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Abstract—We study chromatic numbers of spaces R
n
p = (Rn, �p) with forbidden monochro-

matic sets. For some sets, we for the first time obtain explicit exponentially growing lower
bounds for the corresponding chromatic numbers; for some others, we substantially improve
previously known bounds.
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1. INTRODUCTION

Problems addressed in the present paper originated from Nelson’s famous question (see [1])
posed as early as in 1950: “What is the least number χ(R2) of colors sufficient for coloring points
of a plain so that no two points at unit distance from each other have the same color?”

Though this question, at first glance, seems to be very simple, the answer is not presently known.
It is only proved that

4 ≤ χ(R2) ≤ 7 (1)

(for a proof, see, e.g., [1])2.

This classical Nelson’s question admits numerous generalizations. For example, instead of col-
oring a plane one can try to color the n-dimensional Euclidean space Rn or even a metric space Rn

p ,
which for all p ≥ 1 (including p = ∞) is defined as a “usual” space R

n with a slightly “unusual”
metric �p defines as follows:

x = (x1, . . . , xn), y = (y1, . . . , yn) ⇒ �p(x,y) =
p

√
|x1 − y1|p + . . . + |xn − yn|p.

Many papers have been devoted to the study of the chromatic number χ(Rn
p ), and known facts

that we need in the present paper are summarized in the following theorem.

Theorem 1. The following four statements hold true:

1. For any p ≥ 1 as n → ∞
(
1 +

√
2

2
+ o(1)

)n

= (1.207 . . . + o(1))n ≤ χ(Rn
p ) ≤ (4 + o(1))n;

2. For p = 2, n → ∞,
(1.239 . . . + o(1))n ≤ χ(Rn

2 ) ≤ (3 + o(1))n;

1 Supported in part by the Russian Foundation for Basic Research, project no. 18-01-00355, and the
President of the Russian Federation Council for State Support of Leading Scientific Schools, grant
no. NSh-6760.2018.1.

2 While the paper was being prepared for publication, a note [2] appeared, where it was proved that
χ(R2) ≥ 5.
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3. For p = 1, n → ∞,

(
1 +

√
3

2
+ o(1)

)n

= (1, 366 . . . + o(1))n ≤ χ(Rn
1 ) ≤ (4 + o(1))n;

4. For p = ∞ and any n we have an explicit equality

χ(Rn
∞) = 2n.

The proof of the lower and upper bounds of statement 1 can be found in [3,4], respectively; the
proof of statement 2, in [5,6]; of statement 3, in [7, 4]; and the equality in statement 4 is classical,
and its proof can be found, e.g., in [8].

Though we are already rather far from the original Nelson’s question, the problem setting can be
generalized further. The area which studies generalizations of this kind is referred to as Euclidean
Ramsey theory. Numerous papers are devoted to this theory, among which we would like to mention
the works [9–19]. In the framework of Euclidean Ramsey theory, instead of “forbidding” two points
at unit distance from each other to have the same color, one may “forbid” other (more complicated)
configurations to be monochromatic. Let us give a formal definition.

Let X = (X, dX ) and Y = (Y, dY ) be arbitrary metric spaces. A subset X ′ ⊂ X is called a
copy of Y if there exists a bijection f : Y → X ′ such that for any y1, y2 ∈ Y we have dY (y1, y2) =
dX(f(y1), f(y2)).

The chromatic number χ(X ;Y) of a space X with a forbidden space Y is defined as the minimum
number of colors sufficient for coloring X in such a way that no copy X ′ ⊂ X of Y is completely
monochromatic. Of course, in this general setting one could hardly hope to obtain profound results,
so in this paper we will consider Rn

p as a space X to be colored, though in the framework of Euclidean
Ramsey theory the more particular case of X = R

n
2 is considered most often, which explains the

name of the theory.

To illustrate this definition, note that if Y is a pair of points at a unit (or any other) distance
from each other, then by definition χ(Rn

p ;Y) = χ(Rn
p); i.e., our definition is indeed a generalization.

