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The trends toward miniaturization of electronic
devices and challenges of integrating nanodevices
have cause considerable interest in stability, band
structure, and conductivity of nanowires [1–3]. The
thinnest possible nanowires are chains with a one�
atom cross�section. The structures and properties of
atomic wires differ from those of bulk materials, and
they are perfect objects for studying the quantum and
size effects. Currently, there is considerable progress in
producing stable atomic wires. First, formation of gold
atomic chains with a length of up to 10 atoms has been
observed by electron microscopy during tensile defor�
mation of nanometer gold contacts [4–6]. The struc�
ture of the nanowires and their stress–strain curves
and electric properties experimentally determined on
an atomic scale point to the ballistic electron transport
in the wires [7]. Straight platinum atomic wires have
been produced by the retraction of a Pt nanotip from
the contact with a Pt plate at room temperature inside
a transmission electron microscope. It has been dem�
onstrated that the conductance of the wire depends on
its length [7–9]. Binary atomic chains of composition
Au1 – xAgx have been generated by mechanical stretch�
ing of nanowires [10]. Organic ligand�supported linear
chains of transition metal atoms have been reported

[11]. Linear carbon chains of 44 C atoms have been
detected in the Tr–C44–Tr compound with bulky ter�
minal groups Tr = tris(3,5�di�tert�butylphenyl)methyl
[9, 12]. Analogous short chains connecting two
graphene flakes have been experimentally realized [13,
14]. Carbon nanotubes can be used as shells for stabi�
lization of atomic chains promising for practical appli�
cation but unstable in the free state. For example, La
atoms form a linear chain of 10 nm in length inside a
nanotube of appropriate diameter [15]. The introduc�
tion of molten iodine into single�walled carbon nano�
tubes of ~1 nm in diameter generates chains >10 nm in
length [16]. A carbon chain 20 nm in length contain�
ing more than 100 atoms inserted inside a multiwalled
carbon nanotube has been revealed [17]. Inorganic
structures, for example, indium [18–21], lead [22],
bismuth [23], and rare earth metals [24], tend to self�
assemble into one�dimensional structures on the
Si(001) surface.

There are a lot of first�principles calculations of the
electronic structure of such systems (band structures
and magnetic properties). For all 3d transition metals,
the band structures and magnetic properties of infinite
periodic linear and dimerized linear chains have been
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studied using pseudopotential plane�wave calculations
with inclusion of spin–orbit coupling [1]. Nearly the
same properties of the chains of 4d metals have been
studied by the linear augmented�plane�wave method
with inclusion of spin–orbit coupling [2]. For some
transition metal atoms, the character of the change in
bond energy as a function of lattice constant is evidence
that infinite linear structures have an energy minimum
for ferro� and antiferromagnetic phases, which opens up
prospects for obtaining spin�dependent ballistic conduc�
tance in atomic chains [1–3, 25, 26].

As distinct from transition metal chains and carbon
atomic wires (carbynes) [21–24], little is known about
atomic chains of Group IV (Si, Ge, Sn), Group AIII–
BV (BN, AlP, GaAs, InSb, etc.), and Group AII–BVI

(ZnSe, CdTe, etc.) elements. We have found only two
works dealing with the structure and electronic prop�
erties of these linear chains [27–29] where it has been
demonstrated using pseudopotential plane�wave cal�
culations that all chains are stable and their bond ener�
gies are close to the corresponding energies of bulk
materials. Ab initio molecular dynamics shows that
chain structures remain stable at temperatures to 800 K.
Band structure calculations of a dozen of monatomic
ANB8�N chains have been performed using only the
nonrelativistic approximation [27, 28]. Because of the
axial symmetry of linear ANB8�N chains, relativistic
corrections for the band structure can be rather signif�
icant. For example, spin–orbit gaps in the Fermi region
in planar graphene and in carbon chains are 1 µeV and
2 meV, respectively [30, 31]. In the present work, we
calculated, for the first time, the relativistic band
structures of ANB8�N chains by the linear augmented�
cylindrical�wave (LACW) method [32–34]. The
LACW method can be treated as an extension of the
Slater augmented�plane wave method to cylindrical
polyatomic systems. The LACW method was extended
to include relativistic terms by analogy with the rela�
tivistic APW method [35].

