CHEMICAL THERMODYNAMICS \_ AND THERMOCHEMISTRY \_

# Thermodynamic Properties of a First-Generation Carbosilane Dendrimer with Terminal Phenylethyl Groups

S. S. Sologubov<sup>a</sup>, A. V. Markin<sup>a,\*</sup>, N. N. Smirnova<sup>a</sup>, N. A. Novozhilova<sup>b</sup>, E. A. Tatarinova<sup>b</sup>, and A. M. Muzafarov<sup>c</sup>

<sup>a</sup> Lobachevsky State University, Nizhny Novgorod, 603950 Russia

<sup>b</sup> Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, 117393 Russia

<sup>c</sup> Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, 119991 Russia

\*e-mail: markin@calorimetry-center.ru

Received March 30, 2017

Abstract—The heat capacity of a first-generation carbosilane dendrimer with terminal phenylethyl groups as a function of temperature in the range from 6 to 520 K is studied for the first time via precision adiabatic vacuum calorimetry and differential scanning calorimetry. Physical transformations, such as low-temperature structural anomaly and glass transition are detected in the above-mentioned range of temperatures, and their standard thermodynamic characteristics are determined and analyzed. The standard thermodynamic functions of the studied dendrimer in the range of  $T \rightarrow 0$  to 520 K are calculated from the experimental data, as is the standard entropy in the devitrified state at T = 298.15 K. The standard thermodynamic characteristics of the carbosilane dendrimers studied in this work and earlier are compared.

*Keywords:* carbosilane dendrimers, adiabatic vacuum calorimetry, differential scanning calorimetry, heat capacity, glass transition, thermodynamic functions

DOI: 10.1134/S0036024418010260

# INTRODUCTION

A new and rapidly developing field of modern polymer chemistry is synthesizing and studying the properties of a specific class of high-molecular-weight compounds: dendrimers, which are nanosized spherical macromolecules characterized by a regular hyperbranched three-dimensional architecture and surface layer functionality [1–7]. Dendrimers have good solubility in most organic solvents, along with low viscosity of solutions, compared to linear polymers with equivalent molecular weights. Due to their unique structure, dendrimers are capable of self-assembly [8].

There are currently several ways of synthesizing dendrimers (divergent, convergent, and combined methods) that allow controlled increases in the molecular weights of compounds, their size, and the number of terminal functional groups on their outer layers [9]. The nature of these groups plays a key role in different properties of dendrimers.

The different chemical natures of dendrimer molecules provide many promising prospects for their practical application. Dendrimers are used effectively in designing modern nanomaterials with a wide spectrum of unique properties [10]. Carbosilane dendrimers are characterized by thermodynamic and kinetic stabilities, due to the low polarity and high strength of Si–C bonds [11]; this allows their use in preparing catalysts of chemical reactions [12]. Due to their biological inertness and low toxicity, dendrimers are often used in biomedicine as well [13-15].

The study of standard thermodynamic characteristics of dendrimers in a wide range of temperatures via precision adiabatic vacuum calorimetry (AVC) and differential scanning calorimetry (DSC) has allowed the detection and analysis of certain changes of practical significance in the properties of compounds, depending on their compositions and structures [16– 25].

This work is a continuation of our study of the thermodynamic properties of carbosilane dendrimers with different terminal functional groups. The aims of this work was to study the heat capacity of a first-generation carbosilane dendrimer with terminal phenylethyl groups as a function of temperature in the range of 6 to 520 K via calorimetry; to detect possible physical transformations in the abovementioned range of temperatures, and to determine their thermodynamic characteristics; to calculate the standard thermodynamic functions (heat capacity  $C_p^{o}(T)$ , enthalpy  $[H^{o}(T) - H^{o}(0)]$ , entropy  $[S^{o}(T) - S^{o}(0)]$ , and the Gibbs function  $[G^{o}(T) - H^{o}(0)]$  for the range of  $T \rightarrow$ 0 to 520 K, along with standard entropy of formation  $\Delta_p S^{o}$  of the dendrimer in the devitrified state at T = 298.15 K; and to compare the thermodynamic



Fig. 1. Synthesis scheme and structure of a first-generation carbosilane dendrimer with terminal phenylethyl groups  $G1[CH_2CH_2C_6H_5]_8$ ; *i* is the Karstedt catalyst in toluene.

characteristics of the dendrimers studied in this work and earlier.

 $C_{120}H_{204}Si_{13}$ ) was calculated using the standard atomic weights table recommended by the IUPAC [27].

#### **EXPERIMENTAL**

#### *Characteristics of the Investigated Sample*

Figure 1 shows the synthesis scheme and structure of our carbosilane dendrimer. G1 is the number of the dendrimer's generation, and the structural formula in square brackets specifies the fragment of the terminal group of the dendrimer's surface layer.

Our dendrimer sample was synthesized at the Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, according to the procedure described in [26]. Under normal conditions, dendrimer G1[CH<sub>2</sub>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>]<sub>8</sub> is a clear, colorless, viscous liquid.

