PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS

Interactions in the $Sn₂SB₆S₁₁ - PbSnSB₄S₈ System$

Sh. G. Mamedov*a***, *, I. B. Bakhtiyarly***^a* **, and G. R. Gurbanov***b***, ****

aNagiev Institute of Catalysis and Inorganic Chemistry, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan b Azerbaijan State Oil Academy, Baku, Azerbaijan

**e-mail: azxim@mail.ru **e-mail: ebikib@mail.ru* Received December 30, 2014

Abstract—The $Sn_2Sb_6S_{11}$ —PbSnSb₄S₈ system was studied by physicochemical analysis methods (differential thermal, X-ray powder diffraction, and microstructural analyses and microhardness and density measurements). It was found that this system is a quasi-binary section of the $SnS-PbS-Sb₂S₃$ ternary system of the eutectic type. The coordinates of the eutectic are 42 mol % $PbSnSb_4S_8$ and 600 K. In the studied system, regions of solid solutions were detected, which extend for solid solutions based on $Sn_2Sb_6S_{11}$ to 4 mol % PbSnSb₄S₈ (α) and for solid solutions based on PbSnSb₄S₈ to 6 mol % Sn₂Sb₆S₁₁ (β).

DOI: 10.1134/S003602361609014X

One of the modern efforts of searching for new materials with controlled properties is to synthesize and grow single crystals of multicomponent chalcogenide semiconductors.

Therefore, the development of a scientifically grounded technology for synthesizing chalcogenides, especially sulfides, is of high importance. Sulfides of germanium and arsenic group elements, in particular, SnS, PbS, and Sb_2S_3 are promising thermoelectric and photosensitive materials [1–5].

In view of the practical value of materials based on chalcogenides of tin, lead, and arsenic, it is necessary to gain a deeper insight into their interaction. For understanding the interaction between $Sn₂SB₆S₁₁$ and $PbSnSb₄S₈$, and also for searching for new compounds and solid solutions, the $Sn_2Sb_6S_{11}-PbSnSb_4S_8$ system was studied.

The compound $Sn₂SB₆S₁₁$ melts congruently at 750 K and crystallizes in the rhombic system [6]. According to our previous data [7, 8], PbSnSb₄S₈ melts at 825 K and crystallizes in the rhombic system with the unit cell parameters $a = 21.68$ Å, $b = 7.47$ Å, $c = 4.12$ Å, space group *Pbmm*, and $Z = 2$ [7].

EXPERIMENTAL

Quaternary alloys for investigation were synthesized in evacuated quartz ampules from binary sulfides at 800–880 K. Binary sulfides PbS, SnS, and Sb_2S_3 were produced from elemental substances of special purity grade. With increasing SnS content above 80 mol %, irongray splintery layered substances were obtained.

The alloys were studied by X-ray powder diffraction analysis (DRON-2 diffractometer, Cu K_{α} radiaton, Ni filter), differential thermal analysis (NTR-70 device), microstructural analysis (MIM-7 microscope), and microhardness (RМТ-3 microhardness tester) and density measurements.

RESULTS AND DISCVUSSION

To investigate the phase equilibrium in the $Sn₂Sb₆S₁₁ - PbSnSb₄S₈$ system, 14 samples of various compositions were synthesized (Table 1). Alloys in the system are air- and water-resistant, soluble in mineral acids (H_2SO_4, HNO_3, HCl) , and insoluble in organic solvents.

Figure 1 presents the state diagram of the $Sn_2Sb_6S_{11}-PbSnSb_4S_8$ section, which shows that the section is a quasi-binary section of the SnS–PbS– $Sb₂S₃$ ternary system, and the state diagram of this system is of the eutectic type. The eutectic has the coordinates 42 mol % PbSnSb₄S₈ and 600 K.

The liquidus of the system consists of the primary crystallization branches of α -solid solutions based on $Sn₂Sb₆S₁₁$ and β -solid solutions based on PbSnSb₄S₈.

Investigation of the microstructure of the alloys showed that, near the $Sn₂sb₆S₁₁$ and $PbSnSb₄S₈$ points, there are limited regions of solubility. To determine the boundaries of the regions of solid solutions, we additionally synthesized alloys containing 98, 97, 95, 93, and 90 mol % of the initial components. The obtained alloys were annealed at 550 and 400 K for 180 h and then quenched (Table 2).

