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Abstract—A microscopic theory of adsorption, based on a discrete continuum lattice gas model for noninert
(including deformable) adsorbents that change their lattice parameters during adsorption, is presented. Cases of
the complete and partial equilibrium states of the adsorbent are considered. In the former, the adsorbent consists
of coexisting solid and vapor phases of adsorbent components, and the adsorbate is a mobile component of the
vapor phase with an arbitrary density (up to that of the liquid adsorbate phase). The adsorptive transitioning to
the bound state changes the state of the near-surface region of the adsorbent. In the latter, there are no equilib-
rium components of the adsorbent between the solid and vapor phases. The adsorbent state is shown to be deter-
mined by its prehistory, rather than set by chemical potentials of vapor of its components. Relations between the
microscopic theory and thermodynamic interpretations are discussed: (1) adsorption on an open surface, (2)
two-dimensional stratification of the adsorbate mobile phase on an open homogeneous surface, (3) small
microcrystals in vacuum and the gas phase, and (4) adsorption in porous systems.
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INTRODUCTION

In describing adsorption processes, the thermody-
namic methods developed by Gibbs [1] have tradition-
ally been used for interpreting experimental results. In
thermodynamics, the field of solid bodies remains the
one most open, so it has been continuously debated
and gradually refined over the last century [2–20]. In
the theory of adsorption, one work in which the adsor-
bent was assumed to be inert has long been considered
fundamental [4]. This statement has gradually been
challenged because of other experimental works [21–
48]. The problem of considering adsorbent deforma-
bility during adsorption relates the state of the adsor-
bate’s physicochemical properties to changes in the
adsorbent’s mechanical state. A transition from the
adsorptive to the bound state changes that of the
adsorbent’s near-surface region. If the adsorbent is
deformed, it cannot be considered absolutely inert,
and we must consider how a change in adsorbate den-
sity alters the elastic characteristics of a solid adsor-
bent and its vibrational spectrum. Generally speaking,
greater changes occur in the adsorbent that alter its
surface composition and structure.

In adsorption experiments, the adsorbent can be in
the state of complete or partial internal chemical equi-
librium. In the first case, the densities of the elements
coexisting with elements in vapor correspond to the

equilibrium state of the adsorbent when there is no
adsorbate. This state is basic (standard) with respect to
the adsorption process: all thermodynamic states of
the system must be counted from it. In the second
case, there is no equilibrium of adsorbent components
between the solid and vapor phases. The adsorbent
state is not determined by the chemical potentials of
vapor phases of its components. The adsorptive con-
centration is usually much higher than the vapor con-
centrations of adsorbent elements, so both adsorbent
and adsorbate can be considered immiscible phases,
even if adsorption occurs inside the system of adsor-
bent pores. (The absorption process is associated with
the embedding of adsorptive atoms/molecules into the
incorporation and substitution sublattices of the
absorbent, and this system is regarded as mixable.)
Adsorption on the nonequilibrium deformable adsor-
bent can also change the state of its near-surface
region. In chemisorption, this is due to the compara-
ble binding energies between atoms of a solid and the
adsorbent–adsorbate relationship [49–52]. To a lesser
extent, this is also possible for physical adsorption.
The adsorbent nonequilibrium state in the experiment
is either virtually frozen and determined by its prehis-
tory, or it evolves and must be described by kinetic
equations. For instance, the diffusion exchange of
components between the adsorbent bulk and its near-
surface region is observed. The diffusion evolution of
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systems was considered in [53–55], but these equa-
tions are not discussed here.

This work presents the microscopic theory of
adsorption on noninert adsorbents, deformable and
otherwise, which reflects the results from theoretical
works on the describing solid-phase systems using the
discrete-continuum lattice gas model (LGM) [54–
61]. One difference between describing deformable
adsorbents and the rigid ones considered earlier is the
need to consider the adsorbate and adsorbent proper-
ties identically, even though the energies of adsor-
bate–adsorbate interaction and interaction between
adsorbent atoms can differ substantially (up to one
order of magnitude), while the relaxation times of the
adsorbate mobile phase and the slow phase of adsor-
bent atoms can differ by more than ten orders of mag-
nitude (which underlies the approximation in [4]).
Equations are presented that describe both adsorbate
and deformable adsorbent behavior, first in states of
full equilibrium and then in partial equilibrium. This
allows discussion of ways to apply equations [54–61]
to typical problems of the theory of adsorption with
regard to adsorbent noninertness and its boundaries:
(1) adsorption on an open surface (vacuum, vapor, liq-
uid); (2) two-dimensional vapor–liquid stratification
on an open homogeneous surface; (3) small micro-
crystals and adsorption on them; and (4) microporous
systems filled with an adsorbate.

Initial Positions [54–61]
Let us consider a multicomponent mixture of s par-

ticle types (more exactly, s is the number of occupancy
states of some site f, which equals the number of the
types of molecules (s − 1) and vacancies i = V in the
mixture). The complete set of equations contains ones
for bulk phase states and the region of transition
between the phases. To illustrate how the half-spaces
of solid and liquid regions join with each other and
close the complete set of equations, we shall limit our-
selves to considering interactions z of nearest neigh-
bors and the case of a layered structure of the interface
between coexisting and immiscible phases (including
distinctions in the numbers of particle types in differ-

ent half-spaces): z = , where zqp is the num-
ber of neighboring sites of a layer: р = q, q ± 1. If the
coexisting layering solid–mobile phase (vapor or liq-
uid) phases are considered, the number of compo-
nents in the system is s. The number of components in
the adsorbent is s2, and the number of components in
the mobile phase is s1. Hence, the maximum number
of system components s = s1 + s2.