The composition and structure of the compound were confirmed via elemental analysis and <sup>1</sup>H NMR spectroscopy. Found (%): C, 71.95; H, 10.01; Si, 18.08. Calculated (%): C, 71.63; H, 10.22; Si, 18.15. <sup>1</sup>H NMR  $(CDCl_3),$ δ: -0.08 (s, 12 H. CH<sub>2</sub>Si(C<u>H</u><sub>3</sub>)CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Si); -0.03 (s, 48 H. CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Si(C<u>H<sub>3</sub></u>)<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>); 0.51 - 0.60(m, (m, 16 H, 48 H, SiC<u>H</u><sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>Si); 0.80–0.87  $Si(CH_3)_2CH_2CH_2C_6H_5$ ; 1.25 - 1.3824 H. (m. SiCH<sub>2</sub>C<u>H</u><sub>2</sub>CH<sub>2</sub>Si); 2.55 - 2.62(m, 16 H, CH<sub>2</sub>C<u>H</u><sub>2</sub>C<sub>6</sub>H<sub>5</sub>); 7.11–7.28 (m, 40 H, C<u>H</u> (arom)).

The dendrimer was purified by chromatographic methods. The content of the main substance in the sample was more than 99 mol %. The molecular weight of the dendrimer (molecular formula,

# Apparatus and Measuring Procedures

The heat capacity of the studied dendrimer in the range of 6 to 344 K was measured using a fully automated BKT-3 adiabatic vacuum calorimeter (Termis, Russia). The instrument design and measurement procedures were described in detail in [28, 29].

The calorimetric ampule was a thin-walled cylindrical titanium vessel with a volume of 1.5 cm<sup>3</sup>. The ampule with the investigated substance was filled at room temperature with high-purity helium acting as the heat exchange gas. The cooling agents were liquid helium and nitrogen.

The BKT-3 device was calibrated by measuring the heat capacity of the calorimetric system with an empty ampule. The operational reliability of the calorimeter

was verified by measuring the  $C_p^o$  values of reference samples of high-purity copper, corundum, and benzoic acid. The calorimetric device and the measuring procedure allowed us to determine the heat capacities of substances with an error of no more than  $\pm 2\%$  in the range of 6–15 K;  $\pm 0.5\%$  in the range of 15–40 K; and  $\pm 0.2\%$  in the range of 40–350 K. The errors in measuring the temperature and enthalpies of different transformations were  $\pm 0.01$  K and  $\pm 0.2\%$ , respectively.

The heat capacity in the range of 344 to 520 K was measured using a DSC 204 F1 Phoenix differential scanning calorimeter (NETZSCH Gerätebau, Germany). The design and operating principle of the calorimeter were described in [30, 31].



**Fig. 2.** Heat capacity of the  $G1[CH_2CH_2C_6H_5]_8$  carbosilane dendrimer as a function of temperature. AE is an amorphous (glassy) state; FG is an amorphous (devitrified) state; BCD is the apparent heat capacity in the range of the anomaly; and  $T_g^\circ$  is the glass transition temperature.

The operational reliability of the calorimeter was verified by standard calibration experiments to determine the thermodynamic characteristics of the melting of indium, tin, bismuth, zinc, mercury, potassium, cesium chloride, and biphenyl. The apparatus and the measuring procedure allowed us to determine the temperatures and enthalpies of physical transformations with errors of  $\pm 0.5$  K and  $\pm 1\%$ , respectively.

To determine the  $C_p^o$  values of the studied dendrimer, three sequential measurements of the baseline, reference sample (corundum), and the dendrimer sample were made in an argon atmosphere. The rate at which the ampule containing the substance was heated was 5 K/min. The procedure for determining the  $C_p^o$  values from the DSC measurement data was described in detail in the NETZSCH Proteus software. A comparison between the measured heat capacity of corundum and the corresponding literature data revealed the error in the  $C_p^o$  values for our substances:  $\pm 2\%$ .

# **RESULTS AND DISCUSSION**

### Heat Capacity

The heat capacity of the G1[CH<sub>2</sub>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>]<sub>8</sub> carbosilane dendrimer as a function of temperature in the range of 6 to 520 K is shown in Fig. 2. The experimental  $C_p^{o}$  values for the studied compound are given in Table 1. The weights of dendrimer test portions loaded into the BKT-3 and DSC ampules were 0.1880 and 0.0243 g, respectively. The heat capacity of the studied dendrimers was 25–60% of the total heat capacity of

the calorimetric ampule with the substance. The

experimental  $C_p^{o}$  values in the investigated range of temperatures where there were no transformations were smoothed using power and semilogarithmic polynomial equations; the corresponding coefficients were selected using special computer programs.

# Anomaly

The studied sample of the carbosilane dendrimer  $G1[CH_2CH_2C_6H_5]_8$  was cooled from room temperature to the initial temperature of measurement ( $T \sim$ 6 K) at a rate of 0.02 K/s. The compound was supercooled and vitrified under the conditions of our calorimetric apparatus. With subsequent heating, the heat capacity-temperature curve for the  $G1[CH_2CH_2C_6H_5]_8$  dendrimer displayed a low-temperature anomaly consisting of a positive deviation from the normal (interpolated) trend of the  $C_p^o = f(T)$  curve (Fig. 3). This anomaly was reproduced each time the sample was cooled and  $C_p^o$  was measured. Similar anomalies were observed in the same range of temperatures for carbosilane dendrimers (typically lower than the fifth generation) with other terminal groups [16, 18, 19, 22, 24]. It was found that the detected heat capacity anomaly was due to the vibrational excitation of eclipsed groups of repeating fragments of the dendrimer upon its heating and the freezing of the vibrations when the compound was cooled. According to the McCullough thermodynamic classification [32], the transformations observed in the studied compounds can be attributed to an equilibrium relaxation transition of the order-disorder type.

