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Abstract—We introduce a new wide class of error-correcting codes, called non-split toric
codes. These codes are a natural generalization of toric codes where non-split algebraic tori are
taken instead of usual (i.e., split) ones. The main advantage of the new codes is their cyclicity;
hence, they can possibly be decoded quite fast. Many classical codes, such as (doubly-extended)
Reed–Solomon and (projective) Reed–Muller codes, are contained (up to equivalence) in the
new class. Our codes are explicitly described in terms of algebraic and toric geometries over
finite fields; therefore, they can easily be constructed in practice. Finally, we obtain new cyclic
reversible codes, namely non-split toric codes on the del Pezzo surface of degree 6 and Picard
number 1. We also compute their parameters, which prove to attain current lower bounds at
least for small finite fields.
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1. INTRODUCTION

There is a well-developed theory of so-called toric codes [1, ch. 8], i.e., algebraic geometry
(Goppa) codes [1, ch. 7] on toric varieties [2] (of dimension d over a finite field Fq). These codes were
discovered in [3,4] as a generalization of Reed–Solomon codes (for d = 1). Toric codes are d-dimen-
sional cyclic (also known as multicyclic or abelian) codes [5,6]. In spite of this, sufficiently fast de-
coding methods for them are not known; inefficient decoding methods are presented in [7, Section 5].

Besides ordinary (i.e., split) tori and toric varieties, there are non-split (over Fq) ones [8].
Therefore, it is natural to consider algebraic geometry codes on the latter. We call them non-split
toric codes. They have some advantages. First, Fq-point groups of non-split tori are often cyclic;
hence, the corresponding codes prove to be (simple-root) cyclic [9, Section 1.2.2]. Moreover, some
toric cyclic codes are also reversible [10]. Second, non-split tori contain more Fq-points than the
split torus, i.e., more than (q−1)d. In other words, non-split toric codes are longer than split ones;
hence, they may have better error-correction capabilities. Finally, many classical codes, such as
doubly-extended Reed–Solomon codes [9, Section 4.4.1] and cyclic Reed–Muller codes (and their
projective analogs [11]), are equivalent to some non-split toric codes.

The paper is organized as follows. In Section 2 we recall some results of the theory of non-split
algebraic tori and toric varieties over finite fields. In particular, Sections 2.2 and 2.4 are restricted to
dimension d ≤ 2. Finally, Section 2.5 focuses only on del Pezzo surfaces of degree 6 [12, Section 3],
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NON-SPLIT TORIC CODES 125

where we produce many results for the surface D6 of Picard Fq-number 1 (the toric del Pezzo
surface with the largest splitting field) and its anticanonical linear system. Next, in Section 3.1 we
define and study non-split toric codes by methods of algebraic, toric, and combinatorial geometries.
In particular, this allows to explicitly write out generator matrices for all toric codes and even
generator polynomials for cyclic toric codes. In Section 3.2 full classification of toric codes is
presented (up to equivalence) on P

1, P2, and quadratic surfaces. Finally, in Section 3.3 we obtain
new cyclic reversible non-split toric codes on D6 and compute their parameters. According to code
tables [13] it turns out that at least for small q these codes are currently the best known.

2. TORIC GEOMETRY OVER FINITE FIELDS

2.1. Algebraic Tori

Let Fq be a finite field of order q and characteristic p, Fq its algebraic closure, and Gm = Fq\{0}.
By definition, an algebraic group T over Fq is said to be an algebraic torus of dimension d if there
is an isomorphism of algebraic varieties ϕ : Gd

m
∼−→ T defined over some extension Fqe . We may

assume ϕ to be an isomorphism in the category of algebraic groups [12, Theorem 7]. If such e is
minimal, then Fqe is called the splitting field of the torus T . We say that T is split if e = 1. Note
that in the case of a cyclic group T (Fq) its order divides q

e − 1.

Let x ∈ G
d
m, m ∈ Z

d, and Φ ∈ GL(d,Z). Throughout the paper we stick to the notation

xm = xm1
1 · . . . · xmd

d and Φ(x) =
(
xΦ�,1 , . . . , xΦ�,d

)
,

where Φ�,j is the jth column of Φ. Besides, we assume that Φ acts on m from the left, i.e.,
Φ(m) = Φm.

For a given T , consider its lattices of characters M = Hom
Fq
(T,Gm) and cocharacters N = M∗

with Frobenius actions Φ,Φt ∈ GL(d,Z) respectively. Recall that these matrices are conjugate in
GL(d,Z). The order of Φ (i.e., Φt) is e; hence, all its eigenvalues are contained in μe = {ζ ∈ Fq |
ζe = 1}. The rank, r, of T is by definition the rank of the invariant sublattice MΦ (i.e., NΦt

).
A torus T is said to be isotropic if r > 0, i.e., if it has nontrivial Fq-(co)characters. Otherwise, T is
said to be anisotropic.

Theorem 1 [14, Section 2.1.7]. The following properties are equivalent :

1. A torus T is split ;
2. r = d;
3. All (co)characters of T are defined over Fq;
4. All eigenvalues of Φ are equal to 1.

Theorem 2 [12, Section 1]. The map T �→ Φ is a bijection between the set of d-dimensional
Fq-tori split over Fqe and the set of matrices (up to conjugation) from GL(d,Z) of order e. More
precisely, under the inverse map, a matrix Φ corresponds to the geometric quotient TΦ = G

d
m/Φ.

Theorem 3 [12, Section 2]. For a fixed d there are only finitely many (up to conjugation) finite
subgroups in GL(d,Z). In particular, there are only finitely many d-dimensional Fq-tori.

Theorem 4 [14, Section 2.1.7; 8, Section 9.2]. We have the following :

1. A torus T has a unique maximal split (anisotropic) Fq-subtorus Ts (respectively, Ta);

2. Moreover, TsTa = T and |Ts ∩ Ta| < ∞. In other words, the map

Ts × Ta → T, (Ps, Pa) �→ Ps · Pa,

is an Fq-isogeny. In particular,

|T (Fq)| = (q − 1)r|Ta(Fq)|;
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126 KOSHELEV

3. The tori Ts and Ta correspond to the lattices MΦ and M/MΦ with a naturally induced action
of Φ. In particular, r = dim(Ts), and the splitting fields of T and Ta coincide.

Lemma 1 [8, Theorem 9.1.1]. The preimage ϕ−1(T (Fq)) is equal to the “eigenspace”

Eq(Φ) = {x ∈ G
d
m(Fqe) | Φ(x) = xq}

associated with the eigenvalue q.

