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INTRODUCTION
The modern theory of critical phenomena (the

scaling theory) is based on the concept of universal
similarity, according which critical indices must be
uniform for all substances with the same symmetry
[1]. Since all liquids and gases belong to the same class
of symmetry, their indices must be uniform. Experi-
ments initially seemed to confirm this hypothesis.
With the increased accuracy of measurements, how-
ever, data indicating a discrepancy between theory and
experiment emerged. Tables 1 and 21 contain the
results from measuring the critical indices for 15 liq-
uids, obtained by at least 35 authors. It follows from
these data that the indices of different liquids always
vary; moreover, they never agree with the predictions
of scaling theory. The discrepancies between the the-
ory and experiment are slight; as a rule, they do not
exceed 10%. However, their magnitudes are always
greater than the uncertainty of measurement. Of
course, we may assume that the observed discrepan-
cies are due to measurements being made too far from
the critical point. In the literature, however, there are
two especially precise results obtained by measuring
the critical indices for SF6 and СО2 [3, 4]. The
researchers managed to approach the immediate crit-
ical region over a distance on the order of 10–5 K. The

result was critical index , equal to 0.35 at  >

, beginning to steadily approach its classical
value  at  instead of approaching
scaling value  (here,  is tempera-
ture). The other indices all started to approach their

classical values as well. This behavior was later con-
firmed by a German research group in [3, 4].

Following an unwritten law of physics, if there is a
discrepancy between theory and experiment, theory is
to blame. In this particular case, however, the view
that the experiment was the cause of the problem pre-
vailed, since the gravitational effect was not properly
considered. Gravitation can indeed affect the magni-
tudes of critical indices, but it has been impossible to
prove that it would eliminate the observed discrepancy
despite twenty years of efforts by several hundred
authors [5].

The data in Tables 1 and 2 indicate that the critical
indices of different indices vary. This discrepancy is, of
course, very small. However, it is sufficient to assume
that the critical indices are not absolute, and the con-
cept is far from universality.2 What, then, is the expla-
nation is for the dependence of critical indices on the
nature of a substance? The aim of this work is to
answer to this question.

CRITICAL PHENOMENA 
AND FLUCTUATIONS

As is well known, critical point coordinates 
on the phase diagram are determined by the equations

, (1)

where pressure P, which in statistical mechanics is
determined using Bogolyubov’s equation

1 The data presented in Tables 1 and 2 were taken from [2].

β c

c

θ − θτ =
θ

43 10−×
0.5β = 43 10−τ < ×

0.3245β = θ = Bk T
2 In The Modern Theory of Critical Phenomena, Ma Shang-keng

referred to the concept of universality as “artless and primitive”
[6].
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, (2)

is derived from the canonical distribution (CD) func-
tion via identity transformations (in (2),  is
the density of particles,  is the potential of inter-
action, and  is the two-particle distribution
function).

By expanding  into a series according to
powers of density, we obtain the common virial series

 = . Moving to variable
 and assuming that , we transform it

into the series  =  +
 in terms of powers of , where the

coefficients are  because of conditions (1).
It follows that  for . Within
the standard approximation, and assuming that the
CD function at low densities can be expanded into a
power series of density, we can thus establish that crit-
ical index  must always be equal to 3 (or possibly 4, if

). At the same time, experiments reliably show
that . Such noncoincidence indicate that
describing critical phenomena is beyond the capabili-
ties of the standard theory of equilibrium systems
based on the CD function.

As is well known, there are always f luctuations of
density and temperature in any equilibrium systems.
Strictly speaking, equilibrium systems are therefore
nonequilibrium. However, the amplitude of f luctua-
tions is negligibly small, so the contribution from fluc-