**Table 1.** Experimental molar heat capacity [J K<sup>-1</sup> mol<sup>-1</sup>] of the G1[CH<sub>2</sub>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>]<sub>8</sub> carbosilane dendrimer:  $M(C_{120}H_{204}Si_{13}) = 2011.843 \text{ g/mol}$ 

| <i>Т</i> , К | $C_{ m p}^{ m o}$ | <i>Т</i> , К | $C_{ m p}^{ m o}$ | <i>Т</i> , К | $C_{ m p}^{ m o}$ | <i>Т</i> , К | $C_{ m p}^{ m o}$ | <i>Т</i> , К | $C_{ m p}^{ m o}$ | <i>Т</i> , К | $C_{ m p}^{ m o}$ |
|--------------|-------------------|--------------|-------------------|--------------|-------------------|--------------|-------------------|--------------|-------------------|--------------|-------------------|
| Seri         | ies 1             | 28.38        | 450.1             | 63.21        | 1030              | 128.87       | 1617              | 246.04       | 3553              | 385.5        | 4255              |
| 5.90         | 141               | 29.11        | 459.4             | 63.79        | 1053              | 131.44       | 1643              | 248.66       | 3566              | 388.5        | 4270              |
| 6.43         | 148               | 29.70        | 468.2             | 64.77        | 1058              | 134.02       | 1667              | 251.34       | 3580              | 391.5        | 4283              |
| 6.91         | 154               | 30.51        | 478.2             | 65.39        | 1072              | 136.60       | 1693              | 253.97       | 3593              | 394.5        | 4295              |
| 7.36         | 161               | 31.03        | 486.4             | 66.26        | 1081              | 139.18       | 1719              | 256.60       | 3605              | 397.5        | 4308              |
| 7.78         | 166               | 31.90        | 499.5             | 66.99        | 1104              | 141.76       | 1742              | 259.23       | 3618              | 400.5        | 4317              |
| 8.16         | 172               | 32.36        | 505.1             | 67.83        | 1109              | 144.34       | 1768              | 261.85       | 3631              | 403.5        | 4330              |
| 8.52         | 177               | 33.31        | 517.8             | 68.55        | 1123              | 146.93       | 1794              | 264.48       | 3644              | 406.5        | 4344              |
| 8.87         | 181               | 33.72        | 523.5             | 69.41        | 1117              | 149.51       | 1819              | 267.11       | 3657              | 409.5        | 4355              |
| 9.21         | 186               | 34.74        | 538.3             | 70.17        | 1107              | 152.10       | 1842              | 269.73       | 3670              | 412.5        | 4370              |
| 9.53         | 191               | 35.50        | 548.5             | 70.60        | 1074              | 154.69       | 1869              | 272.35       | 3683              | 415.5        | 4383              |
| 9.80         | 194               | 36.19        | 557.5             | 71.40        | 1041              | 157.29       | 1893              | 274.98       | 3696              | 418.5        | 4394              |
| 10.09        | 198               | 36.97        | 568.8             | 72.21        | 1030              | 159.88       | 1917              | 277.60       | 3709              | 421.5        | 4406              |
| 10.41        | 203               | 37.64        | 577.6             | 74.63        | 1046              | 162.47       | 1944              | 280.21       | 3722              | 424.5        | 4418              |
| 10.77        | 208               | 38.37        | 588.0             | 77.04        | 1083              | 165.07       | 1971              | 282.83       | 3735              | 427.5        | 4434              |
| 11.10        | 212               | 39.11        | 597.5             | 79.46        | 1112              | 167.70       | 1999              | 285.44       | 3748              | 430.5        | 4448              |
| 11.66        | 220               | 39.79        | 608.2             | 81.89        | 1141              | 170.30       | 2024              | 288.04       | 3761              | 433.5        | 4462              |
| 12.13        | 225               | 40.29        | 614.1             | 83.98        | 1161              | 172.89       | 2055              | 290.64       | 3774              | 436.5        | 4477              |
| 12.62        | 232               | 40.72        | 620.1             | 84.31        | 1167              | 175.50       | 2083              | 293.25       | 3787              | 439.5        | 4494              |
| 13.11        | 240               | 41.07        | 625.5             | 85.20        | 1179              | 178.10       | 2111              | 295.84       | 3799              | 442.5        | 4513              |
| 13.63        | 247               | 42.09        | 638.7             | 87.71        | 1205              | 180.71       | 2144              | 298.42       | 3812              | 445.5        | 4528              |
| 13.80        | 250               | 43.13        | 653.5             | Seri         | ies 2             | 183.32       | 2177              | 300.99       | 3825              | 448.5        | 4546              |
| 13.98        | 252               | 44.14        | 667.6             | 86.75        | 1195              | 185.92       | 2215              | 304.52       | 3842              | 451.5        | 4564              |
| 14.60        | 260               | 45.00        | 678.7             | 89.19        | 1222              | 188.53       | 2258              | 309.01       | 3864              | 454.5        | 4579              |
| 15.21        | 269               | 45.49        | 685.6             | 90.23        | 1233              | 191.15       | 2308              | 313.49       | 3886              | 457.5        | 4593              |
| 15.85        | 276.6             | 46.17        | 695.0             | 91.63        | 1249              | 193.76       | 2382              | 317.94       | 3909              | 460.5        | 4610              |
| 16.45        | 285.8             | 46.78        | 703.6             | 92.76        | 1259              | 195.62       | 2461              | 322.39       | 3930              | 463.5        | 4625              |
| 17.07        | 293.2             | 47.26        | 709.5             | 94.07        | 1274              | 196.36       | 2523              | 326.82       | 3952              | 466.5        | 4639              |
| 17.67        | 301.6             | 48.12        | 720.3             | 95.29        | 1286              | 198.18       | 2761              | 331.24       | 3974              | 469.5        | 4652              |
| 18.28        | 310.9             | 49.25        | 734.5             | 96.52        | 1299              | 198.93       | 2947              | 335.65       | 3996              | 472.5        | 4666              |
| 18.68        | 316.3             | 49.96        | 744.1             | 97.82        | 1311              | 201.46       | 3295              | 340.05       | 4018              | 475.5        | 4681              |
| 19.17        | 323.2             | 50.75        | 756.2             | 98.98        | 1325              | 204.04       | 3328              | 344.43       | 4039              | 478.5        | 4698              |
| 19.51        | 327.8             | 51.71        | 771.2             | 99.15        | 1327              | 206.65       | 3342              | Series 3     | (DSC)             | 481.5        | 4712              |
| 19.95        | 334.0             | 52.47        | 782.5             | 100.35       | 1337              | 209.30       | 3360              | 343.5        | 4028              | 484.5        | 4725              |
| 20.43        | 341.3             | 53.17        | 795.5             | 101.43       | 1348              | 211.92       | 3375              | 346.5        | 4048              | 487.5        | 4738              |
| 21.05        | 349.1             | 53.98        | 812.8             | 102.89       | 1364              | 214.54       | 3392              | 349.5        | 4061              | 490.5        | 4751              |
| 21.55        | 355.8             | 54.62        | 824.8             | 103.25       | 1368              | 217.16       | 3405              | 352.5        | 4078              | 493.5        | 4765              |
| 22.20        | 364.9             | 55.50        | 847.7             | 103.89       | 1375              | 219.78       | 3422              | 355.5        | 4096              | 496.5        | 4779              |
| 22.77        | 372.7             | 56.49        | 878.6             | 105.80       | 1395              | 222.40       | 3437              | 358.5        | 4111              | 499.5        | 4792              |
| 23.38        | 381.1             | 57.02        | 916.4             | 108.35       | 1421              | 225.02       | 3450              | 361.5        | 4128              | 502.5        | 4804              |
| 23.76        | 386.5             | 57.45        | 954.2             | 110.90       | 1445              | 227.65       | 3465              | 364.5        | 4147              | 505.5        | 4818              |
| 24.59        | 397.9             | 58.55        | 1020              | 113.45       | 1471              | 230.27       | 3475              | 367.5        | 4163              | 508.5        | 4832              |
| 25.07        | 404.4             | 59.21        | 1001              | 116.01       | 1497              | 232.90       | 3488              | 370.5        | 4178              | 511.5        | 4845              |
| 25.83        | 413.9             | 60.10        | 979.5             | 118.58       | 1520              | 235.53       | 3501              | 373.5        | 4196              | 514.5        | 4858              |
| 26.39        | 422.6             | 60.60        | 980.7             | 121.14       | 1545              | 238.15       | 3514              | 376.5        | 4212              | 517.5        | 4869              |
| 27.10        | 431.4             | 61.66        | 994.5             | 123.71       | 1570              | 240.78       | 3527              | 379.5        | 4227              | 520.5        | 4882              |
| 27.73        | 441.0             | 62.20        | 1012              | 126.30       | 1596              | 243.41       | 3540              | 382.5        | 4240              |              |                   |