The parameters of the theory are those of the pair
potential functions of interactions between the com-
ponents. Lateral interactions of the ij components are
described by the Mie potential

,

+

= −∑
1
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qpp q
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where  are the distances between the i and j particles

at different f and g sites;  and  are the pair poten-
tial parameters, n and m are the Mie potential param-
eters (n = 12 and m = 6 correspond to the Lennard–
Jones (LD) potential). Interactions between particles
with vacancies are equal to zero: .

Layer concentration distributions are determined
by local concentrations  characterizing the proba-
bilities of layer site q being occupied by particle i; 1 ≤
i ≤ sq, sq is the number of components in layer q; 1 ≤ q ≤
t, t is the number of monolayers in the transition

region of the interface,  = 1; and pair functions

 characterizing the probability of components i and
j being at the nearest sites of q and p monolayers; p =
q, q ± 1. Normalizing relations for the pair functions of
components have the form

, .

The  value is the local numerical density of particles
i at the q layer site. For the entire system, θi = Ni/M
determines the concentration of component i (where
Ni is the number of i-type particles, and М is the num-
ber of sites). Its relationship with generally accepted
concentration ni (the number of i-type particles in the
unit volume) is written as θi = niv0, where v0 is the aver-
age site volume.

If there is an equilibrium distribution of system
components over space, functions  obey the quasi-
chemical approximation (QCA) equation used in the-
ory [54–61] and in this work:

(1)

otherwise, the evolution of pair functions must be cal-
culated using kinetic equations [62–64].

In the microscopic theory, it is enough to know the
potential interaction functions of components in order
to obtain the equations of state of the adsorbent bulk
phase and the mobile phase consisting of the vapor of
the adsorbent and adsorptive elements [54–56, 59–
61]. The adsorbate layers are numbered from the first
surface monolayer (q = 1) to the mobile phase bulk;
the number of layers in the transition region is denoted
as tmob. The adsorbent layers are numbered from its
planar surface into its bulk. The q index, which
changes from 1 (the adsorbent surface layer) to tsol (the
layer corresponding to the volume of the adsorbent
phase), is maintained for numbering the adsorbent
layers in the backward direction. The layer with q = 0
formally corresponds to the plane between the first
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sponds to the half-space of the adsorbent phase, and
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the index “mob” corresponds to the half-space of the
adsorbate phase. If the adsorbent is inert, it is enough
to determine its surface composition and structure to
formulate surface potential  and calculate its poten-
tial relief and force constants for local vibrations [57].
If the adsorbent is not inert, adsorption or the external
pressure of the unadsorbed mobile phase affects the
state of surface atoms, altering bond lengths 

(where  is the distance between the i and j atoms at
the sites of layers q and p) between the near-surface
atoms inside a transition region with width tsol. Know-

ing partial contributions  from the neighboring
pairs of molecules ij and the character of the spatial
distribution of components , we can calculate the

average lattice constant: λqp = .

Let V be the volume of a system consisting of М
particles, including vacancies: V = M, and 
is the average cell volume of the system. We designate
the local cell volume with number q via

, where  is the form fac-
tor. It is related to the total system volume V through
the numbers of pairs of bound f and g sites as

(2)

where  corresponds to the neighboring sites in
the direction of axis σ = x, y, z; the average bond
lengths between sites  correspond to the nearest
neighbors determining cell volumes vf with number f.
The lattice symmetry determines the transition from
the numbers of neighboring sites  to number zqp
and site types р = q, with q ± 1 corresponding to dif-
ferent monolayers. Weight volume fractions  =
1/tm,s, where tm,s is the number of monolayers in the

subsystem (  = 1) characterizing the frac-
tion of q type sites, correspond to heterogeneous layers
of each of the phases. If a full system is considered, a
separate phase layer is normalized to the value Fq =
1/(tmob +tsol).

Local Partial Equilibrium Isotherms

Local partial concentrations (Рi) of i compo-
nents at the sites of layer q are functions of the total
ensemble of partial pressures {Pi}, 1 ≤ i ≤ (smob − 1),
and are determined at set of partial pressures {Рi} from
the equality condition of the chemical potential
between adsorbate i in the considered lattice system
and the thermostat (1 ≤ q ≤ tmob), and between the
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atoms of a solid mixture and the thermostat (1 ≤ q ≤
tsol), {Pi}, 1 ≤ i ≤ (ssol − 1). The states of adsorbate and
adsorbent site occupancy are identically characterized
by the local retention coefficients of components i (in
adsorption, these are local partial Henry coefficients).
The total occupancy of the system as a function of
external pressure {Рj} is written in the form of weighted
summands from the local partial isotherms for each
monolayer of the adsorbate and the adsorbent, which
have the form [60–63]

(3)

where  is the difference
between the configurational components of chemical
potentials of component i and the vacancy that deter-
mines the local equilibrium at the site of layer q;  is
the function of nonideality with allowance for lateral
interactions  between particles at neighboring sites
of layer p (q, q ± 1) and particle i in layer q. It reflects
the effect the neighbors of component i at the site in
layer q have on its internal motions. For the mobile
phase,

for the adsorbent,

.
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number of neighboring vacancies, we have 

. Functions  are the con-
ventional probability of a j-type particle being at a site
in layer p near an i-type particle in layer q. In functions

, designations are introduced for 
(the statistical sum of internal motions of compo-
nent i at a site in layer q is 

 for a f luid (see [59]

for details) and 
for a solid. The distinctions between the internal
motions of component i at a site in layer q reflects the
existence of two branches of isotherms for the chemi-
cal potential of the component in different phases
[56]. The distinctions between a solid and a f luid are
apparent in the procedures for averaging over the
vibrations and displacements of the centers of mass
with functions , where  is the distance
between the centers of cells in neighboring layers q and
p (see [59, 65]).