More precisely, if α is a primitive element of Fqe , then

G
d
m(Fqe) = {(αv1 , . . . , αvd) | vi ∈ Z/(qe − 1)}

and

Eq(Φ) =

{
(αv1 , . . . , αvd)

∣
∣
∣

d∑

i=1

Φi,jvi ≡ qvj (mod qe − 1)

}
.

Lemma 2. Let x ∈ Eq(Φ), m ∈ M , and let k be the cardinality of the orbit of m under Φ.
Then xΦ

s(m) = xq
sm for 0 ≤ s ≤ k − 1 (in particular, xm ∈ Fqk).

Proof. The proposition follows from the chain of equalities

xΦ(m) =
d∏

i=1

x

d∑

j=1

Φi,jmj

i =
d∏

j=1

(
d∏

i=1

x
Φi,j

i

)mj

=
d∏

j=1

x
qmj

j = xqm. 	

Theorem 5. We have
|T (Fq)| = χ(q) ≡ ±1 (mod q),

where χ(λ) = det(λI−Φ) is the characteristic polynomial of Φ. Moreover, if a torus T is non-split,
then it has strictly more Fq-points than a split one, i.e.,

|T (Fq)| > (q − 1)d.

Proof. The first part is proved in [8, Theorem 9.1.2]. For the second, we repeat a proof suggested
by B. Kunyavskii in a private letter. Let λ1, . . . , λd be all eigenvalues of Φ. By Theorem 1, at least
one of them is different from 1. Thus, we obtain a strict inequality

|T (Fq)| = χ(q) =
d∏

i=1

|q − λi| >
d∏

i=1

(q − |λi|) = (q − 1)d. 	

Let n,m ∈ N, m | n, and let Rn,q be the Weil scalar restriction of Gm with respect to the
extension Fqn/Fq (see, e.g., [8, Section 3.12]). The universal property of the Weil restriction gives
the norm map Nn,m,q : Rn,q → Rm,q [15, Section 5], which is a surjective Fq-homomorphism of
algebraic tori. In particular,

Nn,q := Nn,1,q : Rn,q → Gm, Nn,q(P ) = P · P (1) · . . . · P (n−1),

is the usual norm map, i.e., the product of n conjugate (over Fq) points. Besides, according
to [15, Lemma 5.1.ii], the restriction of Nn,m,q to the subgroup Rn,q(Fq) is the norm map for the
extension Fqn/Fqm. Finally, consider Fq-tori

R(m)
n,q = ker(Nn,m,q), Tn,q =

⋂

m|n
m�=n

R(m)
n,q .

For m = 1 the former is called a norm one torus. It is interesting that for n equal to a product of
different primes, the groups Tn,q(Fq) are used in cryptography [15, Section 6].
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Theorem 6 [14, Section 2.1.7; 15, Section 5]. We have the following :

1. (Rn,q)a = R
(1)
n,q, and hence Tn,q is an anisotropic torus;

2. The splitting fields of Rn,q, R
(1)
n,q, and Tn,q are equal to Fqn ;

3. dim(Tn,q) = ϕ(n) and Tn,q(Fq) 
 Z/(Φn(q)), where ϕ is the Euler function and Φn is the n-th
cyclotomic polynomial.

2.2. Algebraic Tori of Dimensions 1 and 2

Theorem 7 [16]. There are only the following one-dimensional algebraic Fq-tori :

T e r Φ T (Fq)

Gm 1 1 1 Z/(q − 1)

T2 = R
(1)
2,q 2 0 −1 Z/(q + 1)

.

Theorem 8 [16]. There are only the following two-dimensional algebraic Fq-tori :

T e r Φ ∈ GL(M) T (Fq)

G
2
m 1 2

(
1 0
0 1

)

(Z/(q − 1))2

T2.a = T 2
2 2 0

(
−1 0
0 −1

)

(Z/(q + 1))2

T2.b = Gm × T2 2 1

(
1 0
0 −1

)

Z/(q − 1)× Z/(q + 1)

T2.c = R2,q 2 1

(
0 1
1 0

)

Z/(q2 − 1)

T3 = R
(1)
3,q 3 0

(
−1 −1
1 0

)

Z/(q2 + q + 1)

T4 = R2,q
(
R

(1)
2,q2

)
4 0

(
0 −1
1 0

)

Z/(q2 + 1)

T6 = T6,q 6 0

(
0 −1
1 1

)

Z/(q2 − q + 1)
.

The paper [16] does not give values of r and T (Fq) that either are obvious or follow from Theo-
rem 6. Besides, in [16] the torus T3 (respectively, T4) is denoted by T4 (respectively, T5). We have
changed the notation, because the extension degree for T3 (respectively, T4) is 3 (respectively, 4).
Also, we will denote the matrix Φ for a torus Ti by Φi.

Besides the classification, we need the following fact.

Theorem 9 [17]. All Fq-tori of dimensions 1 and 2 are rational over Fq.

2.3. Toric Varieties

We keep the notation of Section 2.1. Let T be an Fq-torus and V a smooth projective Fq-variety
(of dimension d). We say that V is a toric variety (with respect to T ) if it contains T as an open
subset and the group operation on T can be extended to an action of T on V . It is called split if T
is split. Besides, let V ′ be another toric variety with respect to some torus T ′. Then a morphism
ϕ : V → V ′ is called a morphism of toric varieties if its restriction ϕ : T → T ′ is a homomorphism.
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128 KOSHELEV

Theorem 10. Let V be a projective smooth Fq-variety with a faithful action of an Fq-torus T
and an open orbit U . Then T and U are Fq-isomorphic (under the action of T ), and hence V is
a toric variety (with respect to T ).

Proof. The orbit U is a T -torsor; hence, T and U are isomorphic over Fq, and the variety V
is geometrically rational. By the theorem in [18, Section 2], it has an Fq-point. On the other
hand, [19, Proposition 4] guarantees the existence of an Fq-point on U , and thus T and U are
Fq-isomorphic. 	

Throughout the paper we will use the following notation:

MR = M ⊗Z R, NR = N ⊗Z R, ρ(V ) = rank(Pic(V )), V = V ⊗Spec(Fq) Spec(Fq),

and TDiv(V ) is the set of T -invariant Fq-divisors on V . Turning to the standard terminology of
the toric geometry (see, e.g., [2]), consider the following sets:

Poly: Pairs (P,Φ), where P ⊂ MR is a full-dimensional smooth convex lattice polytope and Φ ∈
GL(M) is a finite-order matrix such that Φ(P ) = P ;

Fan: Triples (Σ, Φ,D), where Σ is a projective smooth fan in NR invariant under a finite-order
matrix Φ ∈ GL(N). In other words, for any cone σ ∈ Σ, we have Φ(σ) ∈ Σ. Finally, D is a
(very) ample Φ-invariant integral combination of rays from Σ;

Split: Triples (V,Φ,D), where V is a split toric Fq-variety, Φ is an automorphism of V (as a toric
variety), and D ∈ TDiv(V ) is a (very) ample Φ-divisor;

Tor: Triples (V, T,D), where V is a toric Fq-variety with respect to an Fq-torus T , and D ∈
TDiv(V ) is a (very) ample divisor.

