= COORDINATION COMPOUNDS =

Synthesis, IR-Spectroscopic Study and Crystal Structure of Tris(benzohydrazide)nickel(II) Dichloride Dihydrate [Ni(L)₃]Cl₂ · 2H₂O

A. S. Antsyshkina^a, T. V. Koksharova^b, V. S. Sergienko^a, T. V. Mandzii^b, and G. G. Sadikov^a

 ^aKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119991 Russia
^bMechnikov National University, Dvoryanskaya ul. 2, Odessa, 65082 Ukraine e-mail: antas@igic.ras.ru Received May 30, 2015

Abstract—Coordination compound $[Ni(L)_3]Cl_2 \cdot 2H_2O$ (L is benzohydrazide) has been synthesized and studied by IR spectroscopy and X-ray diffraction analysis. According to X-ray diffraction, one of the Cl⁻ ions is disordered over two nonequivalent positions. The crystals are monoclinic, a = 15.423(3) Å, b = 9.697(2) Å, c = 18.893(4) Å, $\beta = 105.99(3)^\circ$, space group $P2_1/c$, Z = 4. The structural units of the crystal are complex cations $[Ni(L)_3]^{2+}$, in which ligands L are coordinated to the central atom bidentately chelating the metal atoms through the O and N atoms of the hydrazide moiety (Ni–O 2.036(4), 2.051(5), 2.047(5); Ni–N 2.095(5), 2.089(6), 2.097(6) Å). The structural units of the crystal are joined together by cation—anion electrostatic interactions and hydrogen bonds, which involve both H₂O molecules, both Cl⁻ anions and the N atoms of chelate rings of the complex cation.

DOI: 10.1134/S0036023616010046

Hydrazides of carboxylic acids react with transition-metal ions forming various coordination compounds. As a rule, in all these complexes irrespective of complexing metal and stoichiometry, ligands are coordinated bidentately through the oxygen atoms of the carbonyl group and the nitrogen atoms of the amino group. A number of coordination compounds of halides and sulfates of divalent 3d metals (Mn, Fe, Co, Ni, and Cu) with benzohydrazide having M : L =1: 3 composition were synthesized and described [1, 2]. In particular, a complex $[Ni(L)_3]Cl_2 \cdot 2H_2O(I)$ (L is benzohydrazide) was isolated for nickel(II) chloride. Based on IR spectroscopy data (using the Nujol mull technique), it was concluded that the coordination of ligand L to the metal was realized by a typical way, through the carbonyl oxygen atom and the nitrogen atom of the NH₂ group, and complex I had a monomeric structure. However, structural confirmation of the conclusions was lacking.

Here we describe the synthesis and the IR spectroscopy and X-ray diffraction data of crystal I.

EXPERIMENTAL

Synthesis. Benzohydrazide (2.04 g, 15 mmol) was dissolved in water (20 mL), and a solution of NiCl₂ \cdot 2H₂O (1.19 g, 5 mmol) in water (20 mL) was added portionally to the obtained solution. The resulting

solution became blue. After a time, blue crystals precipitated from the solution; they were isolated, washed with a small amount of water, and dried in air to constant weight. Crystals suitable for X-ray diffraction were prepared by recrystallization from water.

IR spectra were recorded on a Frontier Perkin-Elmer FTIR spectrometer (4000-350 cm⁻¹). The samples were prepared as KBr pellets.

X-ray diffraction analysis. Structure I was solved by direct methods using the SHELXL-97 program [3]. Non-hydrogen atoms were refined by full-matrix least squares in the anisotropic approximation. The hydrogen atoms of ligand L were given in calculated positions and refined isotropically according to the "rider" model with the $U_{\rm H}$ parameter equal to $1.2U_{\rm j}$ of basis atoms for the CH₂ groups and $1.5U_{\rm i}$ for CH₃ groups.

The structural information was deposited with CCDC (no. 1030465).

The crystallographic data and details of the X-ray diffraction study of crystal **I** are listed in Table 1.

RESULTS AND DISCUSSION

Crystals I (Fig. 1) are built of cations $[Ni(L)_3]^{2+}$ (L is benzohydrazide C₆H₅-C(O)-NH-NH), two anions Cl⁻, one of which is disordered over two nonequivalent positions (0.53, Cl2*a*, 0.47, Cl2*b*), and

Fig. 3).

ers perpendicular to the x axis of the crystal (Fig. 2). The interlayer space is filled with chloride ions (Cl(1),

Cl(2a), and Cl(2b)) and water of crystallization mole-

cules O(1w, O2w) linked with each other and with the

cations by numerous hydrogen bonds (HB) (Table 3,

Table 4 shows the assignment of absorption bands in

Table 1. Crystallographic parameters and refinement details for crystal I

Table 2. Bond lengths (d) and bond angles (ω) in the coordination polyhedron of I