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A Vol. 92 No. 2 2018



Fig. 3. Low-temperature anomaly of the heat capacity of the  $G1[CH_2CH_2C_6H_5]_8$  carbosilane dendrimer. BCD is the apparent heat capacity; BD is the normal (interpolated) trend of the heat capacity curve.

The infrared (IR) spectral data of dendrimers in [20] confirmed that the detected anomaly was caused by fine structural changes in lower-generation dendrimers. At  $T \approx 60$  K, the terminal groups of dendrimers have low mobility, but the methyl fragments of compounds can display reorientational motions. The occurrence of low-temperature structural anomalies in low-generation dendrimers with different terminal functional groups has a systematic character and does not depend on the nature of the dendrimers' surface layer.

The standard thermodynamic characteristics of low-temperature anomalies in the heat capacities of the  $G1[CH_2CH_2C_6H_5]_8$  dendrimer and other dendrimers studied earlier are given in Table 2. The anom-

**Table 2.** Standard thermodynamic characteristics of the low-temperature anomalies of the heat capacities of carbosilane dendrimers with different terminal functional groups

| Dendrimer                                                                             | Δ <i>T</i> , K | $\Delta_{\rm tr} H^{\circ},$<br>J/mol | $\Delta_{\rm tr} S^{\circ},$<br>J K <sup>-1</sup> mol <sup>-1</sup> |
|---------------------------------------------------------------------------------------|----------------|---------------------------------------|---------------------------------------------------------------------|
| $G1[CH_2CH_2C_6H_5]_8^*$                                                              | 53-75          | $1923\pm15$                           | $27.59\pm0.33$                                                      |
| G3[CH <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> ] <sub>32</sub> [22] | 49-72          | $263.5\pm2.6$                         | $3.68\pm0.05$                                                       |
| $G1[CH_2CH=CH_2]_8^*$ [16]                                                            | 62-73          | $414.2\pm2.5$                         | $6.00\pm0.05$                                                       |
| G3[CH <sub>2</sub> CH=CH <sub>2</sub> ] <sup>*</sup> <sub>32</sub> [16]               | 55-72          | $2422\pm15$                           | $35.4\pm0.4$                                                        |