Fig. 1. Phase diagram of the $Sn_2Sb_6S_{11} - PbSnSb_4S_8$ system.

The boundary composition of the homogeneity region based on $Sn₂SB₆S₁₁$ at the eutectic temperature is 18 mol %, and the solubility limit at room temperature is 4 mol % PbSnSb₄S₈. The solid solutions based on PbSnSb₄S₈ at the eutectic temperature (600 K) reach 16 mol %. With decreasing temperature, the solubility limit decreases and is 6 mol % at room temperature. These solutions crystallize in the rhombic system. With increasing $Sn₂sb₆S₁₁$ content, the unit cell parameters of these solutions increase $(a = 21.68 -$ 21.74 Å, *b* = 7.47–7.53 Å, *c* = 4.12–4.17 Å) (Table 3), and in the heterogeneous region the reflections in the X-ray powder diffraction pattern remain almost unchanged.

Within the concentration range 0–4 mol % $PbSnSb₄S₈$, the X-ray powder diffraction patterns exhibit only the diffraction lines of $Sn₂sb₆S₁₁$; within the range 4–94 mol % PbSnSb₄S₈, the lines of α-solid solutions based on $Sn_2Sb_6S_{11}$ and β-solid solutions based on PbSnSb₄S₈; and within the range 94–100 mol % PbSnSb₄S₈, only the diffraction lines of PbSnSb₄S₈, which confirm the formation of β-solid solutions on its basis.

Composition, mol %			Temperature Microhardness,		Composition, mol $%$		Temperature Microhardness,
$Sn_2Sb_6S_{11}$	PbSnSb ₄ S ₈	of event, K	MPa	$Sn_2Sb_6S_{11}$	$PbSnSb_4S_8$	of event, K	MPa
100	0.0	750	910	50	50	600, 635	1750
95	5.0	675, 740	980	40	60	600, 690	1750
90	10	600, 725	980	30	70	600, 725	1750
80	20	600, 700	980	20	80	600, 760	1750
70	30	600, 665	980	10	90	790	1750
60	40	600, 615	980	5.0	95	725, 810	1720
58	42	600 (eut)	Eutectic	0.0	100	825	1650

Table 1. Compositions, differential thermal analysis data, and microhardness measurements of alloys in the $Sn_2SB_6S_{11}$ $PbSnSb₄S₈$ system

Fig. 2. Microhardness versus $Sn_2Sb_6S_{11}$ content of $PbSnSb_4S_8$.

Measurements of the microhardness of the alloys demonstrated that, in the section, two sets of values, 910–980 and 1650–1750 MPa, are observed, which characterize α - and β -solid solutions based on $Sn₂SB₆S₁₁$ and PbSnSb₄S₈, respectively. With increasing content of the second component, the microhardness increases, and in the heterogeneous region, the microhardness remains virtually constant (Fig. 2).

Single crystals for structural and optical measurements were grown by directional crystallization.

To grow single crystals of $(PbSnSb_4S_8)_{1-x}(Sn_2Sb_6S_1)_{x}$, polycrystalline alloys were preliminarily synthesized in an amount of 7–10 g, which were then ground and transferred into an ampule with a tapered bottom. The ampule was evacuated and placed in a two-temperature furnace with a preset temperature gradient. The electric furnace moved at a velocity of 3 mm/h, whereas the ampule remained immobile [8]. Such a design allowed one to remove interference caused by the shaking of the ampule. During repeated experiments, the temperatures of furnace zones and the furnace velocity were refined (Table 4). As a result, single crystals suitable for further investigations were obtained.

It was determined that the $Sn₂sb₆S₁₁ - PbSnSb₄S₈$ system is a quasi-binary section and is of the eutectic type with limited solubility based on the initial components.

Thus, in this work:

(1) For the first time, the state diagrams of the $Sn₂SB₆S₁₁ - PbSnSb₄S₈ section were constructed. It$ was found that the $Sn₂Sb₆S₁₁ - PbSnSb₄S₈ section is a$

Table 2. Results of microstructural analysis of alloys in the $Sn_2Sb_6S_{11}-PbSnSb_4S_8$ system after annealing at 400 and 550 K

Composition, mol %		Number of phases at annealing temperature, K		
$Sn_2Sb_6S_{11}$	PbSnSb ₄ S ₈	400	550	
98	2.0	One	One	
97	3.0	Two	One	
95	5.0	Two	One	
93	7.0	Two	Two	
90	10	Two	Two	
2.0	98	One	One	
3.0	97	One	One	
5.0	95	Two	One	
7.0	93	Two	One	
10	90	Two	Two	