∞
∂ Φ θ= ρ − ρ ρ θ π

θ ∂∫
2 2

0

[ ( )/ ]1 1 ( ; , )4
6

rP r G r r dr
r

/N Vρ =
( )rΦ

( ; , )G r ρ θ

( ; , )G r ρ θ

1 ( , )P−θ ρ θ
1

( )k
kk

B
∞

=
ρ θ∑

cΔρ = ρ − ρ θ = θc

( , )cP ρ θ 3
3( )c cP b+ θ Δρ

4
4( ) ...cb θ Δρ + Δρ

1 2 0b b= =
3

3cP P b→ + Δρ 0Δρ →

δ
3 0b =

4.3 4.7δ = −

tuations is systematically ignored. As we approach the
critical point, however, the amplitude gradually grows
to infinity at the critical point. We may therefore
assume that the special properties of substances in the
vicinity of critical point are determined by these f luc-
tuations. It should be noted that f luctuations are non-
equilibrium phenomena: they arise at one moment
and disappear at the next; in addition, they appear in
unpredictable point  and at unpredictable moment of
time . A consistent description of them is possible
only in terms of the theory of non-equilibrium phe-
nomena (see, e.g., [7, 8]). However, the theory of
equilibrium systems has been always based on the
assumption that all parameters of substance are time-
invariant and uniform over an entire system. How can
we combine the nonequilibrium origin of f luctuations
with the thermodynamically equilibrium state of an
entire system?

THE CANONICAL DISTRIBUTION 
FUNCTION AND FLUCTUATIONS

In statistical mechanics, the state of a closed iso-
lated system of N particles that occupies a volume V is
described by  particle distribution function ,
regardless of whether or not the system is in equilib-
rium [8]. In the general case, this function depends on
coordinates  and pulses  of all particles, and on den-
sity  and temperature , which characterize
the macroscopic state of the system at given point 
and given moment . Condition  is com-
monly assumed in the theory of equilibrium systems.
Nevertheless, f luctuations are present in any equilib-
rium system. It is therefore always true that

r
t

N ( )NG

r ip
( , )tρ r ( , )tθ r

r
t , constρ θ =

Table 1. Values of 

The values of  were taken from Table 2.

Substance 3He 4He Ar Xe

Substance N2 O2 CO2 SF6

, 

Substance CH4 C5H12 C6H6 C6H14

Substance C7H16 CHF3 CF3Cl H2O

exp 0.333Δβ = β −

Δβ ±0.028 0.0005 ±0.028 0.003 ±0.007 0.001 − ±0.016 0.004
±0.006 0.006 ±0.007 0.002 −0.004

±0.004 0.003

Δβ ±0.025 0.001 ±0.020 0.005 −0.012 − ±0.006 0.005
− ±0.009 0.009

0.014 0.014

Δβ 0.024 ±0.02 0.02 ±0.02 0.02 ±0.0032 0.014

Δβ ±0.007 0.04 0.000 000 0.013
±0.025 0.009
±0.052 0.016

β
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Table 2. Critical indices of different liquids

The experimental data obtained by different authors were taken from Table 2.6 in [2]. These data are in the upper line of the table for
each substance; below them are data calculated using the coupling equations for the values of indices of  and  indicated in two first
rows of Table 2.

Substance

Scaling theory 0.1120 0.3245 1.239 4.82 0.0312
Fluctuation 
hypothesis

0.11 0.3333 1.224 4.673 0.058

3He 0.105 0.361 ± 0.005 – – –
0.11 0.361 1.156 4.202 0.153

4He 0.115 ± 0.006;
0.108 ± 0.010

0.3554 ± 0.0028;
0.339 ± 0.006

1.20 ± 0.02;
1.223 ± 0.017

–

0.110 0.339 1.21 4.57 0.076
Ar 0.117 ± 0.001;

0.11 ± 0.02
0.340 ± 0.001;
0.340 ± 0.002

– 4.49

0.110 0.340 1.21 4.53 0.085
Xe 0.11; 0.08 0.317 ± 0.004;

0.329;
0.337 ± 0.003

1.23 4.74 0.045

0.110 0.333 1.22 4.67 0.058
N2 0.11 ± 0.03 0.358 ± 0.001 1.19 4.28 0.13

0.11 0.352 1.19 4.37 0.12
O2 – 0.353 ± 0.005 – – –

0.110 0.353 1.18 4.35 0.117
CO2 0.10; 0.125 ± 0.02 0.321; 0.324 ± 

0.009; 0.347; 0.347
1.226 ± 0.007 4.30 ± 0.1;

4.576; 4.851
0.077

0.10 0.347 1.21 4.52 0.08
SF6 0.08 0.327 ± 0.005;