\* The characteristics were calculated per mole of whole macromolecule of dendrimer.

alies' range of temperatures  $\Delta T$  was determined graphically. Enthalpy  $\Delta_{tr}H^{\circ}$  was calculated as the difference between the integrals over the apparent and normal (interpolated) heat capacity curves of dendrimer  $C_p^{\circ} = f(T)$  in the range of anomaly. Entropy  $\Delta_{tr}S^{\circ}$  was calculated in a similar manner from the  $C_p^{\circ} = f(\ln T)$  curves.

# Glass Transition and the Vitreous State

With subsequent heating, the  $C_p^o = f(T)$  curve of the G1[CH<sub>2</sub>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>]<sub>8</sub> dendrimer exhibited a transformation associated with its glass transition (Fig. 2). The glass transition occurred each time a sample was cooled below the glass transition temperature  $T_g^o$  and subsequently heated with repeated measurements of  $C_p^o$ . The heat capacity of the studied dendrimer changed smoothly and fairly regularly upon an increase in temperature, with the exception of anomalous regions. The  $C_p^o$  values of the dendrimer in the devitrified state grew more slowly when the temperature was raised.

The standard thermodynamic characteristics of the devitrified and glassy states of the G1[CH<sub>2</sub>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>]<sub>8</sub> dendrimer and other dendrimers studied earlier are given in Table 3. The interval of the glass transition  $\Delta T$  and the increase in heat capacity upon the glass transition  $\Delta C_p^o(T_g^o)$  were determined graphically. The glass transition temperature  $T_g^o$  was calculated according to Alford and Dole [33] from the inflection in the tem-

| Dendrimer                                                                              | $\Delta T$ | $T_{\rm g}^{\circ} \pm 1$ | $\Delta C_{\rm p}^{\circ} \ (T_{\rm g}^{\circ})$ | <i>S</i> °(0) |  |
|----------------------------------------------------------------------------------------|------------|---------------------------|--------------------------------------------------|---------------|--|
| Denarmier                                                                              | 1          | K                         | $J K^{-1} mol^{-1}$                              |               |  |
| $G1[CH_2CH_2C_6H_5]_8^*$                                                               | 176-215    | 198                       | 960 ± 10                                         | $245 \pm 3$   |  |
| G3[CH <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> ] <sub>32</sub> [22]  | 178-218    | 199                       | $140 \pm 2$                                      | $36 \pm 1$    |  |
| G6[CH <sub>2</sub> CH <sub>2</sub> C <sub>6</sub> H <sub>5</sub> ] <sub>256</sub> [22] | 178-219    | 201                       | $129 \pm 1$                                      | $33 \pm 1$    |  |
| G1[CH <sub>2</sub> CH=CH <sub>2</sub> ] <sup>*</sup> <sub>8</sub> [16]                 | 150-160    | 154                       | $406 \pm 5$                                      | $44 \pm 1$    |  |
| G3[CH <sub>2</sub> CH=CH <sub>2</sub> ] <sup>*</sup> <sub>32</sub> [16]                | 170-180    | 173                       | $1610 \pm 17$                                    | 417 ± 5       |  |
| $G6[CH_2CH=CH_2]^*_{256}$ [17]                                                         | 155-190    | 180                       | $14250\pm146$                                    | $3630\pm45$   |  |

 
 Table 3. Standard thermodynamic characteristics of the glass transition and glassy state of carbosilane dendrimers with different terminal functional groups

\* The characteristics were calculated per mole of whole macromolecule of dendrimer.

perature dependence of the dendrimer's entropy of heating  $[S^{\circ}(T)-S^{\circ}(0)]$ . Entropy of configuration  $S_{\text{conf}}^{\circ}$  was calculated using the equation proposed in [34]:

$$S_{\rm conf}^{\rm o} = \Delta C_{\rm p}^{\rm o}(T_{\rm g}^{\rm o}) \ln(T_{\rm g}^{\rm o}/T_{\rm K}), \qquad (1)$$

where  $T_{\rm K}$  is the Kauzmann temperature [35] and ratio  $(T_{\rm g}^{\rm o}/T_{\rm K}) = 1.29$  [36]. In determining  $S_{\rm conf}^{\rm o}$ , the above relation was assumed to also be true for the compound under study. Since the  $S_{\rm conf}^{\rm o}$  value was close to  $S^{\circ}(0)$ , it was logically assumed that  $S_{\rm conf}^{\rm o} = S^{\circ}(0)$  in determining absolute entropy  $S^{\circ}(T)$  of the dendrimer.

Table 3 shows that dendrimers with terminal allyl groups  $GX[CH_2CH=CH_2]_z$  devitrify at lower temperatures, compared to those with terminal phenylethyl groups  $GX[CH_2CH_2C_6H_5]_z$ . The observed difference is quite logical and is due to the higher molecular mobility of the terminal allyl groups in comparison with the phenylethyl groups, which contain low-mobility phenyl fragments.