COMPUTATIONAL DETAILS

Two�Component Relativistic Hamiltonian

We start from a two�component Hamiltonian (in
Rydberg atomic units) [35–37]

 (1)

which is derived from the Dirac Hamiltonian by
applying the Foldy–Wouthuysen transformation. The
first two terms are the kinetic energy operator –Δ and
the potential energy operator V and correspond to the
nonrelativistic Hamiltonian H0 =  The last
three terms are relativistic corrections. Here, с in the
speed of light, р is the momentum operator, and σ are
the Pauli matrices:

( )[ ]
2 4

2 2 2
1 1 1 ,

2
H V V V p

c c c
= −Δ + + σ ⋅ ∇ × + ∇ −p

−Δ + .V

(2)

In Eq. (1), the third term is the spin–orbit operator
HS–O, which is responsible for the splitting of degener�
ate levels and the level shift leading to the change in
band pattern. The fourth and fifth terms (Darwin
interaction HDar and mass–velocity correction )
do not split degenerate levels but can mix and shift the
levels of the same symmetry.

The nonrelativistic part of the Hamiltonian makes
the major contribution to the energy; therefore, we
can use the following procedure. First, we find eigen�

functions  and eigenvalues  of the nonrel�
ativistic Hamiltonian, using the previously developed
nonrelativistic version of the LACW method [32–34].
Then, we double the basis set by introducing spin

 =  (here, χ = α or β are pure spin
functions). Finally, we calculate the matrix elements

 , and , using the spinor basis 

(3)

The relativistic energies and wave functions are cal�
culated by diagonalization of this matrix. Analytical
expressions for the matrix elements are derived in the
following sections.

Cylindrical Muffin�Tin Potential

In the LACW method, structural information is
used as input parameters, and the muffin�tin (MT)
approximation and density functional theory with
Slater exchange are used for potentials. As a starting
electron density of the system, a superposition of
atomic densities is used, and the electron potential is
constructed to be constant in the interspherical space
ΩII and spherically symmetric in the MT spheres ΩI.
As usually, the MT sphere radii were selected so that
the atomic spheres touched each other but did not
overlap. In addition, the atoms of nanowires are sur�
rounded by an impenetrable cylindrical potential bar�
rier since there is vacuum on the outside of the wires
and electron motion is evidently confined by the size
and cylindrical shape of wires. Thus, in the LACW
method, the MT approximation requires the intro�
duction of a free parameter, namely, the barrier radius
a such that the space confined by the barrier accom�
modates an essential portion of the electron density of
the system. This radius should be larger than the cova�
lent radius (rcov) but smaller than the van der Waals
radius (rvdv) of atoms. For the chains of Group IV ele�
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ments, a was taken to be the half�sum of these radii:
a = (rcov + rvdv)/2. For partially ionic chains, the a val�
ues were taken to be the same as for isoelectronic cova�
lent analogues.

Basis Functions

We describe the procedure for calculation of eigen�

functions  of the nonrelativistic LACW
method. The basis functions are solutions of the
Schrödinger equation for the intersphere and MT
regions. In the intersphere region, the basis functions

 are the solutions of the Schrödinger equation
for free electron motion in a cylindrical potential well
in cylindrical coordinates (Z, Φ, R) and are written in
the form

(4)

with V(R) = 0 for R ≤ a and V(R) = ∞ at R > a.
Solutions (4) in such a potential well are referred to

as cylindrical waves. Because of the cylindrical sym�
metry of the V(R) potential, cylindrical waves are writ�

ten as Ψ(Z,Φ,R) = (Z)ΨM(Φ)ΨMN(R). Here, the

Bloch function (Z) describes the free motion of an
electron along the Z axis in the system with transla�
tional period d:

(5)

Functions  = , where M = 0, ±1,
±2, …, correspond to rotation of an electron about the
Z axis. Functions ΨMN(R) describe the radial motion
of an electron in the intersphere space. They are the
solutions of the equation

(6)

The cylindrical wave energies are E = (k+ kP)2 +
E|M|, N. For R ≤ a, Eq. (6) takes the form of the Bessel
equation

(7)

with κ|M|, N = (E|M|, N)1/2.
The solutions of Eq. (7) are Bessel functions of the

first kind JM. These functions are zeroed at the impen�

etrable barrier  =  = 0, which deter�
mines the spectrum E|M|, N = (α|M|, N)2/a2. Here, α|M|, N

is the root of Nth degree of the Bessel function of the
Mth order (N = 1, 2, …). The constant =
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 where  is the derivative of the

Bessel function, is determined from normalization of
 Finally, in the general cylindrical coordinate

system  and in the local spherical coordinate
system  with the center at atom αMT 
the cylindrical wave takes the form

(8)

(9)

where Ω = πa2d.

Inside the MT sphere αMT in the local spherical
coordinate system, the basis function is expanded in
spherical harmonics Ylm(θ, ϕ):

(10)

Here,  are the solutions of the radial Schrödinger
equation for spherically symmetric potential  and
energy 

(11)

and 

By equating the values of functions

 (9) and  (10),

as well as their derivatives 

and  with respect to radius,

constants  and  are selected so that basis

functions (r) (referred to as linear augmented
cylindrical waves) and their first derivatives are contin�
uous everywhere, including the boundaries of the MT
spheres.

For monatomic wires, nonzero  and 
values correspond to m = M; therefore,
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(12)

where

(13)

(14)

(15)

Here, the prime denotes the radial derivative of the
 and  functions, and I1 and I2 are the inte�

grals of augmented Legendre polynomials 

(16)

(17)

Methods of solution of the nonrelativistic
Schrödinger equation with the use of the linear aug�
mented cylindrical wave basis have been described
elsewhere [32–34]. The results of this calculation are

nonrelativistic energies  of different bands n at
different points of the Brillouin zone and spin�inde�

pendent wave functions  presented as a linear
combination of basis functions
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Matrix Elements 

Operator p4 is Hermitian; hence,
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Since  outside the MT spheres, taking into
account Eq. (18), we have
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Matrix Elements HDir

The Darwin interaction can be rewritten in a more
convenient form, using relations reported in [35]
(where integrals are taken over the volume determined
from the periodic boundary conditions):
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Combining these equations with Φ =  and
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Matrix Elements HS–O

Now, we can use the spin�dependent basis (r,

α) = (r)α, (r, β) = (r)β for calculat�
ing the spin–orbit matrix elements. For the spherically
symmetric potential of each MT sphere, this operator
can be presented with the use of the angular momen�
tum operator [35]:

 (24)
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ble to perform analytical integration over angular vari�
ables, which finally gives

(27)
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Sums over atoms αMT of the unit cell include one
and two atoms for covalent and partially ionic chains
of Group IV and ANB8 – N elements, respectively.

CALCULATION RESULTS

The figure shows the calculated band structures of
covalent monatomic chains of Group IV elements;
points Γ and k correspond to the center (k = 0) and the
edge (k = π/d) of the Brillouin zone. The electronic
structure of wires is composed of σ(s), two π+ and π–,
and σ(pz)* bands. Like in nonrelativistic pseudopo�
tential plane�wave calculation [27, 28], the Ñ, Si, Ge,
and Sn chains are metallic; however, there is a great
difference between the relativistic and nonrelativistic
band structures. In the nonrelativistic model, because
of the cylindrical symmetry of the chains, the π bands
crossing the Fermi level are orbitally doubly degener�
ate; i.e., the π+ and π– band energies are exactly the
same. Double orbital degeneracy of the π band corre�
sponds to semiclassical clockwise and counterclock�
wise rotational motion of an electron about the sym�
metry axis of the wire. In the absence of spin–orbit
coupling and with allowance of two possible spin
directions, the π bands must be fourfold degenerate.
LACW calculations show that the spin and orbital
motion of electrons are coupled in the chains, thus
splitting the fourfold degeneracy into the π+ and π–