In the equilibrium state of the adsorbent, 
for local isotherms in formulas (3) because the poten-
tial interaction functions of adsorbent and absorbate
atoms  are reflected in the functions of
nonideality.

Free Energies of Layered Systems
Free energy F of a multicomponent mixture con-

sists of three summands, F = Flat + Fvib + Ftr =

, describing lattice con-
tributions Flat from interparticle interaction and the
contributions from the vibrational Fvib and transla-
tional Ftr (none for the adsorbent) motions of compo-
nents in each layer in the transitional region. Function

 explicitly reflects the local change in lat-
tice lengths. The potential energy and entropy of het-

erogeneous layers in have the form

(4)

where  is the energy of component i in layer q in the

adsorbent field [57, 63];  and  are the single-
and double-particle contributions to entropy; and t is
the number of monolayers in the transition region of
the interface. Here and below, the sum over particle

types in  excludes the zero summands from vacan-
cies, while the entropy contains statistical weights
reflecting the existence of vacancies. The contribu-

tions from lateral interactions to  for components i
at sites of layer q are described by the expressions for
the adsorbent and the mobile phase, which have iden-
tical structures:

(5)

Here, the cluster distribution functions of contribu-
tions are used:

the other designations are introduced above. The
expression for entropy through the cluster distribution
is written as
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The structure of the S2 contribution is such that

pair functions  and  belong to the cor-
related particle distribution over lattice sites, and

 corresponds to random particle distribu-

tion .
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(8)

where the k(qp) index determines the state of the near-
est neighbor of type 1 ≤ j ≤ s around the central particle
i in layer q. Integration in (8) is therefore performed over
corresponding displacements , as in formula (5).
The frequency of vibrational motion is calculated for a
fixed arrangement of all neighbors  [56, 59].

The free energy of the translational motion of mol-
ecules of the mobile phase is

(9)

where the statistical sum of the translational motion,
function , depends on variables con-
taining variable lengths between mixture components

, p = q, q ± 1 (for details see [59]). Equations (4)–
(8) are written analogously for a solid and the mobile
phase. Loss of the translational degree of freedom by
particles in the mobile phase of the adsorbent results in
disintegration, as mentioned above for the function of
nonideality in formula (3) [59]. Equations (4)–(9) dif-
fer from the expressions in [59] because of the transi-
tion to a more detailed description of the distribution
of neighbor pairs ij in , with respect to average cell
sizes . Note that it is generally necessary to consider
the effect vibrational motion has on a change in lateral
interaction parameters, in the form [56, 63]

where the averaging procedure depends on the calcu-
lations for the vibrational spectrum. Even in the sim-
plest case of considering the motion of the central par-
ticle in a field of stationary neighbors, we find that
anharmonic effects must be considered. Renormal-
ized  value must be included in all expressions writ-
ten above in formulas (4)–(9) and those used below.
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Local Mechanical Equilibria

The presented expressions for equilibrium free
energy F( ) of an adsorbate–adsorbent system are

used to find bond length sets  from the micro-
scopic conditions for the local mechanical equilibrium
of all particles in a system at constant temperature Т
[60, 61]:

(10)

where , Pq is the local mechanical pres-
sure in a cell of layer q with respect to a change in the
number of vacancies due to the deformation of cell q in
the system and the isothermal exchange of different
types of particles with a reservoir. The microscopic
Gibbs–Duhem equation [60, 61] yields the expression

, (11)

where  is the difference between the configurational
components of the chemical potentials of component
i and a vacancy, which is expressed by Eq. (3) of the
local partial isotherm. The upper limit of integration

in (11) is the full occupancy density (θq = ) of
the local cell q. In the equilibrium state, integration
over density can be performed using isothermal bonds
in any order until we reach both total occupancy 

and partial occupancy  that correspond to this equi-
librium state at given chemical potentials

, depending on the partial pressure of
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The number of Eqs. (12) coincides with the number of
unknown bond lengths . Ways of simplifying the

calculation of  were discussed in [60].

Surface Tension

Knowledge of the local components of a pressure
tensor allows the calculation of surface tension. The
determination of the surface tension of a spherical
droplet is generally ambiguous [6, 66–68], so different
values of surface tension σr are obtained, depending
on the choice of the reference line of tension ρr. For
planar boundaries, however, this ambiguity is
removed. The surface tension for planar and spherical
interfaces is expressed as

, (13)

where Fq = Nq/М is the fraction of monolayer q sites,

M = ; Мq is the number of sites in layer q;
and М is a number of all sites in the transitional region,
from q = 2 to κ − 1. For the planar boundary in
Eq. (13), layer weights Fq are reduced, and the known
Becker equation is obtained [68].

For a layered structure on planar (and spherical
curved) boundaries, we move to mean forces

,

where  denotes the coefficients corresponding to
the macroscopic symmetry of the system, which are
related to the dimensionality of the system space d
(d = 2 or 3) and the average components of pressure

tensor  [60, 61];
(qp, α) denotes the angle between direction α (α = N
and T correspond to the normal and tangential compo-
nents of the local pressure tensor in layer q of a planar or
spherical surface) and the direction of the bond between
sites in layers q and p. The average local pressure is
related to the pressure tensor components by routine
macroscopic expression Pq = .
(For a three-dimensional near-surface region of the
adsorbent,  = 3/4 and  = 3/2.)