As we have already seen in Theorem 1, in this case χ(Rn
p ;Y) for each p ≥ 1 grows exponentially

with n. It is found that this can be the case not only for two-point spaces Y, which motivates the
following definitions.

A metric space Y is said to be �p-exponentially Ramsey if there exists c = c(p,Y) > 1 such that

χ(Rn
p ;Y) ≥ (c+ o(1))n (2)

as n → ∞. The largest constant c with which inequality (2) is still valid will be referred to as
χ−(�p;Y). Thus, more formally,

χ−(�p;Y) = lim inf
n→∞

χ(Rn
p ;Y)1/n.

The quantity χ+(�p;Y) can be defined similarly, replacing the lim inf with lim sup.

Remark 1. Unfortunately, in all papers on this subject the term exponentially Ramsey is com-
monly referred to not a metric space Y = (Y, dY ) but a set Y . Each time, of course, it is assumed
that on a given Y there is defined some “natural” metric dY . For instance, on the “set of vertices
of a regular triangle with unit side,” a “natural” metric is assumed to be a function that assigns
unit distance to each pair of distinct “vertices.” On subsets of Rn

p , a “natural” metric is assumed
to be the metric �p induced from the “ambient” space.

Therefore, in this paper we will also sometimes speak about exponentially Ramsey sets, assum-
ing, of course, exponentially Ramsey metric spaces.
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Central questions that we would like to be able to answer for concrete p and Y are the following:

1. Is it true that Y is �p-exponentially Ramsey?
2. If so, what are the values of χ−(�p;Y) and χ+(�p;Y)?

In the general case, answers to these questions are not yet known, but they are known in some
particular cases. Concerning the first question, it is proved (see [9]) that in the case of p = 2
necessary conditions for the exponential Ramsey property of Y is its finiteness and �2-sphericity
(i.e., Y must be a finite subspace of an �2-sphere in some dimension). A popular conjecture says that
these two conditions are not only necessary but also sufficient. However, at present the exponential
Ramsey property is proved for a rather small number of sets, which will be listed immediately after
we give some auxiliary definitions.

The �p-Cartesian product ×p of metric spaces X = (X, dX ) and Y = (Y, dY ) is a metric space
X ×p Y = (X × Y, d) with metric d defined as follows:

∀x1, x2 ∈ X ∀ y1, y2 ∈ Y d((x1, y1), (x2, y2)) =
p

√
dpX(x1, x2) + dpY (y1, y2).

A k-dimensional �p-rectangular parallelepiped is the metric space which is the �p-Cartesian prod-
uct of any k “segments” (two-point metric spaces).

Now we are in position to list all presently known exponentially Ramsey sets. In [13] it was
shown that for any p ≥ 1 the set of vertices of any �p-rectangular parallelepiped is �p-exponentially
Ramsey. In the same paper, for p = 2 there was established the �2-exponential Ramsey property
for the set of vertices of any nondegenerate simplex. Besides that, it is clear that any subset of
an exponentially Ramsey set is exponentially Ramsey itself. No other examples of exponentially
Ramsey sets are known.

Note that for many other sets their �p-Ramsey property (weaker than the �p-exponential Ramsey
property) is proved, which means that the corresponding chromatic numbers χ(Rn

p ;Y) tend to
infinity as n grows. For instance, in [15] the �2-Ramsey property for an arbitrary regular k-gon
is proved for any k. In [16], the �2-Ramsey property for an arbitrary trapezoid, and in [18], the
�2-Ramsey property for the sets of vertices of an arbitrary regular polytope in any dimension are
proved.

The second of the posed questions seems to be more complicated than the first, even if instead of
finding exact values of χ−(�p;Y) and χ+(�p;Y) we are only interested in finding some estimates for
them. For example, essentially there are only two results on lower bounds for χ−(�p;Y) (of course,
we are speaking about “nontrivial” lower bounds, i.e., those greater than 1). The first of them is
Theorem 1 formulated above, and to state the second, we need an extra notation.