In [22], we presented a diagram of temperatures of the glass transition  $T_g^o$  as a function of generation number of dendrimers. It was found that the glass transition temperature depends more on the nature and structure of terminal groups than on the generation number of dendrimers. In addition,  $T_g^o$  ceases to depend on the dendrimer generation number starting with a particular generation (typically the fourth or fifth). The change in the composition and structure of the surface layer of dendrimers is thus an efficient tool for controlling their properties.

#### Standard Thermodynamic Functions

To calculate the standard thermodynamic functions of the  $G1[CH_2CH_2C_6H_5]_8$  dendrimer, its experimental heat capacity values were extrapolated from the initial measurement temperature to  $T \rightarrow 0$  using the Debye heat capacity function [37]:

$$C_{\rm p}^{\rm o} = n \mathbf{D}(\Theta_{\rm D}/T), \qquad (2)$$

where **D** is the Debye heat capacity function; n = 3 and  $\Theta_{\rm D} = 62.8$  K are specially selected parameters in the range of 7–10 K. The parameters were selected so that Eq. (2) described the experimental  $C_{\rm p}^{\rm o}$  values of the dendrimer with an error of  $\pm 1.5\%$ . In calculating the functions, it was assumed that at T < 6 K, Eq. (2) reproduces the  $C_{\rm p}^{\rm o}$  values of the substance with the same accuracy.

The standard thermodynamic functions of the G1[CH<sub>2</sub>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>]<sub>8</sub> carbosilane dendrimer are given in Table 4. Enthalpies [ $H^{\circ}(T) - H^{\circ}(0)$ ] and entropies [ $S^{\circ}(T) - S^{\circ}(0)$ ] were calculated via numerical integration of the  $C_{p}^{\circ} = f(T)$  and  $C_{p}^{\circ} = f(\ln T)$  curves, respectively. The Gibbs function [ $G^{\circ}(T) - H^{\circ}(0)$ ] was calculated using the values of the enthalpies and entropies at corresponding temperatures. A similar procedure for calculating standard thermodynamic functions was presented in [38].

The standard entropy of formation  $\Delta_{\rm f}S^{\circ}$  of the G1[CH<sub>2</sub>CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>]<sub>8</sub> dendrimer in the devitrified state at T = 298.15 K was calculated using the obtained values of [ $S^{\circ}(T) - S^{\circ}(0)$ ] at the same temperature (Table 4), residual entropy  $S^{\circ}(0)$  (Table 3), and absolute entropies of the elementary substances: C(gr), H<sub>2</sub>(g), and Si(cr) [39, 40]. The resulting value  $\Delta_{\rm f}S^{\circ}(G1[CH_2CH_2C_6H_5]_8) = -(9802 \pm 196)$  J K<sup>-1</sup> mol<sup>-1</sup> corresponds to the process

$$120C(gr) + 102H_2(g)$$
  
+  $13Si(cr) \rightarrow C_{120}H_{204}Si_{13}(d),$ 

where (gr) is graphite, (g) is gas, (cr) is crystal, and (d) is the devitrified state.

| ΤV     | $C_{\rm p}^{\rm o}$ | $[S^{\circ}(T) - S^{\circ}(0)]$ | $[H^{\circ}(T) - H^{\circ}(0)]$ | $-[G^{\circ}(T) - H^{\circ}(0)]$ |  |
|--------|---------------------|---------------------------------|---------------------------------|----------------------------------|--|
| 1, к   | J K <sup>-1</sup>   | mol <sup>-1</sup>               | kJ/mol                          |                                  |  |
|        |                     | Amorphous (glassy) state        | e                               |                                  |  |
| 5      | 109                 | 51.9                            | 0.184                           | 0.0756                           |  |
| 10     | 197                 | 160                             | 0.984                           | 0.611                            |  |
| 15     | 266                 | 252                             | 2.14                            | 1.65                             |  |
| 20     | 334.5               | 338.2                           | 3.641                           | 3.124                            |  |
| 25     | 403.3               | 420.3                           | 5.485                           | 5.021                            |  |
| 30     | 472.2               | 499.9                           | 7.674                           | 7.322                            |  |
| 35     | 541.2               | 577.9                           | 10.21                           | 10.02                            |  |
| 40     | 610.4               | 654.6                           | 13.09                           | 13.10                            |  |
| 45     | 679.0               | 730.5                           | 16.31                           | 16.56                            |  |
| 50     | 744.5               | 805.5                           | 19.87                           | 20.40                            |  |
| 60     | 983.2               | 960.6                           | 28.42                           | 29.21                            |  |
| 70     | 1110                | 1125                            | 39.10                           | 39.65                            |  |
| 80     | 1123                | 1267                            | 49.77                           | 51.62                            |  |
| 90     | 1232                | 1406                            | 61.54                           | 64.99                            |  |
| 100    | 1335                | 1541                            | 74.36                           | 79.73                            |  |
| 110    | 1437                | 1673                            | 88.22                           | 95.80                            |  |
| 120    | 1534                | 1802                            | 103.1                           | 113.2                            |  |
| 130    | 1630                | 1929                            | 118.9                           | 131.8                            |  |
| 140    | 1726                | 2053                            | 135.7                           | 151.7                            |  |
| 150    | 1823                | 2175                            | 153.4                           | 172.9                            |  |
| 160    | 1920                | 2296                            | 172.1                           | 195.2                            |  |
| 170    | 2022                | 2416                            | 191.8                           | 218.8                            |  |
| 180    | 2141                | 2534                            | 212.6                           | 243.6                            |  |
| 190    | 2253                | 2653                            | 234.6                           | 269.5                            |  |
| 198    | 2348                | 2748                            | 253.0                           | 291.1                            |  |
|        | At                  | norphous (devitrified) st       | ate                             |                                  |  |
| 198    | 3308                | 2748                            | 253.0                           | 291.1                            |  |
| 200    | 3319                | 2781                            | 259.6                           | 296.6                            |  |
| 210    | 3367                | 2944                            | 293.0                           | 325.3                            |  |
| 220    | 3424                | 3102                            | 327.0                           | 355.5                            |  |
| 230    | 3475                | 3255                            | 361.5                           | 387.3                            |  |
| 240    | 3524                | 3404                            | 396.5                           | 420.6                            |  |
| 250    | 3573                | 3549                            | 431.9                           | 455.4                            |  |
| 260    | 3622                | 3690                            | 467.9                           | 491.6                            |  |
| 270    | 3672                | 3828                            | 504.4                           | 529.1                            |  |
| 280    | 3721                | 3962                            | 541.3                           | 568.1                            |  |
| 290    | 3771                | 4094                            | 578.8                           | 608.4                            |  |
| 298.15 | 3811                | 4199                            | 609.7                           | 642.2                            |  |
| 300    | 3820                | 4222                            | 616.8                           | 650.0                            |  |
| 310    | 3869                | 4348                            | 655.2                           | 692.8                            |  |
| 320    | 3919                | 4472                            | 694.1                           | 736.9                            |  |
| 330    | 3968                | 4593                            | 733.6                           | 782.3                            |  |