•					
Molecular formula	C ₂₁ H ₂₅ Cl ₂ N ₆ NiO ₅	Bond	d, Å	Bond	d, Å
FW	571.08	Ni(1)–O(1)	2.041(4)	N(1)–N(2)	1.413(7)
Color, habit	Blue prism	Ni(1) - O(2)	2.041(5)	C(1) - N(2)	1.337(8)
Size, mm	$0.14 \times 0.06 \times 0.03$	Ni(1) = O(3)	2 053(4)	C(8) - N(4)	1 357(8)
Crystal system	Monoclinic	$N_{i}(1) = N(1)$	2.000(1)	N(3) N(4)	1.337(0)
Space group	$P2_1/c$	N(1) = N(1)	2.098(3)	$\Gamma(3) = \Gamma(4)$	1.410(0)
Unit cell parameters	1	N1(1) - N(3)	2.104(6)	O(3) - C(15)	1.235(8)
a, Å	15.423(3)	Ni(1) - N(5)	2.089(6)	C(15) - N(6)	1.334(9)
b, Å	9.697(2)	O(1)–C(1)	1.241(7)	N(5)–N(6)	1.418(7)
<i>c</i> , Å	18.893(4)	C(1)–N(2)	1.337(8)	O(2)–C(8)	1.238(8)
β, deg	105.99(3)	Angle	ω, deg	Angle	ω, deg
V, A^3	4	O(1)Ni(1)N(1)	79.7(2)	O(2)Ni(1)N(5)	173.0(2)
ρ_{calc} , g/cm ³	1.396	O(2)Ni(1)N(3)	79.7(2)	N(1)Ni(1)N(3)	97.0(2)
μ , cm ⁻¹	3.196	O(3)Ni(1)N(5)	79.3(2)	N(3)Ni(1)N(5)	96.6(2)
<i>F</i> (000)	1180	O(1)Ni(1)O(2)	88.4(2)	N(1)Ni(1)N(5)	95.8(2)
Temperature, K	293(2)	O(1)Ni(1)O(3)	91.1(2)	N(1)Ni(1)O(2)	90.5(2)
Diffractometer	Enraf-Nonius Cad-4	O(1)Ni(1)N(3)	167.7(2)	N(1)Ni(1)O(3)	169.2(2)
Radiation (λ , Å)	CuK_{α} (1.54178)	O(1)Ni(1)N(5)	95.6(2)	N(3)Ni(1)O(3)	93.1(2)
	Graphite monochromator	O(2)Ni(1)O(3)	95.0(2)		
θ range, deg	4.87-59.97				
Reflection index ranges	$-14 = h \le 9, \ 0 \le k \le 10, \\ -18 = l \le 18$	Ni(1)N(5)N(6)C(15)O(3) (± 0.03 Å) are turned in one direction and form dihedral angles with planes of their corresponding phenyl rings equal to 26°, 18°, and 6°, respectively. The structure of the cation is similar to that found in the previously studied adduct [Co(L) ₃](OH)Cl(H ₃ Ssal)H ₂ O [4], which is the inclu- sion compound of the molecular dimer of sulfosali- cylic acid (H ₃ Ssal) ₂ into the complex.			ed in one
Number of reflections measured unique (N) with $I > 2\sigma(I)$	6326 3746 1810				es of their °, and 6°,
Number of refined parame- ters	343				
GOOF on F^2	1.135				sulfosali-
$R\left[I \ge 2\sigma(I)\right]$	R1 = 0.0647, wR2 = 0.1607				
R (on all the reflections)	R1 = 0.1673, wR2 = 0.2003	The bond lengths and bond angles in structure I are shown in Table 2.			
$\Delta \rho_{max}$ and $\Delta \rho_{min}$, e/Å ³	3.64 and -0.12	Complex cat	tions are loc	ated in the unit co	ell by lay-

water of crystallization molecules. Right-handed and left-handed complex cations are formed; the unit cell contains equal amounts of both complexes. The Ni atoms have an octahedral coordination formed by three O(1-3) atoms and three N(1,3,5) atoms of three bidentately chelating ligands L. Almost planar fivemembered chelate rings Ni(1)N(1)N(2)C(1)O(1) $(\pm 0.01 \text{ Å})$, Ni(1)N(3)N(4)C(8)O(2) $(\pm 0.06) \text{ Å})$, and

Fig. 1. Configuration of complex cation $[Ni(L)_3]^{2+}$.