For every integer k ≥ 1 define a metric space Sk as the set of vertices of a regular k-dimensional
simplex, i.e., Sk consists of k+1 points with the same distance between any two of them. Of course,
this definition is the most natural in the �2 metric, since if we ask the question of what is the largest
number of points in R

k
2 with all pairwise distances the same, the answer is exactly k+1. From this

point of view, in the �1 metric it would be natural to call S2k−1 a k-dimensional simplex, and in
the �∞ metric, S2k−1. However, we would not pay attention to this terminological problem.

So, the second result related to lower bounds on χ−(�p;Y) is the following theorem, finally
proved in a series of works [19–25].

Theorem 2. For every p ≥ 1 the following two statements hold true:

1. χ−(�p;S2) ≥ 1.00085 . . . ;

2. ∀ k ≥ 1 χ−(�p;Sk) ≥ 1 +
1

22
k+4 .

Note that the exponential Ramsey property for the sets Sk was also known before this theo-
rem, since Sk is clearly a subset of the set of vertices of some (k + 1)-dimensional �p-rectangular
parallelepiped for any p.
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It is seen that the estimates in Theorem 2 are extremely close to 1. However, nothing better has
been proved up to now. In this paper we not only considerably improve the estimates of Theorem 2
but also obtain a variety of absolutely new explicit bounds for other sets whose �p-exponential
Ramsey property was earlier proved implicitly.

Formulations of our theorems are given in Section 2, and subsequent sections are devoted to
their step-by-step proofs.

In conclusion we note that related problems of combinatorial geometry and Euclidean Ramsey
theory were considered in [9, 26–32].

2. FORMULATION OF RESULTS

Here we present the main results of the paper. We have obtained lower bounds on χ−(�p;Y)
for many fixed Y for all values of p ≥ 1. These results are grouped into theorems according to the
following principle. Theorem 3 contains bounds that are valid for all p ≥ 1, and in this sense it is
an analog of statement 1 of Theorem 1. Theorems 4–6, on one hand, contain stronger estimates,
and on the other hand, are valid only for p = 2, 1, and ∞, respectively, and in this sense they are
analogs of statements 2–4 of Theorem 1.

Note that the exponential Ramsey property of all sets Y mentioned in Theorems 3–6 was pre-
viously known, but no explicit exponentially growing estimates for the chromatic numbers were
given other than Theorems 1 and 2. In this sense, our theorems not only fill this gap but also
considerably improve previously known bounds from Theorem 2.

Before formulating our results, we need to formally describe spaces Y to be considered.

Let 0 < a1 ≤ a2 ≤ . . . ≤ ak be arbitrary positive numbers. Let I(ai) be a two-point metric
space with the only nonzero distance ai (1 ≤ i ≤ k). For each p ≥ 1 define Ik

p = Ik
p (a1, . . . , ak) to

be the �p-rectangular parallelepiped with sides a1, . . . , ak, i.e.,

Ik
p = I(a1)×p . . .×p I(ak).

We will also need various spaces corresponding to sets of triangle vertices. Let positive numbers
a, b, c be such that a ≤ b ≤ c ≤ a+ b. Define a metric space T = T (a, b, c) as a three-element set T
with metric taking values a, b, and c at three pairs of distinct elements of T . A triangle T (a, b, c)
well be called �p-right if ap + bp = cp, and �p-acute if ap + bp > cp.

We will also be interested in spaces Sk corresponding to sets of vertices of regular simplices,
which we have already defined before formulating Theorem 2.

Finally, define the space Ok as the set of vertices of a k-dimensional cross-polytope, or, more
formally, Ok = ({x1, . . . , x2k}, d), where

d(xi, xj) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if i = j,

2 if |i− j| = k,√
2 otherwise.

Note that we will be interested in cross-polytopes only in the context of the �2 metric, since in
this case they together with the above-mentioned regular simplices Sk and hypercubes Ik

2 (1, . . . , 1)
cover all regular polytopes in higher dimensions (starting from dimension 5).

Now we are ready to formulate the obtained theorems.