0.339 ± 0.002;
1.16; 1.22 ± 0.06; 

1.28;
4.99(?) –

0.11 0.333; 1.22; 4.67 0.06
СH4 0.11; 0.057 0.357 1.230 4.450 0.101

0.09 0.357 1.186 4.51 0.09
C5H12 – 0.35 ± 0.02 1.25 ± 0.10 5.0 ± 0.5 –

0.110 0.350 1.19 4.40 0.11
C6H6 – 0.35 ± 0.02 1.30 ± 0.05 – –

0.110 0.350 1.19 4.40 0.11
C6H14 – 0.365 ± 0.014 1.14 – –

0.110 0.365 1.16 4.18 0.16
C7H16 – 0.340 ± 0.04;

0.358 ± 0.009;
0.385 ± 0.016;

– – –

0.11 0.358 1.17 4.28 0.14
CHF3 – 0.333

0.110 0.333 0.12 4.67 0.058
CF3Cl – 0.333

0.11 0.333 0.12 4.67 0.058
Н2O [14] 0.11 0.346 1.20 4.50

0.110 0.346 4.46 0.098

α β γ δ η

α β
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 (3)

and so

 (4)

where  and  are the f luctuations of density and
temperature that meet the condition , .
If we confine ourselves in Eq. (4) to quadratic terms of
the series and average the obtained expression over all
values of  and , we obtain

 (5)

In this expression, the additional term enclosed in
square brackets is always positive. Hence, the energy
of the entire system is

 (6)

where ;  +

 is the standard expres-

sion for energy obtained in the approximation
, ; while  =  is

the contribution from fluctuations to Eq. (6),
 is the two-particle distribution function,

and  = ). Since pressure 

is associated with energy  by the familiar thermo-

dynamics formula  = , we find that

, (7)

where  is the pressure calculated in approximation
 (see Eq. (2)).

The same formulas can be obtained in another way.
It is generally believed that the potential energy of a

system is  = , where potential
 when . Due to f luctuations, however,

widely spaced particles have energy equal to , not
zero. This is why we assume that .
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Such renormalization does not change the initial
Hamilton equations that form the basis of statistical
mechanics, since  is invariant with the coordinate of
particles and therefore disappears from all equations
after differentiation with respect to  and . At the
same time, the emergence of an additional term
changes the distribution of particles within the cor-
relation sphere, since the effective density and effec-
tive temperature in the correlation sphere are different
from the seed values obtained in the approximation of

.

After substituting initial potential  for effective
potential , the CD function becomes

Hence, the free energy of the system is

 (8)

Using standard thermodynamics formulas, it is now
easy to show that

(9)

These equations correspond to the above relation-
ships. Equation (5) thus allows us to limit the contri-
bution from fluctuations to the thermodynamic
parameters merely to the emergence of additional
terms in all thermodynamics equations that include
the kinetic energy of f luctuations. This was to be
expected, since the theory is structured in additive
approximations, according to Eqs. (3)–(5). However,
the contribution from fluctuations generally takes a
more sophisticated form.

POTENTIAL COMPONENT OF CRITICAL 
PHENOMENA

All thermodynamic parameters of a substance gen-
erally have two components: potential and fluctua-
tion. Let us first consider the behavior of the potential
component.

φ

r p
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Pressure  at low densities can be always

written as virial series  = . The first
seven coefficients  of this series have so far been
computed for the Lennard-Jones (LJ) potential using
a canonical distribution function that allows us to esti-
mate pressure at densities  with an error no
greater than 0.01%. Using the obtained seven-term
polynomial and conditions (1) for the coordinates of
the critical point, critical density , critical
temperature , and critical pressure

 were calculated for an LJ liquid in [9].
To use the resulting polynomial to describe critical

phenomena, it must be written in the standard form
accepted in the theory of critical phenomena,3

, (10)

where in the general case,

Here,  is the critical index; it is generally frac-
tional, since expansion is preformed around the singu-

3 We usually write . However, this means we
simultaneously approximate one function, , with two
functions,  and . At the same time, there is no indica-
tion of how to determine each of them separately. Using the
resulting randomness, we can always assume

; in a first approximation, this would have
the value predicted by the scaling theory. However, this reason-
ing is not valid: it is typical of forcing the data to match the
desired result. We therefore assume below that .