It is well known that these sets correspond to each other under the following maps (the split
case is discussed in [2]):

1. The map

Poly → Fan, (P,Φ) �→ (ΣP , Φ
t,DP ),

where ΣP and DP are, respectively, the normal fan [2, Theorem 2.3.2] and integral ray combi-
nation [2, Section 4.2] corresponding to P ;

2. The map

Fan → Split, (Σ, Φ,D) �→ (VΣ, Φ,D),

where VΣ is the split toric variety [2, Section 3.1] corresponding to Σ and Φ is an automorphism
of Gd

m from Section 2.1 extended to VΣ;

3. The map

Split → Tor, (VΣ, Φ,D) �→ (VΣ,Φ, TΦ,D),

where

VΣ,Φ = VΣ/Φ, TΦ = G
d
m/Φ

are geometric quotients of VΣ and G
d
m by the automorphism Φ. The toric variety VΣ,Φ is called

the Demazure model of the torus TΦ.

Theorem 11 [12, Sections 1 and 2]. All Fq-forms of VΣ (without a toric structure) are toric
varieties, i.e., they look like VΣ,Φ for Φ ∈ Aut(Σ). Besides, for Φ′ ∈ Aut(Σ) the varieties VΣ,Φ and
VΣ,Φ′ are Fq-isomorphic (as toric varieties) if and only if the matrices Φ and Φ′ are conjugate in
Aut(Σ). Finally, VΣ and VΣ,Φ are isomorphic over Fqe .

Conversely, consider a matrix Φ ∈ GL(N) and the torus TΦ. There is a projective smooth fan
in NR invariant under Φ. In other words, there is a toric Fq-variety with respect to TΦ.
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0

Px

1

Py

−1

Φ = 1 Φ = −1

Fig. 1. Actions on primitive vectors of the fan ΣP1 .

Let ΣΦt
be the set of invariant cones of Σ with respect to a matrix Φt ∈ Aut(Σ). Also, for

σ ∈ ΣΦt
we denote by σ∗ ⊂ MR the cone dual to σ, and by TΦ,σ the torus corresponding to the

restriction of Φ to the sublattice Mσ = −σ∗ ∩ σ∗ ∩M (of dimension d− dim(σ)).

Theorem 12 [20, Theorem 1.3.2, Corollary 1.3.6]. There is a natural bijective correspondence

VΣ,Φ(Fq) =
⊔

σ∈ΣΦt

TΦ,σ(Fq).

In particular, for an anisotropic torus TΦ we have the equality VΣ,Φ(Fq) = TΦ(Fq).

Theorem 13 [12, Section 1]. The natural embedding Pic(VΣ) ↪→ Pic(VΣ) is an isomorphism.
In other words, any divisor on VΣ is equivalent to some Fq-divisor. At the same time, there is a nat-
ural isomorphism between the Gal(Fq/Fq)-module Pic(VΣ,Φ) and Φ-module Pic(VΣ). In particular,

ρ(VΣ,Φ) = rank(Pic(VΣ)
Φ).

Theorem 14 [8, Theorem 4.3.1; 20, Section 1.3]. There is an exact sequence of Φ-modules

0 → M → TDiv(VΣ) → Pic(VΣ) → 0;

passing to invariants, we obtain an induced sequence of groups

0 → MΦ → TDiv(VΣ)
Φ → Pic(VΣ)

Φ → Pic(TΦ) → 0.

Moreover, the group
Pic(TΦ) 
 H1(Φ,M)

is finite, and hence the number of Φt-orbits on Σ(1) is r(TΦ) + ρ(VΣ,Φ).

When considering toric codes, we will be interested in the image of TDiv(VΣ)
Φ in Pic(VΣ)

Φ,
which we denote by TPic(VΣ, Φ). In particular,

TPic(VΣ, I) = Pic(VΣ).

2.4. Projective Line P
1 and Toric Surfaces

It is well known that P1 is a unique one-dimensional projective smooth toric variety. Let x, y be
its homogeneous coordinates. Prime Gm-invariant divisors on P

1 are only the points Px = (0 : 1)
and Py = (1 : 0).

Theorem 15 [2, Example 2.4.10]. The fan of P
1 and all possible actions on it are represented

in Fig. 1. More precisely,
Aut(ΣP1) = 〈−1〉 
 Z/2.

Besides, it is clear that

Pic(P1) = Z[Py], TPic(P1,−1) = Z[Dx,y],

where Dx,y = Px + Py.

From now on we will discuss toric surfaces. We will need the notation V(f1, . . . , fn) for the
algebraic variety generated by some family of Fq-polynomials f1, . . . , fn, n ∈ N.
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O

1

1

Ly

Lx

Lz

I Φ2.c Φt
3

Fig. 2. Actions on primitive vectors of the fan ΣP2 .

Theorem 16 [21, Section 4.1]. A toric Fq-surface can be obtained by a sequence of blowings up
at Fq-orbits of torus-invariant points starting from Fq-minimal surfaces that are Fq-forms of

1. P
2;

2. P
1 × P

1;
3. Hirzebruch surfaces Fm for m > 1;
4. The del Pezzo surface of degree 6 and Picard Fq-number 1.

Projective plane P2. Recall that forms of P2 (over any field) are called Severi–Brauer surfaces.
According to Châtelet [22, Proposition 4.5.10] and Katz [18, Section 2], we have the following.

Lemma 3. There are no Severi–Brauer surfaces over Fq different from P
2.

Let x, y, z be homogeneous coordinates of P2. It is well known that P
2 is a split toric surface

and all its prime torus-invariant divisors are the lines Lx = V(x), Ly = V(y), and Lz = V(z).

Theorem 17 [2, Example 3.1.9]. The fan of P
2 and all possible actions on it (up to conjuga-

tion) are presented in Fig. 2. More precisely,

Aut(ΣP2) = 〈Φt
3〉� 〈Φ2.c〉 
 S3.

Finally, it is clear that

Pic(P2) = TPic(P2, Φ2.c) = Z[Lz], TPic(P2, Φ3) = Z[Dx,y,z],

where Dx,y,z = Lx + Ly + Lz.