Theorem 3. Let p ≥ 1, and let Tr and Ta be an �p-right and �p-acute triangle, respectively.
Then the following inequalities hold true:

1. χ−(�p;I2
p ) ≥ 1.0428 . . . ;
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2. χ−(�p;I3
p ) ≥ 1.0126 . . . ;

3. χ−(�p;Ik
p ) ≥ 1 +

1

(2 + o(1))k
as k → ∞;

4. χ−(�p;S2) ≥ χ−(�p;S3) ≥ 1.0126 . . . ;

5. χ−(�p;Sk) ≥ 1 +
1

(2 + o(1))k
as k → ∞;

6. χ−(�p;Tr) ≥ 1.0428 . . . ;

7. χ−(�p;Ta) ≥ 1.0126 . . . .

After formulating the theorem, it is worth making several remarks. First, though “true” chro-
matic numbers from this theorem may depend on sides of the considered triangles and paral-
lelepipeds, the obtained lower bounds do not depend on them at all. The same situation will
be observed in the theorems below. Second, our method allows to write an explicit estimate for
χ−(�p;Ik

p ) for each fixed k. However, we decided to do this only for k = 2 and 3 and then im-
mediately pass to the “asymptotic” case. Third, it is seen that statements 4 and 5 of Theorem 3
provide a substantial improvement of Theorem 2 announced above.

Theorem 4. Let p = 2, and let Tr and Ta be an �2-right and �2-acute triangle, respectively.
Then the following inequalities hold true:

1. χ−(�2;I2
2 ) ≥ 1.0471 . . . ;

2. χ−(�2;I3
2 ) ≥ 1.0136 . . . ;

3. χ−(�2;I4
2 ) ≥ 1.00459 . . . ;

4. χ−(�2;Ik
2 ) ≥ 1 +

1

(2 + o(1))k
as k → ∞;

5. χ−(�2;S2) ≥ χ−(�2;S3) ≥ 1.0136 . . . ;

6. χ−(�2;Sk) ≥ 1 +
1

(2 + o(1))k
as k → ∞;

7. χ−(�2;O3) ≥ χ−(�2;O4) ≥ 1.00459 . . . ;

8. χ−(�2;Ok) ≥ 1 +
1

(2 + o(1))k
as k → ∞;

9. χ−(�2;Tr) ≥ 1.0471 . . . ;

10. χ−(�2;Ta) ≥ 1.0136 . . . .

Theorem 5. Let p = 1, and let Tr and Ta be an �1-right and �1-acute triangle, respectively.
Then the following inequalities hold true:

1. χ−(�1;I2
1 ) ≥ 1.07389 . . . ;

2. χ−(�1;I3
1 ) ≥ 1.02188 . . . ;

3. χ−(�1;Ik
1 ) ≥ 1 +

1

(2 + o(1))k
as k → ∞;

4. χ−(�1;S2) ≥ χ−(�1;S3) ≥ 1.02188 . . . ;

5. χ−(�1;Sk) ≥ 1 +
1

(2 + o(1))k
as k → ∞;

6. χ−(�1;Tr) ≥ 1.07389 . . . ;

7. χ−(�1;Ta) ≥ 1.02188 . . . .

In the last theorem of this section we formulate analogous results for the case p = ∞. However,
it was found that our estimates for χ−(�∞;Ik

∞) have a very simple structure, so we do not need to
consider the cases of low dimensions and growing dimension separately: if p = ∞, we can give a
unified bound. The same concerns regular simplices Sk. Furthermore, in the case p = ∞ there are
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no acute triangles at all, and right triangles degenerate into isosceles ones, so we decided to skip
investigating the values of χ−(�∞;T ).

We should also note the fact that this theorem gives an exact value of the χ−(�∞;Sk), whereas
in all other cases we only gave lower bounds. At present, no other exact values of χ−(�p;Y) are
known.

Theorem 6. Let p = ∞. Then the following two statements hold true:

1. Let among positive numbers a1, . . . , ak there be exactly s different ones. Then

χ−(�∞;Ik
∞(a1, . . . , ak)) ≥ 21/s.