(0)( , )P ρ θ
(0)P

1
( )k

kk
B

∞

=
ρ θ∑

( )kB θ

cρ ≤ ρ

0.287cρ =
1.313cθ =

0.128cP =

( )( ) ( )P δ ξδ ξ = Γ ξ ⋅ ξ
( )Pδ ξ

( )δ ξ ( )Γ ξ

( ) 4.818 ( )fδ ξ = + ξ

1Γ ≡

( , )( ) c
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P PP
P

δξ τ −δ ξ = = ξ

ρ − ρ θ − θδ = δ ξ τ ξ = τ =
ρ θ

( , ), , .c c

c

( , )δ ξ τ

lar point. Changes in the sign of  in this case convert
the real function into a complex one, indicating singu-
larity at this point for the statistical sum.

Using the virial series to determine the form of
function  on the critical isotherm, index

 can be calculated using Eq. (10). Figure 1
shows the dependence of this function at critical tem-
perature . We can see that the dependence of  on
density  is accurately described by formula 
with index  = const. After the intersection of
the crossover, however, power exponent  tends
to zero instead of growing according to law

, as is predicted by the scaling theory. As a
result, the potential component of the pressure
becomes nearly constant and equal to  within the
crossover (this equation is valid only at the critical
point). This is confirmed by the data of molecular
dynamics, according to which pressure is virtually
constant within the  range of densi-
ties (i.e., within the crossover) [10]. Derivative 
is very low throughout this range (it is strictly equal to
zero at the critical point). Hence, the variations in the
potential component of pressure are also insignificant
throughout the critical range. At the same time, the
variations in pressure in the regular part of phase dia-
gram follow the law ; i.e., they occur quite
rapidly on the same critical isotherm. It is obvious that
the point of the transition from the regular to the crit-
ical mode determines the position of the crossover
separating the critical and regular regions. This find-
ing, based on an examination of the virial series, is in
direct contradiction with the generally accepted view
that the position of crossover is determined by the
condition for the disappearance of the pressure’s f luc-
tuation component [11].

IVANOV EFFECT

Let us consider the behavior of the complete pres-
sure on the critical isotherm. According to [9], it must
be equal to a sum of two components within the cross-
over:

 (11)

where, as experiments show,  (Table 2).
To interpret experimental data using this formula, we
must assume that relatively far from the critical point,
potential component  is much smaller
than fluctuation component ; i.e., .
This is the only instance where the state of a substance
is determined by f luctuation component .
As we approach the critical point, however,

 is reduced faster than , since
the potential component is proportional to lower

ξ
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Fig. 1. Dependences of index  in formula
 =  for an LJ liquid at the critical

isotherm.
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power of . As a result, the pressure must become clas-
sical in the vicinity of the critical point:

when .
Ivanov was the first to observe this effect for SF6 [12].

He found that when , index  starts to
fall from fluctuation value  and rapidly reaches
classical value . All other indices also tend toward
their classical values.

The Ivanov effect is easily explained in terms of
physics. It is known that in liquids and gases, waves of
compression and expansion travel at the speed of
sound [13]. The speed of sound falls progressively in
the vicinity of the critical point, automatically slowing
the velocity of f luctuation displacement throughout
the volume of the system and thus reducing their
kinetic energy, . The speed of sound falls to
zero at the critical point, along with the kinetic energy
of f luctuations, . At the critical point, how-
ever, the mean distance between particles differs
slightly from the one observed in the regular part of the
phase diagram. Hence, the potential energy of parti-
cles at and in the immediate vicinity of the critical
point is virtually the same as in the regular part of
phase diagram. The critical indices must correspond-
ingly be the same, i.e., classical, as Ivanov and his
German coworkers discovered.

