory allows the derivation of an
expression analogous to the Eyring concept [49] by
assuming there is an equilibrium distribution of mix-
ture components during the slow formation of an AC
(i.e., an AC is long-lived near the barrier top). The
expression for one-site elementary process rates is
then expressed as
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(36)

where all values are defined above, except for factor
. It is written using unary and pair DFs, in the

form

(37)

where index k corresponds to rapid mixture compo-
nents that manage to adjust to the AC. Here we write

 and  =

.

The rates of two-site elementary processes have the
form

(38)

All functions here, including  and factors

 in them, are defined above. There is also a new
factor:

(39)

where  = ,

 = .

To calculate factors  and , we
must solve a set of algebraic equations for the distribu-
tion of rapid components in the field of slow compo-
nents for this time scale. The scale is determined by
the derivative in the left-hand side of kinetic
equations (4) and (5). Both functions are expressed

through a set of  values. They are found from
the equilibrium distributions in the form

(40)
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where index k denotes only the rapid components.
Strong nonequilibrium is considered in the same way
as above but only for functions .

It was shown above that the ratios of rate constants
and contributions from factors  and

 do not depend on the AC properties. To
prove the self-consistency of expressions (35), (37) it is
sufficient to show that when the rates of forward and
backward elementary stages are equal, the

 and  ratios
do not depend on the AC properties of stage α. To
illustrate this, it is sufficient to consider only the
expressions for the factors of one-site processes:

By definition, the AC values corresponding to the
difference between the contributions from forward
and backward processes must be reduced. Using rela-
tions (26) and (35), the remaining contributions

therefore become isothermal relations of type (24) that
demonstrate the self-consistency of the theory. For
two-site stages, we must additionally use an analog of
Eqs. (31). The above also corresponds to other consid-
ered generalizations of the theory.

Let us illustrate the character of changes caused by
using the analog of the Eyring concept for the simplest
process: monomolecular reaction A → B with regard
to nearest neighbors and for two components (when
s = 2, the system is represented by А and В molecules,
and relaxation is the redistribution of molecules
around AC during their migration). In the QCA, the
following equation was obtained for the rate of a
monomolecular reaction by considering the interac-
tion between system components [49, 50]:
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Fig. 4. Effective energies of activation for the rates of (1–3)
slow and (4–6) rapid monomolecular reaction, their dif-

ferences  (7–9), and the

functions  (10–12) (insert); s = 2, βεАА =

1,  = 0 (1, 4, 7, 10), 0.5 (2, 5, 8, 11), 1.5 (3, 6, 9,
12) [50].
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monomolecular desorption at Т = 300 K, calculated for (1)
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where  and 

; energy difference  was defined in for-
mulas (24). The structure of formulas (24), (29) is
retained, but function Si that considers the non-ideal-
ity of the reaction system changes. The formulas show
that the elementary process rates depend on difference

 between the intermolecular AC and the initial
reagent interactions with the environment, which
form the activation barriers in each particular local

composition. If , then  = 1, and
formula (41) for UА has the same form as for ideal reac-

tion systems:  = KAθA (1).

It is helpful to consider the role of the relaxation of
the medium by considering the rate relations for slow
and rapid reactions: ,

 = ,

. The effective energies of acti-
vation characterize the degree to which the rate of the
reaction deviates from the ideal one in a non-ideal
reaction system. Figure 4 presents the calculated rates
of rapid and slow monomolecular reactions and the
ratio −ln(ηА) for the entire range of А reagent density
variation. The insert in Fig. 4 shows the concentration
dependences of ratios  that characterize
local changes in the А component distributions due to
their migration under the AC effect for a slow reaction.
This ratio tends to unity when θ ⇒ 1. We observe the
maximum AC effect at low θ: . For
a rapid reaction,  at all θ.
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Figure 4 illustrates the qualitative difference
between the concentration dependences of the reac-
tion rates for various relaxations of the medium. If
there is no relaxation, ln UA(rapid) varies in a virtually
linear fashion as θ grows. With equilibrium relaxation
of the medium, ln UA(slow) changes abruptly in the
regions where θ < 0.2 and θ > 0.8, and remains virtu-
ally constant where 0.2 < θ < 0.8. This general prop-
erty of the effect the character of the medium’s relax-
ation has is also observed in other situations, e.g., the
mono- and bimolecular stages in solutions that were
studied in [50]. It could form the basis for analyzing
the experimental concentration dependences of the
logarithms of reaction rates in a wide range of concen-
trations.

The other example in Fig. 5 illustrates the above
qualitative difference between the concentration
dependences of the reaction rates for different relax-
ations of the medium at T = const (the curves corre-
spond to the experimental data for a СO–Pt type sys-
tem [51]). The effective energy of activation of desorp-
tion (and thus the rate of the process) grows
monotonically along with the degree of occupancy if
the calculations are performed using formula (6)
(there is no relaxation of the medium). If the calcula-
tions are performed using formula (45), the effective
energy of activation of desorption changes nonmono-
tonically for the equilibrium relaxation of the medium.
In non-ideal systems, nonmonotonic behavior of the
reaction rate is normally possible only if there is an
attracting potential (e.g., for Hg–W type systems)
[27–29, 51]. The nonmonotonic behavior of the
desorption rate contradicts the physics of this process,
F PHYSICAL CHEMISTRY A  Vol. 92  No. 6  2018
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especially because the chemisorbed particles repel one
another at short distances. In addition, the physical
sense is contradicted by the sole desorption reaction’s
negative effective energies of activation.