In particular,

χ−(�∞;Ik
∞) ≥ 21/k.

2. For any integer k ≥ 1 we have an exact equality

χ−(�∞;Sk) = 2.

It is seen that the lower bound on χ−(�∞;Ik
∞) given in Theorem 6 for large k is much better

than the similar bounds from Theorems 3–5. Indeed,

21/k = 1 +
ln 2

k
+O

(
1

k2

)
,

which tends to 1 much slower than

1 +
1

(2 + o(1))k
.

The rest of the paper is organized as follows. In Section 3 we formulate and prove a rather
general auxiliary proposition, which will be used in Sections 4–6 to successively prove Theorems 3–5,
respectively. In Section 7 we slightly improve this proposition in a particular case, which allows us
to prove Theorem 6.

3. AUXILIARY PROPOSITION

Here we prove a proposition which will be highly important to justify all other results of this
paper and which, perhaps, can also be of independent interest. A weaker analog of this proposition
was given as early as in [13], but the authors of that paper were only interested in proving that
χ−(�p;Y) > 1 but not in obtaining maximally strong lower bounds, so computations in [13] were
sometimes very rough. Here we tried to carry out all computations as accurately as possible, and
so the reasoning has become much more complicated than its analog from [13]. But thanks to this,
we managed to prove rather strong explicit bounds formulated in Section 2.

Before formulating and proving this auxiliary proposition, we give several definitions and lem-
mas. Let X = (X, dX ) and Y = (Y, dY ) be arbitrary metric spaces. The independence number
Ind(X ;Y) is the largest n for which there exists an n-element subset X ′ ⊂ X containing no copies
of Y. Denote the total number of distinct copies of Y in X by C(X ;Y).

Lemma 1. Let X = (X, dX ) and Y = (Y, dY ) be finite metric spaces, |Y | > 1. Let |X| = x
and Ind(X ;Y) = y. Then

C(X ;Y) ≥ kx− k(k + 1)

2
y,

where k =
⌊x
y

⌋
.
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Proof. Let W1 ⊂ X be the largest subset containing no copies of Y, |W1| = w1. By the
condition we know that w1 ≤ y. By adding to W1 any new point, we find a copy of Y. Since this
new point can be added in x− w1 ways, we thus can find x− w1 ≥ x− y different copies of Y.

Now let W2 ⊂ X\W1 be the largest subset containing no copies of Y, |W2| = w2 ≤ y. Proceeding
in the same way as above, using this set we can find x− w1 − w2 ≥ x− 2y new copies of Y.

This process can be repeated at least k =
⌊x
y

⌋
times to find thereupon at least

(x− y) + (x− 2y) + . . . + (x− ky) = kx− k(k + 1)

2
y

different copies of Y. �
To estimate the number of copies of Y in X obtained in Lemma 1, it is convenient to introduce

a short notation. Let

f(x; y) =
⌊x
y

⌋
x−

⌊x
y

⌋(⌊x
y

⌋
+ 1

)

2
y.

For any tuple z = (z1, . . . , zn) of nonnegative integers, define

f(z; y) =
n∑

i=1

f(zi; y).

Lemma 2. Let a tuple x = (x1, . . . , xn) minimize the function f(· ; y) over all tuples of non-
negative integers z = (z1, . . . , zn) such that z1 + . . . + zn = x1 + . . .+ xn. Put N = x1 + . . .+ xn.
Then the following inequalities hold true:

1. |xi − xj | ≤ y, for all 1 ≤ i ≤ j ≤ n;

2.

∣∣∣∣xi − N
n

∣∣∣∣ ≤ y, for all 1 ≤ i ≤ n.

Proof. Assume that statement 1 is wrong. Then without loss of generality we may assume that
x1 − x2 > y. Consider the tuple x′ = (x1 − y, x2 + y, x3, . . . , xn). One can easily check that

f(x; y)− f(x′; y) = f(x1; y)− f(x1 − y; y) + f(x2; y)− f(x2 + y; y) = x1 − x2 − y > 0,

which contradicts the minimality of x and thus completes the proof of statement 1.