ORNSTEIN–ZERNIKE EQUATION
Let us recall that in the presence of f luctuations,

effective density

and effective temperature  differ from

seed values , and this affects the values of ther-
modynamic parameters. To consider these variations,
we must apply the Ornstein–Zernike equation (OZ)

, (12)

which is, as is well known, the CD function written in
the form of an integral equation [8, 14]. In Eq. (12),

 is the general correlation function,
 is the two-particle distribution function, and 

is the direct correlation function.
Let us first recall the main relations that follow

from the OZ equation, which is written in Fourier
form as

, (13)

where
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When , the left part of Eq. (13) becomes equal to
isothermal compressibility [8, 14]

, (15)

while the right part is transformed into the definition
of the pressure derivative,

. (16)

The moments are determined as
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The moments of function  are determined in the
same way.

Direct correlation function  is an infinite
series in powers of densities whose coefficients are
determined by multidimensional integrals of different
products of Mayer functions .
Thus,  determines only the potential compo-
nent of pressure; the f luctuation component is
ignored. To bring Eq. (16) into line with Eq. (9) for
pressure, we need

 (18)

As a result, direct correlation function  under
integral (18) is equal to
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plete agreement with the assumed additivity of the
contributions from both components (see Eq. (4)).

ASYMPTOTIC ORNSTEIN–ZERNIKE 
EQUATION

It is known that direct correlation function 
rapidly vanishes as distance  grows [14]. We assume
that  is a conditional radius beyond which 
can be considered zero. For  to have no effect on
the seed state of the correlation sphere determined by
function , its contribution must be concen-
trated at distances . These distances are
described by an asymptotic of the OZ equation. This is
most easily studied in the space of wave vectors ,
since values  correspond to . By expand-
ing the kernel of the Fourier transformation

 =  into a series of powers of
, we obtain4

. (21)

In this approximation, the OZ equation (13) becomes5

(22)

or, which is virtually the same thing,

, (23)

where

 (24)

Performing inverse Fourier transformation

, (25)

we obtain

. (26)

This formula is invariant with a particular type of
direct correlation function. Therefore, substituting

 for  =  prevents the form
of solution (26) from changing. However, substituting
Eq. (22) for the more complicated equation

4 The kernel of Fourier transformation  is determined
by space dimensions D = 3 and is invariant with the nature of
substance (i.e., function ). This is one reason for the univer-
sality of the expressions given below.

5 Unity in the left part of the OZ equation can be omitted, since it
describes the contribution from an ideal gas [15].

(0)( )C r
r
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k
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2
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=
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2( )
(4 )

rA eh r
r

−λ
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(0)C C= ( )C r (0)( ) ( )C r C r− δ

(27)

changes the values of both damping decrement  and
amplitude , which in this case are equal to

(28)

DIRECT CORRELATION FUNCTION
To move forward, we must determine the particular

form of function . It should be noted at once that
it is almost impossible to find the exact form by exam-
ining the properties of equilibrium systems, since this
component is generated by nonequilibrium fluctua-
tions. Neither Hamiltonian equations nor the canoni-
cal distribution function cannot help specify , since
they have no evidence on the form of this function.
Nevertheless, some features of the direct correlation
function can be determined on the basis of simple and
clear concepts.6

We have seen that in the immediate vicinity of crit-
ical point, everything is determined by a potential
component with well-known properties. Below, we
therefore focus on the vicinity of critical point, where
the f luctuation component predominates. We can in
this case ignore all potential terms in Eq. (27), simpli-
fying the equation to

(29)

We should note that since the additive approximation
is used, only f luctuations with wavelength

 are considered. The contribution from
the term proportional to  is also small in this area
(but it is, of course, nonzero), so we can also ignore it.
In this approximation, Eq. (29) is reduces to the sim-
ple formula

, (30)

where

6 The use of different approximations and models (e.g, the drop
model) is unavoidable in the theory of critical phenomena. The
scaling theory also includes similar approximations, as Domb,
one of the theory’s authors, emphasized: “The renormalization
group (RG) does not produce an exact solution of thе Onsager
type, and its application involves quite drastic approximations”
([1, p. 261]). The problem is not whether these approximations
are necessary, but how they are substantiated and how well they
describe experimental data.
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. (31)

We first examine the left part of Eq. (30). As we
approaches the critical point, experiments show that
the amplitude of f luctuations rises continuously, and
it is visible to the naked eye (liquids begin to opalesce
more and more brightly). This dependence indicates
that the amplitude of f luctuation depends on the dis-
tance to the critical point. In order to consider this
effect, we must assume that , where

 as we approach the critical point. In the first
approximation, we may therefore assume that

(32)

(since expansion is performed around the singular
point of the statistical sum, index  can be noninte-
gral). It follows from Eq. (32) that general correlation

function  =  vanishes at the critical

point where . At the same time, however, iso-
thermal compressibility

(33)

tends to infinity at the critical point.