**Table 4.** Standard thermodynamic functions of the  $G1[CH_2CH_2C_6H_5]_8$  carbosilane dendrimer:  $M(C_{120}H_{204}Si_{13}) = 2011.843 \text{ g/mol}$ 

| ТК           | $C_{\mathrm{p}}^{\circ}$ | $[S^{\circ}(T) - S^{\circ}(0)]$ | $[H^{\circ}(T) - H^{\circ}(0)]$ | $-[G^{\circ}(T) - H^{\circ}(0)]$ |  |
|--------------|--------------------------|---------------------------------|---------------------------------|----------------------------------|--|
| <i>1</i> , K | J K <sup>-1</sup>        | mol <sup>-1</sup>               | kJ/mol                          |                                  |  |
| 340          | 4018                     | 4713                            | 773.5                           | 828.8                            |  |
| 350          | 4065                     | 4830                            | 813.9                           | 876.5                            |  |
| 360          | 4122                     | 4945                            | 854.8                           | 925.4                            |  |
| 370          | 4178                     | 5059                            | 896.3                           | 975.4                            |  |
| 380          | 4228                     | 5171                            | 938.4                           | 1027                             |  |
| 390          | 4274                     | 5281                            | 980.9                           | 1079                             |  |
| 400          | 4317                     | 5390                            | 1024                            | 1132                             |  |
| 410          | 4359                     | 5497                            | 1067                            | 1187                             |  |
| 420          | 4402                     | 5603                            | 1111                            | 1242                             |  |
| 430          | 4449                     | 5707                            | 1155                            | 1299                             |  |
| 440          | 4498                     | 5810                            | 1200                            | 1356                             |  |
| 450          | 4551                     | 5911                            | 1245                            | 1415                             |  |
| 460          | 4604                     | 6012                            | 1291                            | 1475                             |  |
| 470          | 4657                     | 6111                            | 1337                            | 1535                             |  |
| 480          | 4706                     | 6210                            | 1384                            | 1597                             |  |
| 490          | 4752                     | 6308                            | 1431                            | 1659                             |  |
| 500          | 4794                     | 6404                            | 1479                            | 1723                             |  |
| 510          | 4835                     | 6499                            | 1527                            | 1787                             |  |
| 520          | 4885                     | 6594                            | 1576                            | 1853                             |  |

Table 4.(Contd.)

The errors of the calculated function values are 2, 0.5, 0.2, and 2% for  $C_p^0$ , 2.3, 0.8, 0.6, and 2.3% for  $[S^{\circ}(T) - S^{\circ}(0)]$ , 2.2, 0.7, 0.5, and 2.2% for  $[H^{\circ}(T) - H^{\circ}(0)]$ , and 3, 1, 0.9, and 3% for  $[G^{\circ}(T) - H^{\circ}(0)]$  in the range of temperatures of 6–15, 15–40, 40–350, and 350–520 K, respectively.

### ACKNOWLEDGMENTS

This work was financially supported by the RF Ministry of Education and Science, project no. 4.5706.2017/BCh; by the Russian Foundation for Basic Research, project nos. 15-03-02112 a and 16-33-00713 mol\_a; and by the Russian Science Foundation, project no. 16-13-10521.