Let us show that statement 2 is a rather trivial consequence of the former. Indeed, for each i
there exists j such that xi and xj lie on different sides of the arithmetic mean of all coordinates,

which equals
N

n
. Hence, ∣∣∣∣xi −

N

n

∣∣∣∣ ≤ |xi − xj| ≤ y,

and Lemma 2 is completely proved. �
Following [13], introduce one more definition. Let A = (A, dA) be a finite metric space consisting

of at least two points, and let p ≥ 1 and FA ≥ χA > 1 be arbitrary numbers. The space A will be
called (�p;FA, χA)-super-Ramsey if there exists a sequence of sets VA(n) ⊂ R

n such that

|VA(n)| ≤ (FA + o(1))n and
|VA(n)|

Ind(VA(n);A)
≥ (χA + o(1))n as n → ∞, (3)

where the metric space VA(n) is defined as the set VA(n) with the metric induced from the ambient
space R

n
p .

In fact, there is nothing unnatural in this definition. One can easily check that χ(Rn
p ;A) ≥

(χA + o(1))n and therefore χ−(�p;A) ≥ χA. Thus, any (�p;FA, χA)-super-Ramsey set is in the
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EXPONENTIALLY RAMSEY SETS 379

same time �p-exponentially Ramsey. At present, no other ways are known to prove the exponential
Ramsey property of a set.

For each (�p;FA, χA)-super-Ramsey set A, define

cA = lim sup
n→∞

(
C(VA(n);A)

|VA(n)|

)1/n

;

i.e., cA is the smallest constant c for which C(VA(n);A) ≤ |VA(n)|(c + o(1))n.

Lemma 3. Let A be (�p;FA, χA)-super-Ramsey. Then cA ≥ χA.

Proof. The desired inequality easily follows from the fact that

C(VA(n);A) ≥ |VA(n)|(χA + o(1))n,

which, in turn, results from applying Lemma 1 to inequality (3). �
Now we are in position to formulate and prove our auxiliary proposition.

Proposition. Let finite metric spaces A = (A, dA) and B = (B, dB) consist of a and b points,
respectively. Let also for some p ≥ 1 the former be (�p;FA, χA)-super-Ramsey and the latter be
(�p;FB, χB)-super-Ramsey. Then A ×p B is also (�p;F, χ)-super-Ramsey with some values of the
parameters F and χ. These values can be chosen, e.g., as follows:

F = F 1−β
A F β

B , χ = χβ
B, where β =

lnχA
lnχA + lnχB + ln cB

.

Proof. Since Lemma 3 implies that cB > 1, it is easily seen that 0 < β < 1. Consider an

arbitrary natural-valued function β(n) satisfying the limit relation lim
n→∞

β(n)

n
= β. Set α(n) =

n− β(n). Clearly, lim
n→∞

α(n)

n
= α, where α = 1− β.

Let A = VA(α(n)) and B = VB(β(n)). Put V = A × B ⊂ R
n. Clearly, |V | ≤ (F + o(1))n,

where F is specified in the assertion of the proposition. Let W be the largest subset of V which
nevertheless contains no copy of A×pB. It is clear that |W | = Ind((V, �p);A×p B). If we also have

|V |
|W | ≥ (χ+ o(1))n, (4)

then the proposition is proved.

Assume that inequality (4) is wrong and arrive at a contradiction. Since (4) is wrong, we have

lim inf
n→∞

( |V |
|W |

)1/n

< χ = χβ
B,

which in turn implies that for some δ > 0, for infinitely many n we have the inequality

|V |
|W | ≤ (χB − δ + o(1))β(n),

or equivalently

|W | ≥ |V |
(χB − δ + o(1))β(n)

. (5)

In the rest of the proof, to obtain a contradiction, we will consider only values of n for which
inequality (5) is valid.
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For each a ∈ A, let Wa = W ∩ ({a} ×B). Denote by wa the number of copies of B contained
in Wa. Then for each set b ⊂ B which is a copy of B denote by wb the number of layers Wa

containing b.