Let us consider the right part of Eq. (30). This
equation establishes the interrelation between 
and  by definition. We therefore assume that

, which is necessarily a hypothesis.
As noted above, however, the application of this
hypothesis to the theory of critical phenomena is
unavoidable.

We thus assume that . Since
parameter  describes the asymptotic of the gen-
eral correlation function, it must tend to zero when

, in accordance with the condition of attenua-
tion of correlations. Hence, the expansion of

 into a series of  can be limited

to the first term of series , where  is a new
critical index and  is an expansion constant that gen-
erally depends on  and . Function  deter-

mined in this manner has a pole on the order of  at
point . To eliminate this pole, we need

(34)

In other words, we assume that  for .
Substituting this expression into Eq. (20), we obtain

2
2 2

0
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( ) 0rχ = ( )r R ∞<

(35)

where , . For , the low bound-
ary of the integrals  tends to infinity, while
the interval of determined function ,

, shrinks to zero.

Since  and , the asymp-
totic OZ equation becomes

 (36)

Damping decrement  is a variable
value in this equation and depends on  and .
Equation (36) can thus be used only under the condi-
tion that critical indices  and  are interrelated by
relation

. (37)
Under the above condition, both parts of Eq. (36) can
be reduced by  = , transforming it into a
definition of constant  = .

Formula (37) is well known in the theory of critical
phenomena [1]. This is the first indication that the
model we have chosen adequately depicts the phe-
nomena that occur in the vicinity of critical point.

Based on Eq. (37), we obtain Eq. (36) in the form

(38)

As a result, damping decrement  is equal to

;

after some rearranging of terms, it becomes

. (39)

COORDINATES OF THE CRITICAL POINT
Relations found in this manner of course do not

determine the exact value of , since no concrete
forms of functions  are known. They
nevertheless provide a number of useful results.

It is obvious that damping decrement  vanishes
when , and the asymptotic solution to

the OZ equation takes the form  = . As a
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result, all integrals of function  diverge at infinity,
turning the critical point into the singularity of the sta-
tistical sum. According to Eq. (18), it contains

 (40)

Since , the first and the second deriva-
tives of the f luctuation component of pressure δP in
Eq. (40) vanish when :

Formulas (40) then determine the coordinates of the
critical point:

The position of critical point on the phase plane is thus
determined only by the potential component of direct
correlation function ; the f luctuation component
has no effect on the coordinates of the critical point.

Differentiating Eq. (7) for pressure with respect to
density and omitting the f luctuation term that has no
effect on the coordinates of the critical point, we find
that at the critical point,

Since attractive forces predominate when , the
second integral in this equation, which contains deriv-
ative , is always positive. Omitting it, we obtain
inequality

, (41)

which determines all possible values of compressibility
factor  at the critical point. As is clear from the data
given in [16] for 23 different liquids, this is always valid
(the maximum value is approached using quantum
liquids for which  is 0.49; for other liquids, it is less
than 0.3).
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COUPLING EQUATION FOR CRITICAL 
INDICES

In addition to Eq. (37) establishing the interrelation
between critical indices  and , numerous similar
formulas are known in the theory of critical phenom-
ena. These formulas are usually obtained by means of
thermodynamics [17], but some can be obtained
directly from the OZ equation. Let us first consider
equations of the second group.

Expanding damping decrement  into a two-
fold series of powers of  and , and
limiting ourselves to the two first terms, we obtain

 (42)

(here we consider that  at the critical point). Since
the radius of correlation is found to be , we have

 (43)

We now assume that we approach critical point 
along a straight line where . The denomina-
tor in Eq. (43) in this case takes the form  =

. Since in this expression  (see
below), the second term in parentheses can be ignored
in the vicinity of the critical point. We thus obtain a rela-
tion that is well known in critical point theory: .