#### REFERENCES

- 1. D. A. Tomalia, H. Baker, J. Dewald, et al., Polym. J. **17**, 117 (1985).
- C. J. Hawker and J. M. J. Fréchet, J. Am. Chem. Soc. 112, 7638 (1990).
- 3. J.-P. Majoral and A.-M. Caminade, Chem. Rev. 99, 845 (1999).
- A. W. Bosman, H. M. Janssen, and E. W. Meijer, Chem. Rev. 99, 1665 (1999).
- G. R. Newkome, E. He, and C. N. Moorefield, Chem. Rev. 99, 1689 (1999).
- A. M. Muzafarov and E. A. Rebrov, J. Polym. Sci. A: Polym. Chem. 46, 4935 (2008).
- A. M. Muzafarov, N. G. Vasilenko, E. A. Tatarinova, G. M. Ignat'eva, V. M. Myakushev, M. A. Obrezkova,

I. B. Meshkov, N. V. Voronina, and O. V. Novozhilov, Polymer Sci., Ser. C 53, 48 (2011).

- S. C. Zimmerman and L. J. Lawless, Top. Curr. Chem. 217, 95 (2001).
- S. M. Grayson and J. M. J. Fréchet, Chem. Rev. 101, 3819 (2001).
- J. M. J. Fréchet, J. Polym. Sci. A: Polym. Chem. 41, 3713 (2003).
- 11. C. Schlenk and H. Frey, Monatsh. Chem. **130**, 3 (1999).
- 12. D. Astruc, E. Boisselier, and C. Ornelas, Chem. Rev. **110**, 1857 (2010).
- S. Svenson and D. A. Tomalia, Adv. Drug Deliv. Rev. 57, 2106 (2005).
- 14. R. K. Tekade, P. V. Kumar, and N. K. Jain, Chem. Rev. **109**, 49 (2009).
- S. H. Medina and M. E. H. El-Sayed, Chem. Rev. 109, 3141 (2009).
- B. V. Lebedev, M. V. Ryabkov, E. A. Tatarinova, E. A. Rebrov, and A. M. Muzafarov, Russ. Chem. Bull. 52, 545 (2003).
- N. N. Smirnova, B. V. Lebedev, N. M. Khramova, L. Ya. Tsvetkova, E. A. Tatarinova, V. D. Myakushev, and A. M. Muzafarov, Russ. J. Phys. Chem. A 78, 1196 (2004).

- N. N. Smirnova, O. V. Stepanova, T. A. Bykova, et al., Thermochim. Acta 440, 188 (2006).
- N. N. Smirnova, A. V. Markin, I. A. Letyanina, S. S. Sologubov, N. A. Novozhilova, E. A. Tatarinova, and A. M. Muzafarov, Russ. J. Phys. Chem. A 88, 735 (2014).
- A. V. Markin, S. S. Sologubov, N. N. Smirnova, et al., Thermochim. Acta 617, 144 (2015).
- S. S. Sologubov, A. V. Markin, N. N. Smirnova, et al., J. Phys. Chem. B 119, 14527 (2015).
- S. S. Sologubov, A. V. Markin, N. N. Smirnova, et al., J. Therm. Anal. Calorim. 125, 595 (2016).
- 23. A. V. Markin, Ya. S. Samosudova, N. N. Smirnova, et al., J. Therm. Anal. Calorim. **105**, 663 (2011).
- N. N. Smirnova, A. V. Markin, Ya. S. Samosudova, G. M. Ignat'eva, E. Yu. Katarzhnova, and A. M. Muzafarov, Russ. J. Phys. Chem. A 87, 552 (2013).
- 25. Ya. S. Samosudova, A. V. Markin, N. N. Smirnova, et al., J. Chem. Thermodyn. **98**, 33 (2016).
- N. A. Novozhilova, O. A. Serenko, V. I. Roldughin, et al., Silicon 7, 155 (2015).
- 27. J. Meija, T. B. Coplen, M. Berglund, et al., Pure Appl. Chem. **88**, 265 (2016).
- 28. V. M. Malyshev, G. A. Mil'ner, E. L. Sorkin, et al., Prib. Tekhn. Eksp., No. 6, 195 (1985).

- 29. R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, J. Chem. Thermodyn. **29**, 623 (1997).
- G. W. H. Höhne, W. F. Hemminger, and H.-J. Flammersheim, *Differential Scanning Calorimetry* (Springer, Berlin, Heidelberg, 2003).
- 31. V. A. Drebushchak, J. Therm. Anal. Calorim. **79**, 213 (2005).
- Physics and Chemistry of Solid State of Organic Compounds, Ed. by Yu. A. Pentin (Mir, Moscow, 1967) [in Russian].
- 33. S. Alford and M. Dole, J. Am. Chem. Soc. 77, 4774 (1955).
- 34. G. Adam and J. H. Gibbs, J. Chem. Phys. **43**, 139 (1965).
- 35. W. Kauzmann, Chem. Rev. 43, 219 (1948).
- 36. A. B. Bestul and S. S. Chang, J. Chem. Phys. 40, 3731 (1964).
- 37. P. Debye, Ann. Phys. (N.Y.) 344, 789 (1912).
- 38. B. V. Lebedev, Thermochim. Acta 297, 143 (1997).
- J. D. Cox, D. D. Wagman, and V. A. Medvedev, *CODATA Key Values for Thermodynamics* (Hemisphere, New York, 1989).
- 40. M. W. Chase, Jr., J. Phys. Chem. Ref. Data, Monograph No. 9 1–2, 1 (1998).

Translated by K. Utegenov