We will obtain a contradiction by counting in two ways the quantity

S =
∑
a∈A

wa =
∑
b⊂B

wb.

One one hand, since by our assumption W contains no copies of A×p B, we in particular have

wb ≤ Ind((A, �p);A) ≤ |A|
(χA + o(1))α(n)

.

Furthermore, by the definition B contains at most |B|(cB + o(1))β(n) copies of B. Hence,

S =
∑
b⊂B

wb ≤ |A||B|(cB + o(1))β(n)

(χA + o(1))α(n)
. (6)

On the other hand, to estimate S from below, we may invoke Lemmas 1 and 2. As follows from
Lemma 1,

wa ≥ f
(
|Wa|; Ind((B, �p);B)

)
≥ f

(
|Wa|;

|B|
(χB + o(1))β(n)

)
,

and therefore

S =
∑
a∈A

wa ≥ S′ =
∑
a∈A

f

(
|Wa|;

|B|
(χB + o(1))β(n)

)
. (7)

To estimate S′ from below, we may use Lemma 2, which states that in the worst case
∣∣∣∣|Wa| −

|W |
|A|

∣∣∣∣ ≤
|B|

(χB + o(1))β(n)
, for all a ∈ A.

Taking into account (5), we obtain

|Wa| ≥
|B|

(χB − δ + o(1))β(n)
, for all a ∈ A.

Finally, applying Lemma 1 again, we obtain a lower bound for S′:

S′ ≥ |A|f
( |B|
(χB − δ + o(1))β(n)

;
|B|

(χB + o(1))β(n)

)
= |A||B| (χB + o(1))β(n)

(χB − δ + o(1))2β(n)
. (8)

Taking into account inequality (7), the obtained estimate (8) is at the same time a lower bound
for S.

Let us show that inequalities (6) and (8) contradict each other for large n. Indeed, if we assume
both to be valid, then after eliminating similar terms we find

(cB + o(1))β(n)

(χA + o(1))n−β(n)
≥ (χB + o(1))β(n)

(χB − δ + o(1))2β(n)
.

Extracting the nth root and passing to the limit, we obtain

cβBχ
β
A

χA
≥ χβ

B
(χB − δ)2β

>
1

χβ
B
,

or equivalently
χA < (χAχBcB)

β .

But this is impossible, since by the choice of β both sides of the inequality are the same. �
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Remark 2. Sometimes, and even for rather explicit constructions of VB(n), it is difficult to
compute the exact value of cB. However, to apply the proposition, we need not know the exact
value of cB, an upper bound will suffice. As such an upper bound, we may always take cB ≤ F b−1

B ,
as follows from the chain of inequalities

C(VB(n);B)
|VB(n)|

≤
C

|B|
|VB(n)|

|VB(n)|
≤ |VB(n)|b

|VB(n)|
≤ (F b−1

B + o(1))n.

Remark 3. Let VB(n) be a “homogeneous” set, i.e., let each element v ∈ VB(n) be contained in
the same number Cdeg(n) of copies of B. Also, let

cdeg = lim sup
n→∞

n

√
Cdeg(n).

Then cB = cdeg. This easily follows from the fact that

C(VB(n);B)
|VB(n)|

=
Cdeg(n)

b
.

4. CASE OF ARBITRARY p. PROOF OF THEOREM 3

To prove Theorem 3, we will use the auxiliary proposition in some particular case. Let p ≥ 1.
Let I = I(s) be a pair of points at distance s from each other. To verify the super-Ramsey property
of I(s), sets of the following special form are usually employed.

Let 0 < y < x ≤ 1

2
be arbitrary parameters. Choose natural-valued functions x(n) and y(n)

obeying the following four properties:

1. lim
n→∞

x(n)

n
= x;

2. lim
n→∞

y(n)

n
= y;

3. ∀n y(n) ≤ x(n) ≤ n

2
;

4. x(n)− y(n) is a prime.