Let us assume that . The following relations
then hold in the vicinity of the critical point:

, , and . Com-

bining these, we obtain . Integrating this

expression over , we find that . This
equality can be written in standard terms of the theory
of critical phenomena: . Therefore,

 (44)

Finally, since the isothermal compressibility is  =
 and  = ,

 on the isochor curve and
. Critical index , determined as

 in the theory of critical phenomena, is thus
 (45)

This formula is also well known in the theory of critical
phenomena, so the applied approximation in this case
also leads to correct relationships.

In addition to coupling equations, the theory of
critical phenomena includes equations

, (46)

and so on.
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All of these equations were derived from thermody-
namic inequalities by substituting  for = [17]. This
substitution is still considered to be insufficiently sub-
stantiated, so no appreciable attention was given to
these relationships. However, let us recall that thermo-
dynamics is a direct consequence of statistical
mechanics [18]. Formulas (46), obtained using ther-
modynamics, must therefore be fitted by the same val-
ues of indices γ, δ and others included in the coupling
equations derived from the OZ equations. This is pos-
sible only when = is used instead of  in thermody-
namic inequalities.

CRITICAL INDICES  AND 

In addition to f luctuation indices  and so on,
thermodynamic coupling equations (47) also contain
indices  and , which cannot be obtained directly
from the asymptotic OZ equation, since they are
determined by the potential component of direct cor-
relation function .

Index . As is well known, heat capacity at a con-

stant volume is , where the internal energy of

the system is written as  in accordance
with Eq. (9). It therefore follows that

(47)

≥

≥
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c r

G r r dr c c

This formula contains two terms: potential and fluctu-
ation components. To determine the contribution
from fluctuation component , we must
express  in terms of pressure  by means of
Eq. (18). It is easy to show that the f luctuation compo-
nent obtained in this manner is

As a result, the heat capacity at the critical point is
determined only by potential component

, (48)

which depends entirely on the interaction potential.
For the LJ potential, calculations using Eq. (48)

lead to the results shown in Fig. 2. It is obvious that
over the range of temperatures from  to

, formula  with index  pro-
vides a fairly accurate description of the obtained
results. When , however, index  is
reduced gradually, probably to scaling value

. Since experiments confirm this result
(Table 2), we shall continue to assume that .

Index . Index  is the power exponent in equality
 – , where  is the density of a

liquid on the curve of liquid evaporation, and  is
the density of vapor on the curve of vapor condensa-
tion.

It is obvious that for all isotherms  =
, the condition of the equality of pressures of

both phases  must be met, or

 (49)
In the first approximation, the f luctuation component
of pressure is uniform on both branches of the
bimodal, , since the nature of f luctuation
is the same in vapor and liquid. In this approximation,
Eq. (49) is reduced to equality . Each of the

potential components of pressure  in this equality
can be expanded into twofold series of powers of den-
sity  and temperature :

, (50)

where coefficients , bk do not depend on  and .
Experiments clearly show that they are different on
different sides of the critical point [12]. All terms with
higher exponents of series (50) can be ignored when
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Fig. 2. Dependence of heat capacity  on  on a critical
isochoric curve calculated using the OZ equation and clos-

ing equation ,  for the LJ
potential.
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, after which the equality takes the form
 = . Finding the cubic root of

both parts of the equality, we find that

. (51)

For the pure potential version, critical index  is thus
.

However, the potential component does not deter-
mine the value of index  completely: the f luctuation
component also contributes to it, since the properties
of the correlation sphere are differ slightly on either
side of the critical point [12]. We therefore assume that

(52)
At present, it is impossible to calculate specific values
of . We shall therefore consider  to be a fitting
parameter; by varying it, we can seek agreement
between the experimental data and theoretical predic-
tions.

However, let us begin with an analysis of the exper-
imental data. Ivanov noted that index  “is most easily
measured experimentally, since measurements of such
complicated parameters as pressure can be avoided in
this case” (see [12, p. 35]). We may therefore assume
that the experimental values for the difference of 
(Table 2) are the ones most reliable.