Quadratic surfaces. Consider two different points P1, P2 ∈ P
2 and the line L between them.

Successive blowings up at the points P1 and P2 and blowing down the proper preimage of L result
in an Fq-surface Q. If P1 and P2 are Fq-points, then Q is called a hyperbolic quadratic surface H.
Otherwise, i.e., if P1 and P2 are Fq-conjugate, then Q is called an elliptic quadratic surface E .

Theorem 18. First, E is a unique nontrivial Fq-form of H. Furthermore, there are the follow-
ing Fq-isomorphisms:

H 
 P
1 × P

1 
 V(xy − zt), E 
 RFq2/Fq
(P1) 
 V(xy −Q(z, t)),

where x, y, z, t are homogeneous coordinates of P
3, the surface RFq2/Fq

(P1) is the Weil scalar re-
striction, and

Q(z, t) =

{
z2 − at2 (where a ∈ F

∗
q,

√
a /∈ Fq) if p �= 2,

z2 + zt+ at2 (where a ∈ F
∗
q, TrFq/F2

(a) = 1) if p = 2.

Proof. The classification of Fq-forms follows from [23, Lemma 15.3.1; 12, Section 3]. On the
other hand, the existence of isomorphisms is discussed, for example, in [24, Section 2.2.1; 25, Ex-
ample 3.8]. 	
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O

1

1

LxLy

Lu

Lv

I Φ2.a Φ2.b

Φ2.c Φt
4

Fig. 3. Actions on primitive vectors of the fan ΣH.

Let x, y and u, v be two pairs of homogeneous coordinates on P
1×P

1. The action of G2
m on H is

naturally induced from the action of Gm on P
1, and the corresponding prime G2

m-invariant divisors
are the lines

Lx = {Px} × P
1, Ly = {Py} × P

1, Lu = P
1 × {Pu}, Lv = P

1 × {Pv}.

Theorem 19 [2, Example 3.1.12]. The fan of H and all possible actions on it (up to conjuga-
tion) are presented in Fig. 3. More precisely,

Aut(ΣH) = 〈Φt
4〉� 〈Φ2.c〉 
 D4.

Note that in geometric terms Φ2.c is the involution (P,Q) �→ (Q,P ).

Lemma 4. We have Fq-isomorphisms (without a toric structure)

H 
 VΣH,Φ2.a 
 VΣH,Φ2.b
, E 
 VΣH,Φ2.c 
 VΣH,Φ4 .

Proof. It suffices to explicitly realize all toric Fq-forms of H. The first part of the lemma is
obvious, because P

1 × P
1 is a toric surface with respect to the tori T2.a and T2.b. On the other

hand, by the universal property of the Weil restriction, the action of Gm (respectively, T2) on P
1

is transferred to the action of T2.c (respectively, T4) on RFq2/Fq
(P1). Thus, the second part is also

true. 	
Finally, it is easily proved that

Pic(H) = Z[Ly]⊕ Z[Lv], TPic(H, Φ2.a) = Z[Dx,y]⊕ Z[Du,v],

TPic(H, Φ2.b) = Z[Ly]⊕ Z[Du,v], Pic(E) = TPic(H, Φ2.c) = Z[Dy,v],

TPic(H, Φ4) = Z[Dx,y,u,v],

where

Dx,y = Lx + Ly, Du,v = Lu + Lv, Dy,v = Ly + Lv, Dx,y,u,v = Dx,y +Du,v.
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O

1

1
mΣS

Fu

Fv

. . .

I

m. . .

Φt
Fm

Fig. 4. Actions on primitive vectors of the fan ΣFm m > 0.

Hirzebruch surfaces Fm for m > 0. These surfaces are defined by the equation

Fm = V(umy − vmx) ⊂ P
2
(x:y:z) × P

1
(u:v).

The projection f : Fm → P
1
(u:v) is a unique P1-fibration on Fm. It is easily proved that there are no

nontrivial Fq-forms for Fm and that Fm is a split toric surface. Its torus-invariant prime divisors
have the form

Fu = V(u, x), Fv = V(v, y), Σ = V(x, y), S = V(Fm, z).

The curves Fu and Fv are fibers of f over the points Pu, Pv ∈ P
1, respectively. On the other hand,

the curves Σ and S are images of the sections for f with self-intersections −m and m, respectively.

Consider the matrix

ΦFm =

(
1 0
m −1

)

∈ GL(M)

and note that it is conjugate to Φ2.b if 2 | m and to Φ2.c if 2 � m.

Theorem 20 [2, Example 3.1.16]. The fan of Fm and all possible actions on it are presented
in Fig. 4. More precisely,

Aut(ΣFm) = 〈Φt
Fm

〉 
 Z/2.

Finally, it is easy to check that

Pic(Fm) = Z[S]⊕ Z[Fv], TPic(Fm, ΦFm) = Z[S]⊕ Z[Dm],

where

Dm =

⎧
⎨

⎩

Fu + Fv if 2 | m,

Σ+
m− 1

2
(Fu + Fv) if 2 � m,

Dm ∼
{
2Fv if 2 | m,

S − Fv if 2 � m.

It is also worth noting that a divisor r1S + r2Fv is (very) ample if and only if r1, r2 > 0.

2.5. Del Pezzo Surfaces of Degree 6

In this subsection we will use the above notation for P
2 and basic facts from [12, Section 3].

Consider the points

Px = (1 : 0 : 0), Py = (0 : 1 : 0), Pz = (0 : 0 : 1).

It is well known that simultaneous blowing up P
2 at these points results in an Fq-surface D1 of

degree 6 and that such a surface is unique over Fq. Furthermore, D1 is a toric surface, because the
points Px, Py, and Pz are torus-invariant.
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1

1

O L̃y

Ez
L̃x

Ey

L̃z Ex

I Φ2.a Φ2.c

Φ′
2.c Φt

3 Φt
6

Fig. 5. Actions on primitive vectors of the fan ΣD1 .

Let Ex, Ey, and Ez be exceptional curves associated with the points Px, Py, and Pz, respectively,
and let L̃x, L̃y, and L̃z be proper preimages of the lines Lx, Ly, and Lz, respectively. These six
curves are unique torus-invariant prime divisors on D1. Furthermore, the divisor

H0 = Ex + Ey + Ez + L̃x + L̃y + L̃z

is anticanonical and gives an Fq-embedding D1 ↪→ P
6.

Theorem 21. The fan of D1 and all possible actions on it are presented in Fig. 5, where

Φ′
2.c = (−1)Φ2.c = Φ4Φ2.cΦ

−1
4 .

More precisely,
Aut(ΣD1) = Aut(ΣP2)× 〈Φ2.a〉 = 〈Φt

6〉� 〈Φ2.c〉 ∼= D6.