All of the above expressions are self-consistent
equations describing the distributions of mixture com-
ponents in the near-surface adsorbate–adsorbent
region, and bond lengths between all components of
immiscible and coexisting equilibrium phases.
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Nonequilibrium Adsorbents

For the nonequilibrium adsorbent in the expressions
for local isotherms (3), . If a planar surface is
chemically homogeneous, all sites of one monolayer
belong to the same type. Upon moving away from the
surface, the effect of the surface potential diminishes as

 for an
averaged potential function of type (ns − ms); εis and σis
are the parameters of the molecule–wall potential,
ns = 10 or 9, and ms = 4 or 3, respectively [57, 63].

Here, ; and  is the distance
between a molecule in layer q and the nearest surface.
If the adsorbent consists of different types of atoms, 
is the sum of potential contributions:

where  and  are the parameters of the LD
potential between adsorbate i in layer q and atom j(s)
of the adsorbent: these are atom–atom LD interac-
tions before averaging over layers or the half-space [63,
69–71].

For a nonequilibrium adsorbent, the distribution of
its components can be determined at current time t by
functions  and  for 1 ≤ i, j ≤ (ssol − 1). These
distributions along the normal to the solid surface can
differ due to the values  corresponding to
the homogeneous bulk phase of a solid, and

 for 1 ≤ i, j ≤ (ssol – 1).

Equation (1) for pair functions and Gibbs–Duhem
equation (11) cannot be applied to the adsorbent non-
equilibrium state, so we must use the expressions for
local stresses obtained for nonequilibrium conditions
in order to calculate the mechanical equilibria [54].
The form of the expression for pressure tensor compo-
nents  [54] depends on the type of phase.

For a solid (number of components s1),

(14)

for the mobile phase (number of components s2),
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(15)

where sp = s1 if p corresponds to the mobile phase, and
sp = s2 if р corresponds to the adsorbent. The 1sol1mob
bond has different numbers of components in layers
1sol and 1mob.

Internal energy  is implicitly related to vibra-

tional spectrum ω( ) for particle arrangement ,
so any procedure for varying distances between the
particles requires recalculation of the vibrational spec-
trum for different particle arrangements. At long times
when there is an equilibrium frequency distribution
(but not the components) of a solid (i.e., when there is
an isothermal state of the vibrational subsystem), the
local contribution from vibrations to the free Helm-
holtz energy of the system must be taken into account:

. In both cases, determining the
particle coordinates means determining the system’s
volume [54].

In the equilibrium state, expressions (14) and (15)
transform into the above Gibbs–Duhem equations for
the respective phases. For the bulk phase, Eq. (15)
transforms into the familiar Irving–Kirkwood equa-
tion [66, 72], but it cannot be applied to a surface
monolayer (q = 1) for localized adsorption, or for any
solid phase. For a surface monolayer, Eq. (15) is
rewritten as , where the
first summand reflects the contribution from mobile
components (their number is s1), and the second is the
contribution from stationary adsorbent components
(their number is s2), determined by different types of
lateral interactions with the respective neighbors [54].
The same distinction is observed in all of the above
formulas that contain the 1sol1mob bond between the
adsorbate and the adsorbent.

For a nonequilibrium adsorbent, expression F(t)
for the free energy is a nonequilibrium analog of the
equilibrium free energy for a given moment t [64]. The
same analogs are introduced for other thermodynamic
Gibbs potentials G, entropy S, internal energy U =
Elat + Evib + Etr ( ; the two latter contri-
butions refer to the internal energy of vibrational and
translational motions). A mobile subsystem is always
in an equilibrium distribution, but it is adjusted to the
established nonequilibrium adsorbent state. Formulas
for functions F(t), G(t), S(t), and U(t) are similarly
expressed through the local concentrations  and

pair functions , regardless of whether they are

equilibrium or nonequilibrium [64]. Functions 
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and  must be governed by kinetic equations of the
processes that form an adsorbent by a given time.
Through them, we can calculate the respective non-
equilibrium analogs of surface tension as an excess
value of surface free energy σ(t), depending on time.
Being functions of time, these characteristics trans-
form into the limiting values of equilibrium surface
tension for long periods of time. A similar way of intro-
ducing dynamic surface tension was used for measure-
ments in liquids at short periods of time after the cre-
ation of a new surface [66, 73].

Solid–Mobile Phase Interfaces

Let us consider situations describing the derived
equations. The half-spaces are related to the solid and
the mobile phase via the 1sol–1mob bonds.

(1) For ordinary solid–mobile phase equilibria,
concentration profiles  are calculated using equa-
tions of the equilibrium distribution of components in
the transitional region. Through them, the equilib-
rium surface tension σ (13) is found; s = s1 = s2,
because all characteristics are thermodynamic func-
tions as in a normal vapor–liquid system. The width of
the transitional region consists of two subregions, tsol
and tmob.

(2) Adding an adsorptive to the bulk mobile phase
alters distribution , 1 ≤ q ≤ tmob, since number of
components s1 increases but number s2 is retained; s =
s1. A change in the mobile phase state alters the state of
the adsorbent’s transitional region (the concentration
profile and width tsol). Equations (13) also allow us to
find σ. The second case is an analog of the stratifica-
tion of liquid systems when one of the liquid phase
components is insoluble in another.