Table 1 shows the values of  and
the errors in measurements. It is clear that in the vast
majority of cases, index  is exactly equal to its poten-
tial value , and deviations  are
almost always positive; when  is negative, it is usu-
ally within the measurement error. Absolute value 
never exceeds 0.032; i.e., it is less than 10% of

. Most important, however, by varying 
in the range , we can achieve simulta-
neous agreement between the remaining critical
parameters and their experimental values (see
Table 2).

CRITICAL INDICES  δ, AND 
All of the remaining critical indices can be calcu-

lated using the known values of indices  and  for
coupling equations. This method of calculation is usu-
ally regarded as unreliable, since coupling equations
have so far been derived by substituting  for = in ther-
modynamic inequalities. It is impossible to validate
this substitution while remaining within the context of
thermodynamics. As was noted above, however, this
substitution is absolutely necessary within the model
under consideration.

Let us therefore determine index  using coupling
equation  (see Eq. (45)). Since we assume

0,  0ζ → τ →
3

3 3( )lqa a− ζv
1 1( )lqb b− τv

ρ − ρ = − Δθ Δθ = θ − θ ≤1/3 at 0lq v ck

β
(0) 1/3 0.333...β = =

β

β = β + δβ β = δβ ≥(0) (0), where 0.333..., 0.

δβ δβ

β
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β
(0) 0.333β = 0Δβ ≥

Δβ
Δβ

(0) 0.333β = Δβ
0 0.032≤ Δβ ≤

γ, η

α β

≥

ν
3 2ν = − α

that , index  is always equal to 0.63 in this
approximation.

Index  can be found by substituting known values
of  and  into identity  (see Eq. (46)).
We used only the f luctuation component  of the
index  as the fitting parameter to calculate the critical
indices given in Table 2; if the values of index  are
varied slightly, we can obtain more precise values of
the remaining indices.

Index  can be calculated using relation
 with known values  and  (see

Eq. (46)). Finally, index  can be calculated with
Eq. (37): , using known value . The
resulting values are given in Table 2.

The first thing we notice upon closer examination
of Table 2 is that the experimental data almost always
differ from the values predicted by the scaling theory.
In addition, the discrepancies between theory and
experiment almost always significantly exceed the
measurement error. At the same time, simultaneous
agreement between the theoretical values of indices γ,
δ,  and the experimental data can be achieved7 by
slightly varying  in the formula 
within the context of f luctuation theory (though it is
not always clear which data should be considered
“experimental values,” since different authors report
strongly different values of these indices).

Special attention must be given to SF6. Table 2 con-
tains the value  [2] for this substance. How-
ever, the anomalously low magnitude of 
corresponds to this value of . It is therefore likely that
the value  in Table 2 was determined with a
high degree of error. At the same time, the values of
other indices were found for SF6 [12]:  β =

, , δ = ,
and . The author has emphasized
that these data were measured “especially precisely.”

These index values differ notably from those pre-
dicted by the scaling theory ( , ,

, ). At  and
 (which lie within the measurement error),

calculations of indices , , and  using coupling
equations yield , , , which is
much closer to the experimental data on these indices.
Slight variations of  provide the best coincidence
with the experiment.

CONCLUSIONS
We first assumed that critical phenomena are gen-

erated by the f luctuation waves of density that exist in
each equilibrium system. Since these waves are
described by equations of hydrodynamics [7], it is

7 This requirement was established in a monograph by Stanley
[17].
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impossible to introduce them directly into the Gibbs
equilibrium theory. We can nevertheless characterize
their contributions in terms of average kinetic energy

 per particle and consider this contribution in the
canonical distribution. Our hypothesis showed that all
thermodynamic parameters of the system are equal to
the sum of two terms: the potential and the f luctuation
components.

This model allowed us to:
(1) explain the mechanism behind the onset of

crossover;
(2) explain the Ivanov effect;
(3) derive equations that determine the coordinates

of critical points in real liquids;
(4) show that the compressibility factors of all liq-

uids  are always less than 1/2 at a critical
point;

(5) derive all known coupling equations for differ-
ent critical indices;

(6) use coupling equations for calculating the criti-
cal indices of 15 liquids with accuracy    exceeding that
of scaling theory predictions of these indices. Only one
fitting factor, ranging from 0 to 10% of the main value
of , was used for the simultaneous determination of
five different indices of one liquid.
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