Note that in geometric terms Φ2.a is the standard quadratic transform

P
2 ��� P

2, (x : y : z) �→ (yz : xz : xy) = (x−1 : y−1 : z−1)

lifted to D1.

We will denote by Di (respectively, D′
2.c) the toric surface VΣD1

,Φi (respectively, VΣD1
,Φ′

2.c
).

We stress that the surfaces D2.c and D′
2.c are not isomorphic over Fq, but they both contain the

torus T2.c. Furthermore, for a toric surface S, let us denote by Bla1,...,an(S) blowing up S at some
Fq-orbits (of cardinalities a1, . . . , an, n ∈ N) of torus-invariant points. In general, this blowing up,
of course, depends on a choice of Fq-orbits with given cardinalities. According to Theorems 12
and 14 and Fig. 5, we have the following.

Theorem 22. All del Pezzo Fq-surfaces of degree 6 are presented in Table 1. In particular,
D6 is a unique Fq-minimal surface among them.

From now on we focus on the surface D6, because toric codes on it seem to have the best
parameters compared to those on other del Pezzo surfaces of degree 6. First of all,

Pic(D6) = TPic(D1, Φ6) = Z[H0],

and the polygon PH0 with the action of Φ6 is presented in Fig. 6. The following lemma is an
elementary exercise.
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Table 1. Del Pezzo Fq-surfaces of degree 6.

D |D(Fq)| ρ(D)

D1 = Bl1,1,1(P
2) = Bl1,1(H) q2 + 4q + 1 4

D2.a = Bl2(H) q2 + 2q + 1 3

D2.c = Bl1,2(P
2) = Bl1,1(E) q2 + 2q + 1 3

D′
2.c = Bl2(E) q2 + 1 2

D3 = Bl3(P
2) q2 + q + 1 2

D6 q2 − q + 1 1

1

1

O

Fig. 6. The polygon PH0 with the action of Φ6.

Lemma 5. For r ∈ N, the set

{(0, 0)} ∪ {1 ≤ i, 0 ≤ j, i+ j ≤ r} ⊂ M

consists of representatives of all orbits under the action of Φ6 on PrH0 ∩M . Furthermore, nonzero
points in this set represent orbits of cardinality 6. In particular,

|PrH0 ∩M | = 3r(r + 1) + 1.

Let P = {P1, P2, P3} be a set of noncollinear Fq-conjugate points on P
2 and Q = {Q1, Q2} a set

of different Fq-conjugate points on P
2. In particular, these five points are in general position; hence,

we can consider a uniquely defined nondegenerate conic C passing through them. For i, j ∈ {1, 2, 3}
(i �= j), k ∈ {1, 2}, we denote by Li,j, M, and Nj,k the lines passing through Pi and Pj, Q1 and Q2,
and Pj and Qk, respectively. Furthermore, let

L = L1,2 + L1,3 + L2,3, N =
3,2∑

j,k=1

Nj,k.

All these geometric objects are presented in Fig. 7.

Since the lines Nj,k are conjugate to each other and any toric Fq-surface is uniquely defined by
the Frobenius action on its prime torus-invariant divisors, we have the following.

Lemma 6. The surface D6 is obtained by blowing up P
2 at the orbits P and Q followed by

blowing down the proper preimages M̃ and C̃ of the curves M and C, respectively.
We will denote by B the corresponding blowing-up surface (which is a del Pezzo surface of

degree 4), and by ϕu (respectively, ϕd), the blowing up (down) map. In other words, we have the
diagram

P
2 ϕu←− B ϕd−→ D6.

Next, let
PM = ϕd(M̃ ), PC = ϕd(C̃), ϕud = ϕu ◦ ϕ−1

d ,
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L1,2

L1,3

L2,3 MP1

P2

P3

Q1

Q2

C

N1,1

N1,2

N2,1

N3,2

N2,2

N3,1

P1

P2

P3

Q1

Q2

Fig. 7. Points Pj and Qk, lines Li,j and M,Nj,k, and the conic C.

E′
Q2

E′
Q1

E′
P3

E′
P2

E′
P1

PC PM

Fig. 8. Points PM and PC and curves E′
P and E′

Q.

and let
L′ = L′

1,2 + L′
1,3 + L′

2,3

be the proper preimage of L under ϕud. Finally, let

EP = EP1 + EP2 + EP3 , EQ = EQ1 + EQ2

be the exceptional divisors associated with P and Q, respectively, and

E′
P = (ϕd)∗(EP ) = E′

P1
+ E′

P2
+ E′

P3
, E′

Q = (ϕd)∗(EQ) = E′
Q1

+ E′
Q2

(see Fig. 8 for clarity). Note that there are bijective correspondences

D6 \ (E′
P ∪ E′

Q)
ϕud∼−→ P

2 \ (M∪ C),

T6(Fq) \ {PM, PC} = D6(Fq) \ {PM, PC}
ϕud∼−→ P

2(Fq) \ (M∪ C).

The lines Nj,k are not tangents to C; hence, their proper preimages Ñj,k ⊂ B do not intersect C̃
(or M̃, of course). Therefore, Ñj,k

ϕd∼−→ ϕd(Ñj,k), and we will not make any difference in the notation.

It is easily seen that Ñj,k are exceptional curves on D6, and thus

H0 =
3,2∑

j,k=1

Ñj,k ∈ Div(D6) (or Div(B)).

Lemma 7. The set of hyperplane Fq-sections on D6 ⊂ P
6 has the form

|H0| = ϕ∗
ud(L)− 2E′

P − 3E′
Q,
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where the incomplete linear system

L = |N − 2P − 3Q|

by definition consists of plane (possibly reducible) Fq-sextics passing through P with multiplicity 2
and through Q with multiplicity 3.

Proof. Indeed, it is easily proved that

ϕ∗
u(L)− 2EP − 3EQ = |ϕ∗

u(N )− 2EP − 3EQ| = |H0| ⊂ Div(B),

and hence

ϕ∗
ud(L)− 2E′

P − 3E′
Q = (ϕd)∗

(
ϕ∗
u(L)− 2EP − 3EQ

)
= (ϕd)∗

(
|H0|

)
= |H0| ⊂ Div(D6).

For better understanding of direct and inverse images of divisors on algebraic varieties, see, e.g.,
[26, Sections II.5, II.6, IV.2]. 	

According to the formula in [26, Example V.3.9.2] (a version of the Plücker formula) for the
genus of an absolutely irreducible curve, one can easily check the following fact.