bands, as shown in the figure. Each π+ and π– band
remains doubly spin�degenerate. The Kramers theo�
rem for systems with time�reversal symmetry and the
existence of inversion symmetry in linear chains lead
to that the π+ and π– bands remain spin�degenerate,
spin polarization directions in each of them being
opposite. The spin–orbit splitting energy ΔS–O = E(π+) –
E(π–) depends on wave vector k, increasing in going
from point Γ to point K of the Brillouin zone. The
spin–orbit splitting energy ΔS–O for C and Sn chains
varies from 1.7 meV to 0.67 eV, respectively. Such
spin–orbit gaps can be detected experimentally and
can have an effect on the electrical properties of wires.
For example, in a carbon nanotube, spin–orbit split�
ting, being only 0.37 and 0.21 meV for electrons and
holes, is detected by the change in the magnetic field
dependence of the differential conductivity and by
means of tunneling spectroscopy [38]. It is evident
that the spin–orbit splitting of orbitally non�degener�
ate σ bands is absent.

Mass–velocity corrections lead to the lowering of
all valence band levels. In the carbon and silicon
chains, the level shifts are 2–5 and 10–30 meV,
respectively, and, possibly, they can be neglected;
however, in the chains of germanium and tin atoms,
this level lowering is already as large as 0.6 and 2.2 eV,
respectively. The Darwin corrections are several�fold
lower than the mass–velocity contributions.

Like nonrelativistic calculations [27, 28], relativis�
tic calculations demonstrate an important difference
between the band structure of carbon chains and those
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of the chains of other Group IV elements near the
Fermi level. For carbon, only the π band crosses the
Fermi level at the center of the Brillouin zone at k =
π/2d, which must lead to the Peierls distortion of the
chain. Another situation is observed for the Si, Ge,
and Sn chains: here, in addition to the π+ and π–

bands, the σ* band crosses the Fermi level, which
must prevent the Peierls dimerization of these chains.
It is worth noting that spin–orbit splitting lifts the
orbital degeneracy; thus, formation of large spin–orbit
gaps in the chains of heavy elements also prevents the
Peierls dimerization, stabilizing chains with equal
lengths of all bonds.

Going from covalent to partially ionic chains is
accompanied by a sharp change in the band structure.
For example, the carbon chain with all equal bond
lengths has a metallic electronic structure with the
zero band gap in the center of the Brillouin zone,
whereas the boron nitride chain is an insulator with an
optical gap of 8 eV and transitions between the occu�
pied π� and vacant π* states at the edge of the Brillouin
zone. Qualitatively, these differences are explained by
the existence of the antisymmetric component of the
electron potential in the BN wire, which mixes even
bonding and odd antibonding π states. This is also
responsible for the analogous splitting of the σ and σ*
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bands in going from the carbon chain to the boron
nitride one.

Transition from the BN chain to the AlP, GaAs,
and InSb chains is accompanied by a decrease in the
chemical bond ionicity, which leads to a gradual
decrease in the π–π* and σ1–σ2 gap widths. In addi�
tion, the low�energy shift of  is observed. These
effects lead to that the AlP chain turns out to be a
semiconductor with an indirect band gap of 2 eV cor�
responding to the π(K) → σ(Γ) transition, whereas
the GaAs and InSb chains are metals due to the cross�

ing of the π+, π–, and bands. Transition from the
AIIIBV to АIIBVI chains is accompanied by an increase
in the ionicity and optical gap.
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