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Abstract—A new approach to constructing adsorption thermodynamics that provides the derivation of rigor-
ous thermodynamic relationships for any adsorption system, particularly for a system with a deformable
adsorbent, is proposed. Expressions for the thermodynamic functions of an adsorption system in the form of
an arbitrary control volume containing the adsorbent and the adsorbed gas are derived. In the derived expres-
sions, the role of adsorption is played by the total adsorbate content in the system. If the control volume
boundaries are set appropriately, this quantity is identical to absolute adsorption.
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INTRODUCTION
During adsorption, all adsorbents undergo defor-

mation [1–3]. In some cases, deformations can be
considerable and must be accounted in thermody-
namic descriptions of adsorption systems [4–6].
Although this fact has long been known [7, 8], an ade-
quate thermodynamic theory at the present time is
absent. Conventional approaches to constructing
adsorption thermodynamics are based on the assump-
tion that the adsorbent is undeformable [9–11].

A new approach to constructing adsorption ther-
modynamics is proposed in this work. The approach
allows to obtain all thermodynamic characteristics of
an arbitrary adsorption system, particularly one with
a deformable adsorbent. At the heart of the approach
is a passage to independent differentials in the initial
fundamental equation. For example, suppose that
the initial equation is the Helmholtz free energy
equation

. (1)

Since the adsorption layer is in equilibrium with the
gas phase, differentials dT, dV, and dn are not indepen-
dent here. Therefore, considering the volume as a
function of T and n, we rewrite this equation in the
form

. (2)

All required relationships are then derived using stan-
dard methods.

Another difference between the proposed approach
and conventional approaches is that the initial equa-

tion does not contain a term describing the change in
thermodynamic functions caused by altering the sur-
face area or weight of the adsorbent. The initial equa-
tion is thus absolutely rigorous and can be applied to
every adsorption system without exception. All of the
resulting relationships are the same as in the conven-
tional approaches. If, by analogy with conventional
approaches, an additional term is included in the ini-
tial equation, the applicability of this equation
becomes limited. In particular, if the adsorbent surface
area is used as an additional external variable, this
equation cannot be applied to systems in which the
surface area is not determined exactly (e.g., systems
with a microporous adsorbent). If the adsorbent
weight is used as an additional external variable, this
equation cannot be applied to systems in which the
condensed phase cannot be treated as a solution (e.g.,
systems with a macroporous adsorbent).

SINGLE-COMPONENT ADSORBATE

The thermodynamic system under discussion is an
arbitrary control volume that contains adsorbent and
the adsorbed gas. The distance of the control volume
boundaries from the adsorbent should be sufficient to
exclude the effect of the adsorption field on the gas
molecules. The pressure at the system boundary will in
this case be identical to gas pressure P at a distance
from the adsorbent (assuming that only the adsorbate
exerts pressure on the condensed phase). Suppose that
the system is open with respect to changes in the
amount of the adsorbate and closed with respect to
changes in the amount of the adsorbent. The com-

= − − + μdF SdT PdV dn

( ) ( )∂ ∂= − + + μ −
∂ ∂

V VdF S P dT P dn
T n
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bined equation of the first and second laws of thermo-
dynamics for this system is

. (3)

Here, E, S, V, and T are the system energy, entropy,
volume, and temperature, respectively; μ is the chem-
ical potential of the gas; and n is the number of gas
moles in the system.

In some particular cases, the system boundaries
must be specified so as to meet two conditions, when-
ever possible. First, since the point at issue is adsorp-
tion, it is necessary to ensure a minimal amount of
nonadsorbed gas in the system. Second, the system
volume as a function of temperature and pressure
should be available for experimental determination. It
is not always possible to meet these two conditions
simultaneously. For example, if the adsorbent is a con-
tinuous microporous solid, we may assume that the
system boundary is the outer boundary of the adsor-
bent. In this case, both conditions are met: the amount
of adsorbate n in the adsorption system is almost iden-
tical to the absolute adsorption and the system volume
is measurable. If the adsorbent contains macropores,
the system boundary cannot be specified so as to meet
both conditions. If the outer boundary of the adsor-
bent is assumed to be the only boundary, the first con-
dition will not be met because the macropores will
contain a significant amount of nonadsorbed gas. If
macropores are not included in the system’s composi-
tion, the second condition will not be met because the
macropore volume as a function of temperature and
pressure cannot be experimentally determined for a
deformable adsorbent. The decision of what to do in
these situations must be made separately in each par-
ticular case. Whatever decision is made (i.e., whatever
the specified system boundaries are), initial Eq. (3),
along with all subsequent equations, remains
unchanged. Only the numerical values of functions
appearing in the equations will depend on the speci-
fied boundaries. The only requirement for the bound-
ary to ensure the validity of the equations is the iden-
tity of the pressure at the boundary to the pressure in
the gas volume.