Lemma 8. The only decompositions into irreducible components for Fq-curves from L are the
following :

6: A sextic with μP = 2, μQ = 3;
5 +M: A quintic with μP = μQ = 2 and M;
4 + C: A quartic with μP = 1, μQ = 2, and C;
3 + C +M: A cubic with μP = μQ = 1, C, and M;
2 + 2 · C: A conic with μP = 0, μQ = 1, and two copies of C;
2 + 2 ·M+ C: A conic with μP = 1, μQ = 0, two copies of M, and C;
2 · C +M+ 1: Two copies of C, M, and a line;
M+ 1 + 2 + 2(1): The line M, another line, and two Fq-conjugate conics with μP = 1 such that M

is tangent to each of them at exactly one point from Q;
2′ + 2 + 2(1): A conic and two Fq-conjugate conics as in the previous case;
3 · C: Three copies of C;
2 · C + 2 ·M: Two copies of C and two copies of M;
L+ 3 ·M: The lines Li,j and three copies of M;
N : The lines Nj,k;
Degenerate cases: Other decompositions not containing Fq-curves different from M and C.
In particular, in all cases there is no more than one absolutely irreducible Fq-curve (of geometric
genus g ≤ 1) different from M and C. Moreover, for this curve we have g = 1 only in cases 6,
5 +M, 4 + C, and 3 + C +M with no singular points outside P and Q.

According to Lemmas 7 and 8 and properties of blowing up [26, Section V.3], we obtain the
following.

Corollary 1. A complete classification of hyperplane Fq-sections on D6 ⊂ P
6 is presented in

Table 2.

Corollary 2. For q ≥ 5, every elliptic Fq-curve is isomorphic over Fq to some hyperplane
section on D6 ⊂ P

6.

Proof. On the one hand, the classification of elements from |H0| (Corollary 1) does not depend
on the choice of point sets P and Q. On the other hand, for q ≥ 5 any elliptic Fq-curve E
contains such sets. Indeed, let S be the set of points from E(Fq3) that are collinear with their
Fq-conjugates. By the Bézout theorem, the cardinality of this set is bounded by 3(q2 + q), because
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Table 2. Classification of hyperplane Fq-sections on D6 ⊂ P
6.

S ∈ L H = ϕ∗
ud(S)− 2E′

P − 3E′
Q |H(Fq)| μPM(H) μPC (H)

6
An elliptic curve or a rational curve
with a unique singular point (of mul-
tiplicity 2)

[9, Theorem 3.3.12]
or ≤ q + 2,
respectively

0 0

5 +M 1 0

4 + C 0 1

3 + C +M 1 1

2 + 2 · C
A rational curve smooth outside PM
and PC ≤ q + 2

0 2

2 + 2 ·M+ C 2 1

2 · C +M+ 1 1 2

M+ 1 + 2 + 2(1) Three rational curves smooth out-
side PM and PC , two of them being
Fq-conjugate

3 2

2′ + 2 + 2(1) ≤ q + 4 2 2

3 · C E′
P 1 0 3

2 · C + 2 · M E′
Q 2 2 2

L+ 3 ·M L′ 1 3 0

N H0 0 0 0

Degenerate cases
One or two Fq-orbits of conjugate
smooth rational curves

≤ 4

the collinearity equation for three conjugate points is obviously of degree q2 + q. Applying the
Hasse bound [9, Section 3.3.3], we see that

|E(Fq3) \ S| ≥ q3 − 3q2 − �2q√q� − 3q + 1 > 0,

|E(Fq2) \ E(Fq)| ≥ q2 − 3q − �2√q� > 0,

for q ≥ 5. 	

3. TORIC CODES

3.1. Definition and Main Properties

This subsection is based on the result of Sections 2.1 and 2.3. Consider a triple (V, T,D) ∈ Tor
and the corresponding triples (VΣ, Φ,D) ∈ Split, (PD, Φ) ∈ Poly. Let ϕ : VΣ

∼−→ V be an Fqe-iso-
morphism (of toric varieties) and T (Fq) = {P0, . . . , Pn−1}.

The evaluation map

Ev: H0(V,D) → F
n
q , Ev(f) = (f(P0), . . . , f(Pn−1)),

is well defined, because T ∩ Supp(D) = ∅. We will assume that the map is injective, i.e., in the
linear system |D| there is no Fq-curve that completely contains T (Fq). By definition, a toric code
is the image

Cq(V, T,D) = Im(Ev).

It is said to be split if the torus T is split.

We would like to rewrite this definition more constructively. Recall that the usual Frobenius map
on V corresponds (by means of ϕ) to the action of Φ on VΣ. At the same time [2, Proposition 4.3.3],
we have

H0(V ,D)
ϕ∗
∼−→ H0(VΣ,D), H0(VΣ,D) = Fq[{xm | m ∈ PD ∩M}].
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Hence, ϕ∗ is an isomorphism of Fq-spaces H
0(V,D), and

L(PD, Φ) := H0(VΣ,D)Φ
∗
=

{∑
cmxm

∣
∣
∣ cm ∈ Fqe , c

q
m = cΦ(m)

}
.

Therefore, by Lemma 1, the code Cq(V, T,D) is also equal to the image of the evaluation map
L(PD, Φ) → F

n
q at the points of Eq(Φ), which we continue to denote by P0, . . . , Pn−1.

The code Cq(V, T,D) is nondegenerate and has no repetitions. Indeed, D is a very ample divisor;
hence, for a basis f1, . . . , fk of H0(V,D), the map

ϕD : V ↪→ P
k−1, ϕD(P ) = (f1(P ) : . . . : fk(P )),

is an embedding. Therefore, Cq(V, T,D) can be defined as an algebraic geometry (Goppa) code
corresponding (in the sense of [9, Theorem 1.1.6]) to the projective system ϕD(T (Fq)) without
multiple points. Linearly equivalent divisors define equivalent Goppa codes, and hence we may
assume D to be an effective divisor from TPic(V,Φ).

Remark 1. By the definition, the length n and dimension k of a code Cq(V, T,D) are equal to
|T (Fq)| and |PD ∩M |, respectively.

Theorem 23. Let C = Cq(V, T,D) and C ′ = Cqe(V,Gd
m,D). Then

C =
(
C ′
Eq(Φ)

)∣∣
Fq

=
(
C ′|

Fq

)
Eq(Φ)

.

In other words, any toric code C is a result of successive puncturing [9, Section 1.1.6] of the split
toric code C ′ at the coordinate set Eq(Φ) and the restriction [9, Section 1.2.3] to Fq (or in the
reverse order).

Proof. The right-hand equality is true, because the code operations of puncturing and subfield
restriction are always commutative. The left-hand equality follows from the easily proved relations

C ⊗Fq Fqe = C ′
Eq(Φ)

,
(
C ⊗Fq Fqe

)
|
Fq

= C. 	