The examples in Figs. 4 and 5 are typical of the
rates of chemical reactions and diffusion processes. In
most cases, reactions occur with the AC rapidly over-
coming the activation barrier [27, 29]. Equations cor-
responding to the Eyring concept artificially distort
the physical nature of processes, due to incorrect con-
sideration of the procedures for averaging the contri-
butions from atomic–molecular configurations.

A system with induced dipoles. One of the few situa-
tions in which the Eyring concept can be used seems to
be allowing for the effect of electronic polarization.
This example was discussed by considering the effect
of induced dipole moments in the energy of the system
in the expressions for elementary stage rates [52]. It
was found that the parameter of lateral interaction
between neighboring particles at distance r with regard
to discrete dipole orientations  can be written as

 + , where

the contribution from induced dipoles 
consists of all possible types of interaction: the one
between the central dipole particle and polarized par-
ticles at neighboring h sites, and its polarization under
the effect of dipoles of all n-sort neighbors at h sites;
and the one between an induced dipole on the central
particle and induced dipoles on polarized particles at
neighboring sites [52]. In deriving , third- and
fourth-order correlations emerge that are calculated
using the Kirkwood superposition decoupling
( ) [34] and the Fisher over-superposition
approximation ( ) [53].
The introduced approximation is rigorous at low ratios
of interaction parameters  with respect to
the first two summands. In the atom–atom approxi-
mation, it is considered that the polarizability of each
atomic group is retained in large molecules. Complete
AC polarization may in this case be considered as con-
sisting of modified contributions of initial reagents

. This assumption is considered in

deriving energy parameter  for kinetic stages.

As an example. let us write the expression for the
elementary two-site stage rate:
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where all values are defined above in (30) and (32)

with  substituted for ; i.e., the dif-
ference is the presence of renormalized multiparticle
interaction potentials instead of the initial potentials.
In (30), the superposition approximation is used to
describe the probabilities of spatial configurations, as
in calculating the energy contributions of induced
dipoles. The effects of induced dipoles themselves are
reflected in the effective pair energy parameters of

function . It is calculated using
formulas (40), in which the state of the AC corre-
sponds to the presence of an intrinsic charge, a con-
stant and induced dipole that differs from the similar
properties in the ground state of the reagents.

Analysis of the theory’s self-consistency thus shows
it is a question of the quality of the approximations
that are used (the many bodies problem rarely has an
accurate solution, and it is needed to apply approxi-
mations). Initial configurations of reagents and the
solvent molecule environment, the solid carrier
matrix, or those of other reagents always affect the ele-
mentary stage rate. The elementary process takes the
form of overcoming the activation barrier or that of a
sub-barrier transition surrounded by neighbors that
make one contribution or another to the formation of
the barrier at their particular fixed configuration. Self-
consistency is always assumed for a separate configu-
ration, and it is identically included in the full spec-
trum of configurations in both calculating statistical
sums and the probabilities of elementary stages. The
problem of self-consistency arises at the stage of sim-
plification in calculating both the probabilities of dif-
ferent configurations and the energy of the elementary
reaction stage. Such simplification can result in much
rougher probabilities (especially when one-particle
approximations, i.e., the law of mass action, is used) or
substantial distortion of the properties of the potential
barrier, so the derived expressions for the elementary
stage rates and equations for the equilibrium distribu-
tion of mixture components yield different expressions
for the equilibrium constant. This makes it impossible
to use the parameters found in kinetic experiments to
calculate the equilibrium properties of a system and
vice versa.

Apart from the statistical aspects, the problem has
a quantum chemical aspect as well. The possibility of
more accurately calculating the energy characteristics,
and thus the AC and internal motions of particles,
depend on the latter. In this respect, the cluster
approach to calculating atomic–molecular distribu-
tions [28] is naturally related to the cluster approaches
in quantum chemistry. Complete statistical averaging
involves a large number of configurations; since their

λ
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direct enumeration is difficult, it requires the intro-
duction of convenient approximations of the potential
functions in the system under study.

Experimental data show that in most situations, the
AC barrier is rapidly overcome with atomic–molecu-
lar stages (the Temkin concept). The Eyring concept
can be discussed only in association with electronic
polarization processes in a medium.

The theory provides a self-consistent description of
dynamics and equilibria on all spatial scales for any
densities, temperatures, intensities of lateral interac-
tions, radii of potential, and external fields only when
considering the correlation effects, at least for short-
range order; otherwise, the self-consistency condition
is violated. Therefore, neither molecular DFT nor the
mean field and chaotic approximations can be used to
describe dynamics in dense phases.

There is generally a strict relationship between
kinetics and equilibria in the form of (1) the condi-
tions of local equilibrium underlying all existing
equations of nonequilibrium thermodynamics and
molecular kinetic equations in all aggregate states;
(2) the commonality of potential functions and the
relationship between energy characteristics (energies
of activation and heats of elementary stages) added
by the relationship of the entropy factors in equilibria
and kinetics; (3) the self-consistency of the theory in
describing kinetics and equilibria. We must therefore
completely cease using quasi-thermodynamic
expressions for reaction rates in the kinetics of non-
ideal reaction systems and move to molecular–statis-
tical models the provide self-consistent descriptions
of the elementary stage rates and the equilibrium of a
reaction system.
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