(3) The adsorbent nonequilibrium state when there
is no adsorptive is established by its bulk distribution at
this time using functions  and  (for simplicity,
we let them be homogeneous in volume), obtained by
solving the kinetic equations in [62, 66] for a mechan-
ically stable adsorbent. Functions  and , 1 ≤
q ≤ tsol, can differ near a surface, depending on the way
the surface is created. The mobile phase state is char-
acterized by the pressures of the components of its own
adsorbent elements, or there is no mobile phase (there
is a vacuum): s = s1 = s2. The distributions of functions

 and , 1 ≤ q ≤ tmob, of the mobile phase are equi-
librium distributions. Adsorbent noninertness is
observed, since the adsorption of its own vapor can
alter its mechanical states relative to the vacuum; this
in turn affects the mobile phase state (which depends
on whether the adsorbent is or is not inert). Using for-
mula (13), we can calculate surface tension σ(t) of the
system with respect to its mobile bulk phase, and vol-
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ume distributions  and  of adsorbent compo-
nents when there is a noninert wall: t = tmob + tsol.
When the adsorbent serves as an inert rigid wall on
which adsorption of its own elements occurs, surface
tension σ(t) is calculated with respect to its two bulk
phases in the absence of wall deformation effects [74].

(4) This situation differs from the third by the pres-
ence of an absorptive, just as the second and first situ-
ations differ. For the solid phase, everything remains
as it was in the third case, while the number of compo-
nents increases for the mobile phase: s = s1 > s2. Both

equilibrium distribution functions  and , 1 ≤ q ≤
tmob, and surface tensions σ change relative to the bulk
phase when there is a noninert wall. An adsorbent is
noninert when the adsorption of its own vapor and the
adsorptive can alter its mechanical states, relative to a
vacuum and the adsorption of own vapor; this in turn
also affects the mobile phase state. If the adsorbent
serves as an inert rigid wall, surface tension σ(t) is cal-
culated with respect to the bulk phase in the absence of
wall deformation effects [74].

The traditional use of surface tension or internal
energy Us(t) (where upper index s corresponds to
excess surface functions [66]) as a new characteristic of
the interface that differs from surface tension σ(t) in
formula (13) was an attempt to express specific fea-
tures of surface formation under nonequilibrium con-
ditions. (It is explicitly mentioned in the definition of
nonequilibrium analogs of thermodynamic poten-
tials.) Since Fs(t) = Us(t) − ТSs(t), with the corre-
sponding choice of the separating surface we have
Fs(t) = σ(t)А(t) (where А(t) is the surface area). It can
be seen that the adsorbent distinctions between Us(t)
and σ(t) are due to considering the vibrational contri-
butions to entropy (this is done for σ(t) but not for
Us(t)). The nonequilibrium analogs of thermodynamic
potentials are thus stricter concepts than Gibbs’ pro-
posal to use Us(t) ≡ γ values; they not only reflect the
essence of adsorbent nonequilibrium states but also
allow strict calculation of these characteristics through
the kinetic equations in [62, 64].

The above four situations of introducing different σ
and σ(t) correspond to the free adsorbent boundary,
but without an external mechanical load. The inclu-
sion of an external mechanical load complicates the
situation, since an additional factor emerges that
affects the component distributions both inside a solid
and on its surface, and thus the mobile phase distribu-
tions relative to a mechanically perturbed adsorbent.

The introduction of nonequilibrium analogs of
thermodynamic potentials requires refinement of the
concept of creating a new surface under the effect of
mechanical loads, which is currently far from clear.
Refinements are needed for the σ(t) value correspond-
ing to the surface that forms after removing an applied
load or during the action of an external load. It must
also be specified whether the surface is formed from

θ ( )i t θ ( )ij t

θi
q θij

qp

the solid phase bulk (e.g., by chipping) or by applying
a load to an already existing surface. We then have two
different situations. In the first, if the surface does not
relax to the initial surface area after the load is
removed, we are dealing with an analog of plastic
deformation and must indicate what changes occurred
in the solid to describe them. In the second, we must
clarify the type and way of creating contact interaction
during mechanical loading. Different variants are pos-
sible here, starting from direct perturbations of the
neighboring solids (or neighboring phases) to indirect
perturbations at the remote ends of a crystal when
deformation interaction propagates through the crys-
tal lattice over the volume and the surface. Each non-
equilibrium process is characterized by its own kinetic
scheme and specific features of the dynamics, which
must reflect microscopic models. Otherwise, the pro-
cess cannot be defined under the action of mechanical
perturbations. These complications are thus due to the
need to specify the new process of surface creation at
the microlevel [75]. This problem has virtually not
been considered so far. In addition, the question of the
size of the created surface, which applies only to the
simplest ideal (planar, spherical) geometries, is also
problematic. Different rough surfaces emerge at any
more or less real mechanical perturbation, and esti-
mating the surface area for these is a separate problem.

Heterogeneous Monolayers

A layered model of a region of interface transition
consisting of a mixture of mobile components and
solid solutions was presented above; we considered
how concentration profiles of components  and

bond lengths  are involved with one another in dif-
ferent monolayers, depending on the mobility of solid
phase components. Below, we discuss the structure of
equations of similar adsorption problems when this
means of description is insufficient (the distribution of
components inside a layer becomes heterogeneous).
The simplest example of this is the two-dimensional
stratification of an adsorbate on the open surface of an
adsorbent. The densities of the rarefied and dense
phases of the adsorbate in one monolayer differ here.
Another example of heterogeneous monolayers is the
surfaces of isolated single crystals as small bodies and
the case of adsorption on a single crystal, which are
described by more complex distributions of compo-
nents than the layered distributions of surface mac-
rosystems. Finally, a more complex case of a heteroge-
neous system is adsorption inside a porous adsorbent
system when different heterogeneous distributions of
the adsorbent material encompass a large number of
monolayers, and the distribution of adsorbate inside
these is heterogeneous.
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Two-dimensional Stratification 
of an Adsorbate on an Open Surface