Remark 2. Theorem 23 allows us to think about non-split toric codes as high-dimensional
analogs of BCH codes [9, Section 1.2.2]. However, the idea of considering subfield-subcodes of
toric codes has already arisen in [27].

Let O(m0), . . . , O(ml−1) be all orbits under the action of Φ on PD ∩M , ki = |O(mi)|, and let
{bi,j}ki−1

j=0 be a basis of the Fq-space Fqki . Furthermore, by Trki,q we denote the trace map with
respect to the extension Fqki/Fq.

One can easily prove the following result.

Lemma 9. The set {
ki−1∑

s=0

bq
s

i,jx
Φs(mi)

}l−1, ki−1

i=0, j=0

is a basis of the Fq-space L(PD, Φ).

From Lemmas 2 and 9 we immediately obtain the following.

Theorem 24. A generator matrix of a code Cq(V, T,D) has the form

⎛

⎜
⎜⎜
⎝

Trk0,q(b0,0P
m0
0 ) Trk0,q(b0,0P

m0
1 ) . . . Trk0,q(b0,0P

m0
n−1)

Trk0,q(b0,1P
m0
0 ) Trk0,q(b0,1P

m0
1 ) . . . Trk0,q(b0,1P

m0
n−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Trkl−1,q(bl−1,kl−1

P
ml−1

0 ) Trkl−1,q(bl−1,kl−1
P

ml−1

1 ) . . . Trkl−1,q(bl−1,kl−1
P

ml−1

n−1 )

⎞

⎟
⎟⎟
⎠
.
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In the rest of Section 3.1 we will assume that T (Fq) = 〈P 〉 ↪→ F
∗
qe is a cyclic group, Ps = P s for

0 ≤ s ≤ n− 1, and bi,j = bq
j

i is a normal basis of Fqki/Fq for 0 ≤ i ≤ l− 1. A proof of the following
lemma can easily be obtained from that of Proposition 4.1.22 in [9].

Lemma 10. Cq(V, T,D) is a simple-root (i.e., p � n) cyclic code.

Theorem 25. The parity-check polynomial of the cyclic code Cq(V, T,D) is

h(x) =
l−1∏

i=0

hP−mi (x), where hP−mi (x) =
ki−1∏

j=0

(
x− P−Φj(mi)

)

is the minimal (over Fq) polynomial of P−mi.

Proof. By definition, the parity-check polynomial is equal to the quotient of xn − 1 by the
generator polynomial g. At the same time, g is equal to the greatest common divisor of the basis
polynomials

Bi,j(x) =
n−1∑

s=0

Trki,q(b
qj

i P smi)xs.

Let ni,t = ord
(
Pmi(qt−1)

)
and

St =
n−1∑

s=0

(
Pmi(qt−1))s =

n

ni,t

ni,t−1∑

s=0

(
Pmi(qt−1))s =

{
n = ±1 if ni,t = 1,

0 otherwise.

In particular, S0 = n = ±1. Thus,

Bi,j(P
−mi) =

ki−1∑

t=0

bq
j+t

i St �= 0

and h(P−mi) = 0. Finally, deg(hP−mi ) = ki, and hence deg(h) = k; i.e., we have found all roots of
the polynomial h. 	

Recall that a cyclic code is said to be reversible if its generator (or, equivalently, parity-check)
polynomial is self-reciprocal.

Corollary 3. If PD is a centrally symmetric polytope (i.e., −PD = PD), then Cq(V, T,D) is a
reversible code.

Among centrally symmetric polytopes, we highlight so-called del Pezzo polytopes, which are
discussed in [19]. At the same time, the theory of cyclic reversible (or, equivalently, LCD) codes
can be found in [10,28,29].

3.2. Toric Codes on P
1 and Some Toric Surfaces

We keep the notation of Section 2.4.

Theorem 26. The codes

RSq(r) = Cq(P1,Gm, rPy), PRSq(r) = Cq(P1, T2,
r

2
Dx,y)

are all possible (up to equivalence) toric codes on P
1, and their parameters are presented in Table 3.

The code RSq(r) is known as a (punctured) Reed–Solomon code; PRSq(r) is equivalent to the
so-called projective (doubly extended) Reed–Solomon code, because for even r the divisors rPy and
r

2
Dx,y are equivalent. Moreover, according to Theorem 23, it is a (nonprimitive, non-narrow sense)

BCH code. Finally, the polytope of
r

2
Dx,y is clearly the closed line segment

[
− r

2
,
r

2

]
; hence, by

Corollary 3, the code PRSq(r) is reversible.
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Table 3. Toric codes on P
1.

n k d Restrictions Reference

RSq(r) q − 1
r + 1 n− r

0 < r < q − 1 [9, Section 1.2.1]

PRSq(r) q + 1 0 < r < q + 1, 2 | r [9, Section 4.4.1]

Table 4. Toric codes on P
2.

n k d Restrictions Reference

Cq(P2,G2
m, rLz) (q − 1)2

(r + 1)(r + 2)

2

n− r(q−1) 0 < r < q − 1 [4, Theorem 1.3]

Cq(P2, T2.c, rLz) q2 − 1 n− rq 0 < r < q [30, Sections 2 and 3]

Cq(P2, T3,
r

3
Dx,y,z) q2 + q + 1 n− (rq+1)

0 < r < q+1,
3 | r [11, Section 2]

Theorem 27. All possible (up to equivalence) toric codes on P
2 are presented in Table 4.

The second code of Table 4 is known as a (punctured) Reed–Muller code; the third is equivalent

to the so-called projective Reed–Muller code, because for 3 | r the divisors rLz and
r

3
Dx,y,z are

equivalent.

Theorem 28. The codes

C1 = Cq(H,G2
m, r1Ly + r2Lv), C2.a = Cq(H, T2.a,

r1
2
Dx,y +

r2
2
Du,v),

C2.b = Cq(H, T2.b, r1Ly +
r2
2
Du,v), C2.c = Cq(E , T2.c, rDy,v), C4 = Cq(E , T4,

r

2
Dx,y,u,v)

are all possible (up to equivalence) toric codes on quadratic surfaces, and their parameters are
presented in Table 5.

It is easily proved that

C1 = RSq(r1)⊗ RSq(r2), C2.a = PRSq(r1)⊗ PRSq(r2), C2.b = RSq(r1)⊗ PRSq(r2),

where ⊗ denotes the tensor (Kronecker) product of codes. At the same time, C2.c is a primitive
narrow-sense BCH code by [31, Proposition 4.2]. Finally, C4 is a reversible code by Corollary 3,

because the polygon of
r

2
Dx,y,u,v is clearly the closed square

[
− r

2
,
r

2

]
×

[
− r

2
,
r

2

]
.