Table 3. Geometrical	parameters of hydrogen	bonds in structure I

		Length, A*		
Bond A–H…X	A···X	Н…Х	Angle AHX, deg	Coordinates of the X atom
N(1)-H(1)···Cl(1)	3.343(7)	2.63	140	
N(2)-H(2)-Cl(1)	3.127(8)	2.33	154	-x + 1, y + 1/2, -z - 1/2
N(3)-H(3)···Cl(1)	3.242(9)			
N(4)–(H(4)···Cl(1) 1)	3.144(7)	2.36	151	-x + 1, y + 1/2, -z - 1/2
N(5)-H(5a)Cl(2a)	3.269(5)	2.065	138	
N(6)-H(6b)Cl(2b)	3.028(8)	2.58	157	
$O(1w)-H1(w1)\cdots Cl(2b)$	3.165(7)	2.94	150	
O(1w)…O(2w)	2.798(6)			
O(2w)…Cl(2)	3.050(5)			-x+1, -y+2, -z

* Length N-H 0.86 Å.

Table 4. Wavenumbers (v, cm⁻¹) of absorption band maxima in IR spectra of benzohydrazide and $[Ni(L)_3]Cl_2 \cdot 2H_2O$

Assignment	L	$[NiL_3]Cl_2 \cdot 2H_2O$
ν(NH), ν(NH ₂)	3300, 3200, 3049, 3021, 2875	3414, 3161, 3059, 3017, 2976
v(C=O)	1662	1637
$\Delta(\mathrm{NH}_2)$	1616	1607
v(C-C) aromatic ring	1578 sh., 1567, 1488, 1447	1570, 1539, 1492, 1449
$\Omega(\mathrm{NH}_2)$	1350, 1299	1332
$\nu(CN) + \nu(N{-}N) + \tau(NH_2) + \delta(CCH)$	1185, 1155, 1121	1187, 1129
v_{br} ring + $\rho(NH_2)$ + $\tau(NH_2)$	1071, 920, 885, 803	1076, 1042, 1024, 1002, 929, 897, 802
$\Delta(CNH) + \delta(CCC)$	685, 675, 617	689, 639, 615
Δ (CCN) + (δ (NCO)	517	543

RUSSIAN JOURNAL OF INORGANIC CHEMISTRY Vol. 61 No. 1 2016

Fig. 2. Cationic layers alternating with layers, which contain the Cl⁻ ions and H₂O molecules.

Fig. 3. The 0yz projection of the layer containing cations $[Ni(L)_3]^{2+}$.

In the IR spectrum of benzohydrazide, the band with a maximum at 1662 cm⁻¹ corresponds to the stretching vibrations of the C=O group (amide I). In the spectrum of complex I, this band shifts to the lowfrequency region by 25 cm⁻¹ as compared to the frequency of uncoordinated benzohydrazide, which confirms the participation of the oxygen atom in the metal coordination. The authors [1] also recorded a similar displacement by ~20 cm⁻¹ for analogous complexes. Bands of bending vibrations $\delta(NH_2)$ also decrease upon complex formation. For wagging vibrations $\omega(\text{NH}_2)$, one band is observed in the IR spectrum of complex I against two absorption bands observed in the spectrum of free ligand. Bands at ~1570 cm⁻¹ correspond to the stretching vibrations of the C–C bonds of the benzohydrazide aromatic ring; they slightly change upon the complexation. Thus, the nature of changes of absorption bands in the IR spectra of complex I corresponds to bidentately chelating coordination of benzohydrazide by the oxygen and nitrogen atoms.

REFERENCES

- 1. P. V. Gogorishvili, Yu. Ya. Kharitonov, M. V. Karkarashvili, and R. I. Machkhoshvili, Zh. Neorg. Khim. 14, 2891 (1969).
- 2. P. V. Gogorishvili, M. V. Karkarashvili, and D. Z. Kalandarishvili, Zh. Neorg. Khim. 14, 1516 (1969).
- 3. G. M. Sheldrick, SHELXL-97. Program for Refinement of Crystal Structures (Univ. of Göttingen, Göttingen, 1997).
- 4. A. S. Antsyshkina, T. V. Koksharova, V. S. Sergienko, et al., Russ. J. Inorg. Chem. **59**, 1417 (2014).
- 5. E. V. Titov, A. P. Grekov, V. I. Rybachenko, and V. V. Shevchenko, Teor. Eksp. Khim. 4, 742 (1968).
- 6. N. Dodoff, K. Grancharov, R. Gugova, and N. Spassovska, J. Inorg. Biochem. **54**, 221 (1994).
- S. A. Emmanuel, S. A. Thomas, S. O. Idris, and J. F. Iyun, Arch. Appl. Sci. Res 4, 1203 (2012).

Translated by V. Avdeeva