Equation (3) holds true if the adsorbent–adsorbate
interface area undergoes changes during an adsorption
experiment. The validity of this statement can be illus-
trated using a simple example. Suppose that the adsor-
bent is a sphere. In terms of the theory of capillarity,
we know that in this case, the combined equation of
the first and the second laws should be

(4)

where P ′ is the pressure inside the adsorbent, P″ = P is
the pressure in the gas phase, V ′ is the adsorbent vol-
ume, V ″ is the gas phase volume, γ is the surface ten-
sion, and A is the surface area of the adsorbent. If the
volume of the sphere is altered under the action of sur-

= − + μdE TdS PdV dn

= − − + γ + μ' ' '' '' ,dE TdS P dV P dV dA dn

face tension forces during adsorption–desorption,
then differentials dV ′, dV ″, and dA will be interrelated:

, (5)

, (6)

where r is the sphere’s radius and V is the total system
volume. In addition, the Laplace equation describing
the mechanical equilibrium condition must be met:

. (7)

Substituting relationships (5)–(7) into Eq. (4), we
obtain Eq. (3). It is evident that the assumption of the
spherical shape of the adsorbent is immaterial. Equa-
tion (3) holds true for any type of adsorbent because
the work of surface tension forces and the work of
deformation of the adsorbent will annihilate each
other in any case. These two types of works are per-
formed on some parts of the adsorption system by
other parts, rather than by external forces. These types
of work do not lead to an exchange of energy with the
environment, so they make no contribution to the
energy balance equation for the entire system.

Using the Helmholtz free energy (F = E – TS) as a
thermodynamic potential, we pass from Eq. (3) to the
equation

. (8)
Here, the right-hand side contains three differentials.
However, since the studied system is in equilibrium
with the gas phase, the system’s state is clearly deter-
mined by two parameters. Hence, to derive an equa-
tion with independent differentials, one of the differ-
entials must be eliminated. If the temperature and
number of moles are taken as independent parame-
ters, after eliminating the volume differential we
obtain

. (9)

Since this expression is a total differential, the coeffi-
cients preceding  and  are partial derivatives of

with respect to  and , respectively.
To find the integral quantities, Eq. (9) must be

integrated at a constant temperature:

(10)

Here,  and . Dif-
ferentiating this relationship with respect to tempera-

ture at constant n and considering that  –

, we obtain the expression for entropy:

+ =' ''dV dV dV

= 2 'dA dV
r

γ− = 2' ''P P
r

= − − + μdF SdT PdV dn
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T n

dT dn
F T n
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0

0
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n V
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. (11)

The penultimate term in the right-hand side is trans-
formed using the identical equation

, (12)

which is valid for arbitrary function . Since
, we obtain

. (13)

The expression for energy (E = F + TS) is

, (14)

where . Enthalpy (H = E + PV) is

written in the form

(15)

Differential quantities are found by differentiating the
integral quantities with respect to n at a constant tem-
perature:

, (16)

, (17)

, (18)

. (19)

Subtracting the molar enthalpy of the gas

 from both sides of the last relation,

we obtain the following expression for isosteric heat of

adsorption :

. (20)

∂μ∂ ∂ ∂= − − + −
∂ ∂ ∂ ∂∫ ∫

0

0

0
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n nn
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n V
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T
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∫ ∫
0

0

0
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.

n

n
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P
h T
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Transforming difference  using identical

equations

(21)

and

, (22)

where  is the molar volume of the gas, we obtain

. (23)

Using the identical equation

, (24)

this expression can be transformed as

. (25)

This expression was derived earlier using the
approach proposed by Bakaev in [12, 13]. It can also
be derived in terms of conventional approaches (see
Appendix A).

If we start from the equation for Gibbs free energy
(G = F + PV),

, (26)
passing to an equation with independent differentials

, (27)

and acting similarly, we obtain expressions for ther-
modynamic functions that are equivalent to the pre-
vious expressions, yet have another form. Some of
these are

, (28)

, (29)

, (30)

, (31)

, (32)

, (33)
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. (34)

Expressions for other functions obviously follow from
the above equations. In particular, the correct expres-
sion for the  function (the osmotic
potential) is

(35)

The expression used by some authors [14–16],

, (36)

holds true only for a constant volume V. If the volume
undergoes changes, the equation is not valid. This is
evident when we consider a case where an adsorbent is
not included in the system, i.e., when ,

, and .