Let us consider a system in which adsorbed vapor
and liquid are in chemical equilibrium with gas in a
three-dimensional volume. A characteristic feature of
the two-dimensional (d = 2) stratification of an adsor-
bate is the formation of a vapor–liquid interface in a
system with linear tension, which is physically similar
to the droplet surface tension in the volume of a mac-
roscopic system. Depending on the size of the dense
phase, the linear tension can correspond to an adsor-
bate macroscopic phase with a linear structure of the
transition region, or to a small dense phase of the
adsorbate (d = 2 is a droplet), and can have a curved
structure of the transitional region (for a homoge-
neous surface, this structure is round). In considering
any noninertness of the adsorbent, we must reflect the
effect the adsorbate phase state (vapor or droplet) has
on the degree of adsorbent perturbation from the
phase density, and the effect the variable adsorbate
density inside the two-dimensional transitional region
has on the adsorbent’s noninertness [61]. These fea-
tures are reflected by the sequence of bonds in the
microscopic version of the Gibbs–Duhem equation
that describes the change in pressure in a system under
study. Upon minor deformations of a homogeneous
adsorbent, the macroscopic symmetry of a planar
droplet can be used in the first approximation. (The
situation becomes more complex for a heterogeneous
surface and depends on the character of the distribu-
tion of solid components in the surface layer of the
adsorbent [61].)

A set of sites in the surface monolayer of the adsor-
bate is divided into two types of two-dimensionally
homogeneous dense and rarefied phases, and into sets
N1

(q) of sites of the transitional region of a two-dimen-

sional droplet [61]. Here, the lower index in  cor-
responds to the surface layer of the mobile phase,
while the upper index denotes the layers of transitional
region d = 2 of the droplet, 1 ≤ q ≤ κ, where κ is the
number of circumferences in the transitional region of
the droplet. The fraction of the surface under droplet
d = 2 is clearly defined by its radius R. (In this section,
designations R and κ are maintained for droplet d = 2,
and for an ordinary droplet in the bulk.) Hence, the
full set of equations for the concentration profiles of
mobile phase components consists of (s1 – 1)κ equa-
tions, and the concentration profiles of the adsorbent
consist of (s2 – 1)κtsol equations instead of the charac-
teristics of one monolayer, as mentioned above. In the
first approximation, number of monolayers tsol that
the adsorbate influences is retained. This value is
determined by the maximum tsol value below the
vaporous or liquid adsorbate. Equations for bond
lengths  are reformulated in a similar manner: they
relate all mobile phase components in the transitional
region between the vaporous and liquid adsorbate both

( )
1

qN

λ ij
qp

normal to the tension line and in the tangential direc-
tion inside the surface plane. For the solid phase, the
sequence of bonds  from the adsorbent external
surface to depth tsol of monolayers must be considered
with regard to the radial symmetry in this cylinder. For
the problem under study, it is worth emphasizing that
the equations for bond lengths  are based on
Eqs. (14) in both mobile phases on the localized
adsorption and adsorbent, rather than Irving–Kirk-
wood equations (15), due to the need to consider the
direct interaction between the adsorbate and the sub-
strate, and the vibrational motions of the adsorbate.

Microcrystals
The structures of an isolated microcrystal were

described in [59] (particle interactions at distances Rlat
for a more general case), and the same principle is
used in considering adsorption on microcrystals. For
these, we cannot use representations of macroscopic
faces or their properties associated with the layered
distribution of solid components normal to a surface.
We must move to a discrete description of the arrange-
ment of atoms in the interface plane relative to the
boundary edges. Atoms at different distances from the
edges have different properties and must be specified
according to this principle.

The above formulated set of bonds for the nearest
neighbors in near-surface region  changes to zqp(x,
y), making them dependent not only on the distance
from the central region, but also the (x,y) coordinates
along the surface of each face. This increases the num-
ber of types of centers in the near-surface monolayers,
which raising the dimensionality of the set of Eqs. (3).
As for the remainder, the set of equations for local
occupancies (3) retains its structure. The concept of
quasi-averages [56] regardless of the displacement of
components greatly simplifies the procedure for cal-
culating the functions of nonideality and thermody-
namics; however, it retains the averaging procedure
over vibrations. In QCA, the function of nonideality in
Eq. (3) is rewritten as

(16)

where  is the number of
combinations of the polynomial distribution for
types s. The meaning of  remains unchanged,
although the values of sites q and p increase. Symbol 
denotes the complete spectrum of atom and vacancy
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distributions in a crystal. For the crystal volume, the
number of vacancies inside cluster K does not exceed
2–3. In the transitional region of a rough crystal, the
number of vacancies can be the same as in a f luid.
Expressions for free energy (4)–(7) and local pressure
(14) can be correspondingly rewritten. Upon moving
to polylayer adsorption on single crystal faces, the
number of site types above the face planes grows inside
the adsorbent–adsorbate transitional region for which
the surface potential is valid.