Lemma 11 [4, Theorem 1.5]. All possible (up to equivalence) split toric codes on Hirzebruch
surfaces Fm for m > 0 are of the form

Cq(Fm,G2
m, r1S + r2Fv), where 0 < r1, r2,mr1 + r2 < q − 1,

and their parameters are

n = (q − 1)2, k =
(r1 + 1)(mr1 + 2r2 + 2)

2
, d = n− (q − 1)(mr1 + r2).

Remark 3. The author examined non-split toric codes on Hirzebruch surfaces and came to a
conclusion that they are of little interest.

3.3. Toric Codes on del Pezzo Surfaces of Degree 6

We keep the notation of Sections 2.5 and 3.1. Among all del Pezzo surfaces of degree 6, the
surface D6 seems to be the most appropriate for considering toric codes on it, because its splitting

PROBLEMS OF INFORMATION TRANSMISSION Vol. 55 No. 2 2019



NON-SPLIT TORIC CODES 141

Table 5. Toric codes on quadratic surfaces.

n k d Restrictions Reference

C1 (q − 1)2

(r1 + 1)(r2 + 1)

(q − 1− r1)
× (q− 1− r2)

0 < r1, r2 < q − 1 [4, Theorem 1.4]

C2.a (q + 1)2
(q + 1− r1)
× (q+1− r2)

0 < r1, r2 < q+1,
2 | r1

2 | r2
[31, Remark 3.2]

C2.b

q2 − 1

(q − 1− r1)
× (q+1− r2)

0 < r1 < q − 1,
0 < r2 < q + 1

C2.c

(r + 1)2 n− r(q + 1)
0 < r < q − 1 [31, Proposition 4.2]

C4 q2 + 1 0 < r < q, 2 | r [31, Proposition 4.7]

field is the largest. In other words, this surface is “the most non-split.” For comparison, see
non-toric and split toric codes on the surface D1 in [32] and [33, Example 5.2], respectively.

Let β ∈ F
∗
q6 be an element of order n = q2 − q + 1, and let Pβ = (β, βq). It is clear that

Eq(Φ6) = 〈Pβ〉 
 〈β〉

and P
(i,j)
β = βi+jq for (i, j) ∈ M . We also recall that hβi denotes the minimal (over Fq) polynomial

of βi, where 0 ≤ i ≤ n− 1.

In the next theorem we use the quantity Nq(1), i.e., the maximum possible number of Fq-points
on an elliptic curve. It is known [9, Theorem 3.4.49] that

Nq(1) =

{
q + �2√q� if

√
q /∈ N, p < q, and p | �2√q�,

q + �2√q�+ 1 otherwise.

Elliptic curves for which the number of Fq-points attains Nq(1) are called Fq-optimal (Fq-maximal
if
√
q ∈ N). Such curves are interesting in themselves, because algebraic geometry codes on them

are so-called almost MDS codes with rather large lengths [9, Section 4.4.2].

Theorem 29. Consider r ∈ N such that rNq(1) < n and for any partition r =
m∑

i=1
ri > m (with

ri ∈ N) we have the inequality

m(q + 1) + �2√q�
m∑

i=1

gi ≤ rNq(1), gi = 3ri(ri − 1) + 1.

Then the toric code Cq,r = Cq(D6, T6, rH0) has parameters

n = q2 − q + 1, k = 3r(r + 1) + 1, d ≥ n− rNq(1).

Moreover, if the point Pβ in the definition of Cq,r is taken as a generator of Eq(Φ6), then Cq,r is
a cyclic reversible code with the parity-check polynomial

h(x) = (x− 1)
∏

1≤i; 0≤j
i+j≤r

hβi+jq (x).

Proof. The length n is obvious. First, we will estimate the minimum distance d. Let D =
m∑

i=1
Ci

be the decomposition into irreducible (over Fq) components for an arbitrary element of the linear
system |rH0|. The Picard group of the surface D6 is generated by H0; hence, Ci ∼ riH0, ri ∈ N
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and
m∑

i=1
ri = r. In particular, the arithmetic genus gi of a curve Ci is 3ri(ri − 1) + 1 (see, e.g.,

[26, Exercise V.1.3]). Therefore, by [34, Proposition 2.3] we obtain

|Ci(Fq)| ≤ q + g(Ci)�2
√
q�+ 1 + gi − g(Ci) ≤ q + gi�2

√
q�+ 1.

Moreover, if r = m (i.e., ri = gi = 1 for 1 ≤ i ≤ m), then |Ci(Fq)| ≤ Nq(1) by Corollary 1. Thus,

|D(Fq)| ≤
m∑

i=1

|Ci(Fq)| ≤ rNq(1),

and we get the desired bound on d, since T (Fq) = D6(Fq). At the same time, the dimension k
follows from Lemma 5 and the inequality rNq(1) < n.

The cyclicity of Cq,r is implied by Lemma 10. The polygon PrH0 = rPH0 (see Fig. 6 for r = 1) is
centrally symmetric; therefore, the reversibility of Cq,r follows from Corollary 3. Finally, we obtain
the desired parity-check polynomial by Lemma 5 and Theorem 25. 	

Theorem 29 and Corollary 2 immediately imply the following.

Corollary 4. For q ≥ 5, the code Cq,1 is an [n, 7, n −Nq(1)]q code.

Remark 4. For small q the codes Cq,1 have parameters

[21, 7, 11]5 , [43, 7, 30]7 , [57, 7, 43]8 , [73, 7, 57]9 .

The codes C7,1, C8,1, and C9,1 have already been found (by a non-exhaustive computer search)
in [35–37], respectively. According to the Brouwer–Grassl tables [13], they are the best currently
known for given q, n, and k. Thus, it seems that codes Cq,r (at least for r = 1) are also good enough
for larger values of q.

Remark 5. By Corollaries 1 and 2 and the Deuring–Waterhouse theorem [9, Theorem 3.3.12],
we know all weights of a code Cq,1 for q ≥ 5. In particular, its minimum-weight codewords (up to
multiplication by an element of F∗

q) bijectively correspond to Fq-optimal elliptic curves from |H0|.
However, in this linear system there are many different (as sets) elliptic curves that are Fq-isoge-
nous, i.e., have the same number of Fq-points. Nevertheless, by the reversibility of any code Cq,r,
for full computation of its spectrum it suffices to solve a system of linear equations derived from
the MacWilliams identity [9, Theorem 1.1.17].
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