A MULTICOMPONENT ADSORBATE
With multicomponent gas adsorption, the Helm-

holtz free energy differential is written as

, (37)

where k is the number of components in the gas mix-
ture. By considering the volume as a function of tem-
perature and number of moles  of the components,
we can rewrite this equation in the form

. (38)

(Here, subscript  means that all numbers of moles are
constant during differentiation. Subscript  means
that all numbers of moles, except for the number with
respect to which differentiation is performed, are con-
stant.) This equation yields expressions for the partial
derivatives:

, (39)

. (40)

Differentiating Eq. (39) with respect to T and Eq. (40)
with respect to , and equating the results, we find the
differential entropy:
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. (41)

Combining Eqs. (39) and (41), we obtain the differen-
tial energy:

(42)

Adding  , we obtain the differential

enthalpy:

(43)

Expression  can be defined concretely. If

the chemical potential of the ith component of the gas
mixture is written in the form

, (44)
then

(45)

Here,  is the fugacity,  is the chemical potential of
an ideal gas in the standard state at temperature T and

 bar, and  is the enthalpy of an ideal gas in the
standard state:

. (46)

If the gas is an ideal mixture,  is equal to partial pres-
sure , while  is equal to partial enthalpy . Equa-
tion (45) is in this case transformed into

(47)

where  is the partial isosteric heat of

adsorption. At a constant volume, Eqs. (45) and (47)
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reduce to the familiar relationships given in [10] and in
[17, 18], respectively.

The expression that relates derivative  to par-

tial isosteric heats of adsorption is of considerable
practical interest [17, 18]. In the simplest case, when
the gas is an ideal mixture, we have . Hence,

. (48)

Here,  is the mole fraction of the ith component of

the gas mixture. Using Eq. (47) to eliminate ,

we obtain

(49)

In general case, the corresponding relationship is
derived from equilibrium conditions  and

. Considering equality ,
Eq. (43) can be rewritten as

(50)

At constant numbers of moles , conditions

 reduce to

(51)

where  and  are the partial entropy and partial vol-
ume of the ith component of the gas mixture, respec-
tively. Multiplication of these conditions by  and
summation yield the formula

. (52)

(The term containing partial derivatives with respect
to  vanishes in accordance with the Gibbs–Duhem
relationship.) Multiplicating Eqs. (50) by  and sum-
ming with allowance for (52), we arrive at the equation
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(53)

This formula is valid in the general case of adsorption
of a nonideal gas mixture by a deformable adsorbent.
It is a generalization of the familiar formula that is
valid for the adsorption of an ideal mixture by a non-
deformable adsorbent [18]. If all partial volumes are
identical, this formula reduces to (49). With a single-
component adsorbate, it reduces to (25).

RESULTS AND DISCUSSION

The approach proposed in this work is similar to
the one proposed by Guggenheim [19] and developed
by Bakaev [12, 13]. In both approaches, the adsorbent
and the adsorbate are treated as a single thermody-
namic system. The difference between the approaches
lies in the method used to derive thermodynamic rela-
tionships. In the Guggenheim–Bakaev approach,
relationships for an expanded system that includes the
entire content of the adsorption vessel are written first;
we can then pass to the relationships for the system
under study. The pass is made possible by algebraic
relationships, meaning that the thermodynamic func-
tions for the expanded system are equal to the sum of
functions for the system under study and for the non-
adsorbed gas. In the approach proposed here, the
thermodynamic relationships for the system under
study are derived directly from the basic equation of
thermodynamics written for this system. This
approach allows the systematic determination of all
the characteristics of the adsorption system, particu-
larly for the case of a multicomponent adsorbate.

The relationships derived in this work describe a
system composed of an adsorbent and an adsorbate. If
the adsorbent is deformable, it is impossible to derive
relationships that refer only to the adsorption layer,
since the effect the adsorbent has on this layer is
unknown. However, if the adsorbent is inert (i.e., if the
effect of the adsorbent on the adsorption layer does
not depend on the magnitude of adsorption), the ther-
modynamic functions of the adsorption layer satisfy
Eq. (3), and all of the derived relationships can be
applied to the adsorption layer. There is then no need
to include the adsorbent in the composition of the
adsorption system. The system volume will vary only
because of the growth of the adsorption layer. Regard-
less of how correct the determination of the layer vol-
ume, all of the derived relationships hold true if the
condition of the pressure at the layer boundary being
equal to the pressure in the gas volume is met. Since all

=
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thermodynamic functions in this case correspond to
the adsorbate, we must assume the quantities corre-
sponding to the adsorbent in the formulas (e.g., ,

, etc.) are zero.

With an inert adsorbent, the derived relationships
can be used to obtain expressions for excess quantities.
We must first subtract the equation for the nonad-
sorbed gas occupying volume ,

(54)

and the equation for the adsorbent,

(55)

from Eq. (8). The result is an equation for the excess
quantities corresponding to the two-dimensional
Gibbs phase:

. (56)

This equation can be formally obtained from Eq. (8) if
each thermodynamic quantity  is replaced by excess
quantity  (  – ) and it is assumed
that . Hence, all the thermodynamic relation-
ships describing the two-dimensional Gibbs phase can
also be obtained from the relationships derived here
after the above substitutions. Equation (25) in partic-
ular can thus be transformed into the familiar relation-
ship

. (57)

Although the relationships for excess quantities are
derived as a particular case from relationships for
absolute values, the former and the latter contain the
same amount of information. This is because the
excess quantities and the quantities characterizing the
adsorption layer are clearly interrelated (  –

). This relation allows some relationships to be

transformed into others. Equation (57) in particular
can be transformed into Eq. (25) (see Appendix B).