The same principle is also used in considering
equations for bond lengths (12): the isolation of near-
edge regions increases their number. It follows from
the system of bond linkage according to the micro-
scopic Gibbs–Duhem equation that as the size of a
crystal shrinks, we must consider the contributions
from edge and vertex atoms; however, in the planar
face regions near the edges in the transitional regions
(both normal to and along the face plane) the contri-
butions to the thermodynamic characteristics in all
atoms are altered too, due to changes caused by edge
effects. This leads to the dependence of the surface
tension of any face on its size and the type of the
neighboring face. Gibbs mentioned the latter in [1],
but it was ignored in subsequent works (it is missing in
particular from Wolf’s rule concerning the macro-
scopic faces of anisotropic crystals, rather than small
microcrystals), although it is implicitly present in the
general formulation of the Gibbs–Curie principle.

The four situations described above for macro-
scopic adsorbent–adsorbate interfaces retain their
meaning, but now all adsorbent faces are related by the
general conditions of chemical and mechanical equi-
libria. Analysis of the stability of these systems is espe-
cially important for possible processes of the structural
rearrangement of the adsorbent during chemisorption.
For a nonequilibrium adsorbent, the adsorbate effect
occurs in exactly the same way as in situation 4.

It is normally assumed that equilibrium almost
always exists for small bodies. As was shown by analyz-
ing the relaxation times of the leveling of labeled atoms
inside solid spheres with different radii [76–78],
decelerations can be observed for long periods that
exceed even the normal experimental times for nano-
sized samples. The effect of the time factor therefore
cannot be excluded, even for small microcrystals.

Porous Adsorbent Systems

An important example of a heterogeneous distribu-
tion of an adsorbent’s components is the existence of a
porous system inside it. According to [55, 63, 79, 80],
the model of a porous body is two-phase: adsorbate–
adsorbent interaction belongs to molecular level λ (the
characteristic size of the adsorbate), and the descrip-
tion of pore distributions over the adsorbent grain vol-
ume and intergrain contacts belongs to supramolecu-
lar level L (L @ λ). The structure of a porous material

determines the relationship between the pore volumes
and their near-wall regions, since the same amount of
the adsorbate causes different deformations due to
contact with the surface. Analysis shows that pores
must have limited volumes in all three dimensions to
ensure mechanical stability. On the other hand, the
total surface must be large for the effect of perturba-
tion inside the adsorbent to a depth of about tsol mono-
layers to be noticeable with respect to the total adsor-
bent volume. The theory should include a model of
contact interactions in the grain/microcrystal ensem-
ble of which the real adsorbent consists. Contact inter-
actions are associated with interaction forces between
the grains and grain sizes; this determines the depth of
grain deformation, which governs mechanical changes
in the linear sizes of a sample. On the other hand,
grain size is directly related to adsorbate–adsorbent
interactions. Experimental measurements of changes
ΔL(θ) in the linear size of a deformable sample with
changes θ in the amount of adsorbed material in this
case have a molecular interpretation. A microscopic
theory based on two-level models is being formulated
[55, [63], 79, 80], though theoretical representations
of contact interactions are now well developed for
macroscopic systems [81–86].

The bonding energy of the adsorbate in a confined
pore is expressed through atom–atom potentials as

, where
ns is the particle distribution density in the adsorbent
volume [63]; potential Vs of an adsorbate particle for
interaction with atoms of a solid element can be
expressed by an integral over the volume of a solid
(Ω = Vs) using LD potentials; ρ is the distance from
site f of solid part dV; s corresponds to the adsorbent,
and j is the atom interacting with adsorbate А. For the
slit-like part of a pore with width Н, the energy of
interaction between adsorbate i is written as

, where is defined
above [69–71]. The adsorbate distribution is addition-
ally affected by the potential of the opposite wall: 1 ≤
q ≤ Н.

The above equations consider the cooperative
behavior of the adsorbate–adsorbent system at all
degrees of occupancy. Let us discuss the distinction
between a deformable adsorbent and a rigid one,
which can be important for narrow pores at small θ
because of the combined effect of long-range poten-
tials of walls when the potentials overlap, and the
adsorbate plays a role of a bonding link. It is well
known [69–71] that the potential of interaction
between an adsorbate and a surface has a minimum
near λ1 = 1.2σss that virtually vanishes at distances of
2.5–3.0 σss. If the distance between the walls is short
(~2–3λ), the adsorbate is in the middle between both
walls, and its contribution to determining the bond
lengths of the system reduces the distance between the
opposite walls. If the pore width is ~4–6 λ, the adsor-
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bate is attracted to one of the walls; the second wall
attracts it too, but this attraction is transferred to the
first wall. This effect seems to increase the potential
length of the walls by λ. When Н is increased, the
effect drops rapidly. The main contribution to a
change in the force of interaction between the oppo-
site walls comes from pores with sizes not exceeding
~6 monolayers. For distances greater than 6 monolay-
ers, a further increase does not enhance the direct
action of the walls. The latter, however, does not cor-
respond to the indirect effect of walls through the
dense adsorbate phase, which is apparent when pore
occupancy is nearly complete, or to the subsequent
direct effect on wall deformation. Rather, it is due to
repulsive forces between the rigid spheres of the adsor-
bate. If the system is highly irregular and has relatively
large mechanical moduli, a reduction in grain size can
be negligible for low adsorbate densities.

The Used Method
The approach in [54, 60] allows simultaneous

operation with both changes in the composition of a
solid body and the lengths of bonds between all pairs
of components directly associated with their specific
volume. This approach was derived in analogy with
ordinary vapor–liquid solutions, in which the effects
of partial volumes of components play an important
role. All derivations in microscopic theory are known
to be based on the potential interaction functions
between components. When the potential functions of
interparticle interaction are known, Newtonian equa-
tions are introduced for each atom, allowing us to
write the equations for the microscopic motion of
atoms in a complex lattice of a given symmetry [87–
92]. Expressions are thus found for the vibrational
spectrum of a system, its mechanical moduli, and the
local pressures, depending on the mass and local envi-
ronment of the atom under study at any nonequilib-
rium distribution of neighboring atoms. In equilib-
rium, these expressions become the local equations of
state for the bulk phase. The general procedure for
these derivations has long been known and is not
repeated here [87–92].