Composition, mol $%$	Unit cell parameter, \AA				Z	Micro-	Density, g/cm^3	
$Sn_2Sb_6S_{11}$	a	b	c	Space group		hardness, MPa	exp.	calcd.
0.0	21.68	7.47	4.12	Pbmm	↑	1650	5.33	5.35
1.0	21.70	7.47	4.13	Pbmm	C.	1680	5.36	5.37
3.0	21.72	7.50	4.15	Pbmm	↑	1690	5.38	5.39
4.0	21.74	7.53	4.17	Pbmm	C.	1710	5.40	5.42

Table 3. Crystallographic and some physicochemical data on solid solutions in the $Sn_2Sb_6S_{11} - PbSnSb_4S_8$ system

Table 4. Optimal conditions for growing single crystals of solid solutions $(PbSnSb_4S_8)_{1-x}(Sn_2Sb_6S_{11})_x$

Composition of single crystal	T K	Furnace velocity, mm/h	Weight of single crystal, g	Size of single crystal. mm
$(PbSnSb_4S_8)_{0.992} (Sn_2Sb_6S_{11})_{0.008}$	$700 - 850$	3.5	6.5	8×20
$(PbSnSb_4S_8)_{0.96}(Sn_2Sb_6S_{11})_{0.04}$	$700 - 850$	3.0	6.7	8×20
$(PbSnSb_4S_8)_{0.94}(Sn_2Sb_6S_{11})_{0.06}$	$700 - 850$	3.0	6.8	8×20
$(PbSnSb_4S_8)_{0.92}(Sn_2Sb_6S_{11})_{0.08}$	$700 - 850$	3.0	6.6	8×20

quasi-binary section of the $SnS-Sb₂S₃–PbS$ quasiternary system of the eutectic type.

(2) In the $Sn_2Sb_6S_{11}-PbSnSb_4S_8$ section at room temperature, regions of solid solutions form: solid solutions based on $Sn₂SB₆S₁₁$ extend to 4 mol % PbSnSb₄S₈ (α), and solid solutions based on PbSnSb₄S₈ reach 6 mol % Sn₂Sb₆S₁₁ (β).

(3) In the $Sn_2Sb_6S_{11}-PbSnSb_4S_8$ section, single crystals of solid solutions based on $PbSnSb₄S₈$ were grown by the Bridgman–Stockbarger method.

(4) According to the results of studying the temperature dependences of some electrophysical parameters of the compound $PbSnSb₄S₈$ and the solid solution (PbSnSb₄S₈)_{1–*x*}(Sn₂Sb₆S₁₁)_{*x*}, the alloys are *p*-type semiconductors.

REFERENCES

1. N. Kh. Abrikosov, V. F. Bankina, A. V. Poretskaya, E. V. Skudnova, and L. E. Shelimova, *Compound Semi-* *conductors: Production and Properties* (Nauka, Moscow, 1967), p. 220 [in Russian].

- 2. N. Kh. Abrikosov and L. E. Shelimova, *IV–VI Semiconductor Materials* (Nauka, Moscow, 1975) [in Russian].
- 3. M. Devika, N. Koteeswara Reddy, and K. R. Gunasekhar, Thin Solid Films **520**, 628 (2011).
- 4. S. I. Sadovnikov and A. A. Rempel', Fiz. Tekh. Poluprovodn. (S.-Peterburg) **44** (10), 1394 (2010).
- 5. V. A. Semenyuk, L. D. Ivanova, and T. E. Svechnikova, Neorg. Mater. **31**, 32 (1995).
- 6. A. V. Novoselova, G. G. Gospodinov, I. N. Odin, and B. A. Popovkin, Izv. Akad. Nauk SSSR, Ser. Neorg. Mater. **8**, 173 (1972).
- 7. I. B. Bakhtiyarly, G. R. Gurbanov, D. S. Azhdarova, and Sh. G. Mamedov, Dokl. Nats. Akad. Nauk Azerb. **68** (4), 52 (2012).
- 8. I. B. Bakhtiyarly, D. S. Azhdarova, Sh. G. Mamedov, and G. R. Gurbanov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. **52** (4), 120 (2009).

Translated by V. Glyanchenko