If the adsorbent is deformable, for the experimental
determination of changes in the thermodynamic func-
tions upon switching from the vacuum state to the tar-
get state (  – ), we must know, in
addition to the adsorption isotherm, the dependence
of volume on temperature and pressure. This require-
ment somewhat complicates the task of the experi-
mentalist. On the other hand, we need not measure
the dead volume if this relationship is known. The
amount of the adsorbate in the system ( ) is in this

0E
0F

= −g sV V V

= − − + μg g g gdF S dT PdV dn

= − −s s sdF S dT PdV

= − + μe e edF S dT dn
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eZ =eZ Z −s gZ Z

= 0eV

∂ ∂− =
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v
e

e
g g

e
nT

H Ph T
Tn

=eZ Z

v

g
g

V z

( )Δ = ,Z Z T P ( )0Z T

n

case found as the difference between the total amount
of the adsorbate in the adsorption vessel and the
amount of the gas in the volume: , where

 is the vessel volume.
It should be noted that the conventional thermody-

namic consistency tests for experimental data are not
applicable to a deformable absorbent. These tests are
typically derived from the Gibbs adsorption equation
[20, 21]

. (58)

(where  is the grand potential:  – ).
With a deformable adsorbent, the analog of this equa-
tion can be written as

. (59)

Respective tests must be derived from this.
A specific example showing that deformations of

the adsorbent (in this case, the sorbent) can have a
considerable thermodynamic effect can be provided
using the experimental data of [22] on the sorption of
carbon dioxide by a polycarbonate sorbent. The
author of [22] gave analytical expressions for sorption
isotherms and the magnitude of sorption deformation.
The sorption isotherm corresponding to T = 308 K in
the pressure range of 1.5–6.5 MPa is described by the

equation , where  g/g and

 Pa–1. The relative deformation in the
temperature range of 308–318 K and the pressure
range of 1.5–6.5 MPa is described by the equation

 = , where  kJ/mol and

 Pa–1. The temperature dependence
of volume  is weaker than exponential dependence

. These data can be used to calculate the con-

tribution from the deformation of the sorbent to differen-
tial energy (18). When T = 308 K and P = 6.5 MPa,

expression  in (18) gives ~13 kJ/mol;

in order of magnitude, this value is comparable to the
isosteric heat of sorption calculated in [22]
(~40 kJ/mol).

CONCLUSIONS
A new approach to constructing adsorption ther-

modynamics has been proposed. The adsorbent, the
adsorbed gas, and the gas enclosed in the spaces
between the adsorbent’s particles are treated as a single
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=
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thermodynamic system. The condition of equilibrium
between the condensed phase and the gas is used to
eliminate the redundant variable in the fundamental
equation. The proposed approach is rigorous; it can be
applied to any adsorption system. In particular, it
allows the derivation of expressions for the thermody-
namic functions of an adsorption system with a
deformable adsorbent. Expressions for integral and
differential functions were derived for a single-compo-
nent adsorbate. Expressions for the partial isosteric

heats of adsorption and an expression relating the 

derivative to the partial isosteric heats of adsorption
were derived for a multicomponent adsorbate.

APPENDIX A

In the conventional approach to adsorption ther-
modynamics, the following expression for the change
of differential enthalpy has been derived [17]:

. (А1)

This formula is correct; however, it contains partial
derivatives with respect to  at constant  and ,
while in an adsorption experiment, pressure is not an
independent variable; it is related to  and  by the
adsorption isotherm equation. It is generally assumed
that the properties of the condensed phase depend
weakly on pressure, so the partial derivatives at con-
stant  and  are therefore replaced with partial deriv-
atives at constant . This approach is justified at low
pressures. To derive an expression that is valid at high
pressures, we must transform former partial deriva-
tives into letter using the exact formulas

, (А2)

, (А3)

. (А4)

The substitution of these formulas in (A1) yields
Eq. (25). Relationship (A2) is derived using the equa-
tions

, (А5)

, (А6)

. (А7)

∂
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P
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APPENDIX B

The following relationships between partial deriva-
tives hold true for arbitrary function f:

, (В1)

. (В2)

In this particular case, ; so from (В1) and

(В2), we obtain

, (В3)

.(В4)

Since

, (В5)

, (B6)

, (В7)

by substituting relationships (B3) and (B4) in (57) we
obtain (25).
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