The traditional approach in the theory of elasticity
deals with atomic displacements rather than specific
volumes of components. In it, the role of equations of
state is played by the bulk moduli of elasticity. Expres-
sions for these moduli are also derived through poten-
tial functions [87–92]. In this respect, the initial forms
of Hamiltonians are fully equivalent in both [87–92]
and the LGM [54–61]. Difference emerge at the stage
of expanding the potential energy in terms of small
displacements (i.e., the transition to displacement
terms in the classical approach and operating with spe-
cific bond lengths in the LGM).

In dealing with specific volumes, the authors of
[54, 60], arrived at an alternative interpretation of the
description of deformations in crystals with regard to

microscopic distributions of mixture components,
which allow reflection of their spatial distributions
with allowance for defects and/or a wide range of
structural heterogeneities. Calculated bond lengths

 between components i and j at lattice sites f and g

are related to the local site volumes . The curly
brackets denote the complete set of component pairs
1 ≤ i, j ≤ s − 1, where s − 1 is the number of mixture
components; s is the number of site occupancy states,
including vacancies; and the latter s corresponds to
them. Values  of the specific cell volumes are

directly related through  to rigid sphere parame-

ters in Mie-type potential functions  (or similar pair
potentials).

The lattice symmetry and type of displacement are
considered in the expansion of the potential function
to find elastic coefficients and vibrational spectra
when deriving equations for local pressures and bond
values . The calculations are performed using cur-

rent sets of  values with no connection to an initial
reference or any other state. Local interpretation of the
system instead of a macroscopic one formally allows
us to avoid restrictions on small deformations [81, 88],
which do not always occur at interfaces. Macroscopic
characteristics of the system are obtained when a suc-
cessive connection of sites described by pair functions

 is considered. Deformation characteristics are
determined from the difference between calculations
for the current crystal states and the initial state with

 values found for the reference states (or refer-

ence systems). In the reference states,  values are
found from the given type of the lattice symmetry and
potential function by minimizing the potential energy
(the free energy at Т = 0 K). This determines both the
unit cell constant and the  values inside a unit cell,
which depend on the nature of quantum-chemical
relations in the crystal.

The convenience of the new approach lies in the
possibility of deriving direct expressions for thermody-
namic potentials. For the Gibbs potential, our inter-
pretation of the elasticity theory results in the expres-
sion G = F + P(V – V0), where F is the free energy, V
is the current volume, and V0 is the initial undeform-
able volume, instead of the traditional thermodynamic
expression G = F + PV [81]. The expression for the
chemical potential within deformation potentials
requires a transition from displacements to strain
(through Hooke’s equation) [90], while the expression
for the chemical potential associated with the product
of the local pressure and the specific volume is imme-
diately obtained using this approach.
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CONCLUSIONS

Our microscopic theory can be applied to a much
wider range of situations than the traditional thermo-
dynamic Gibbs interpretation for ideally elastic defor-
mation. It reflects the rearrangement of near-surface
regions of adsorbents and relates any states of a body’s
deformation with atomic–molecular processes at both
intermediate times for small chemical changes during
an experiment and long times once all chemical
changes have already occurred. The restriction
according to which the vapor pressures of characteris-
tic elements are much lower than the adsorbate vapor
pressure is eliminated. This is important for series of
oxides, hydrides, and other nonstoichiometric com-
pounds with highly volatile components.

It has been shown that the existing thermodynam-
ics of adsorbents and most solids is based on replacing
nonequilibrium relationships with equilibrium ones.
Under these conditions, we cannot use equations of
caloric and thermal states to describe solids. Nonequi-
librium bodies can be described by nonequilibrium
analogs of equilibrium characteristics/potentials (the
nonequilibrium analogs themselves are described by
kinetic equations) that depend on the way these bodies
are formed. For nonequilibrium analogs, however, the
fundamental thermodynamic principle of the inde-
pendence of thermodynamic functions from the way
of transitioning from the initial to the final state is not
observed [1]. The microscopic approach eliminates
different thermodynamic failures and ensures explicit
consideration of the nonequilibrium state of a solid in
the form of passive forces [1], directed values [20],
abstract internal variables [93], and so on.

The theory of elasticity [81, 94] focuses on external
mechanical loads, while the study of physicochemical
systems traditionally concerns systems without exter-
nal loads [95–98]. The mechanical equilibrium of a
system without an external load means compensation
for the internal strain on any plane inside the body and
its interfaces with any external mobile or solid phase.
At the microscopic level, the transition to considering
mechanical loads requires specification of the interac-
tion between the solid being studied and the external
bodies transmitting the mechanical load (e.g., during
the formation of contact interactions in tribology)
[75]. Gibbs’ statement about the need to consider the
degree of deformation of a solid [1] in a solid–mobile
phase interface is not enough for a correct analysis of
most solid-phase systems. Subsequent works did not
provide a strict analysis of this statement, and the con-
cept of the chemical nonequilibrium of a solid and the
mechanical strain distributions determined by this
factor are now often confused with the concept of the
local mechanical stability of a system or a mechanical
equilibrium that is always present in crystals.

The transition to the strictly statistical description
of adsorbent nonequilibrium states allows us to relate

thermodynamic derivations to other measurements:
structural, kinetic, mechanochemical, and so on.
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