Existence of such functions for each pair of parameters x and y follows from the fact that for some
positive function ϕ(n) = o(n) as n → ∞ it is true that for each n in the interval (n;n+ϕ(n)) there
exists a prime number (see, e.g., [33, 34]).

Set

t(n) = s(2x(n)− 2y(n))−1/p

and define VI(n) ⊂ R
n as the set of all points with exactly x(n) coordinates equal to t(n), the other

n− x(n) coordinates being zero.

By estimating Ind((VI(n), �p);I) with the help of the so-called linear algebraic method (see [35]),
one can show that I is (�p; c

x
1 , χ(x, y))-super-Ramsey, where

cba =
aa

bb(a− b)(a−b)
, χ(x, y) =

c
min(x,2x−2y)
1

cx−y
1

.

This statement is a reformulation of the Frankl–Wilson theorem from [3] and Ponomarenko’s the-
orem from [36]. The most convenient formulation of Ponomarenko’s theorem is given in [37]. On
tightness of the Frakl–Wilson and Ponomarenko theorems, see [38–41].
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Before applying the auxiliary proposition in the case B = I(s), we have to find the value of cI .
In our situation this can be done using Remark 3. Indeed, it is easily seen that each vertex of VI(n)
is at distance s from exactly

C
y(n)
x(n)C

x(n)−y(n)
n−x(n) = (cyxc

x−y
1−x + o(1))n

other vertices, where the last equality is obtained in a standard way from Stirling’s formula.

Thus, in our case the proposition looks as follows.

Theorem 7. Let A = (A, dA) be a finite metric space which for some p ≥ 1 is (�p;FA, χA)-
super-Ramsey. Let I(s) be a pair of points at distance s from each other. Then A×p I(s) is also
(�p;F, χ)-super-Ramsey with some values of the parameters F and χ. These values can be chosen,
e.g., as follows:

F = F 1−β
A (cx1)

β, χ = (χ(x, y))β , β =
lnχA

lnχA + lnχ(x, y) + ln cyx + ln cx−y
1−x

,

where values of the auxiliary parameters 0 < y < x ≤ 1

2
can be chosen arbitrarily.

To verify the first inequality of Theorem 3, it suffices to apply Theorem 7 to the case

A = I(s′), χA =
1 +

√
2

2
, x = 0.1400874, y =

x

2
.

The fact that this χA is admissible follows from the fact that

1 +
√
2

2
= χ

(
2−

√
2

2
,
2−

√
2

4

)
.

(In fact, we have pointed out the global maximum of χ(· , ·), but now this is not important for us.)
Applying Theorem 7 in the way described above, we obtain

χ−(�p;I2
p(s

′, s)) ≥ 1.04282487 . . . ≥ 1.0428 . . . .

Since this inequality holds for all s′ and s, statement 1 of Theorem 3 is completely proved. In the
rest of this section we will often skip parameters indicating sides of �p-rectangular parallelepipeds,
since, as in this example, they will play no role.

The second inequality of Theorem 3 is verified quite similarly. For that, it suffices to apply
Theorem 7 to the case

A = I2
p , χA = 1.04282487, x = 0.06094237, y =

x

2
,

whence we get

χ−(�p;I3
p) ≥ 1.01261068 . . . ≥ 1.0126 . . . .

Verifying inequality 3 is much more difficult. To this end, we consider the following tentative
infinite algorithm:

Step 1. Set A1 = I, χA1
= χ1 =

1 +
√
2

2
, and define c1 = lnχ1;

Step 2. Apply Theorem 2 to the case

A = A1, χA = χ1, x1 =
1

2
, y1 =

1

4
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and store the results in the variables A2 and χ2, i.e., A2 = I2
p and χ2 = χc2

1 , where

c2 =
lnχ(x1, y1)

lnχ1 + lnχ(x1, y1) + ln cy1x1 + ln cx1−y1
1−x1

;

...

Step k + 1. Apply Theorem 2 to the case

A = Ak, χA = χk, xk =
1

k + 1
, yk =

1

2k + 2

and store the results in the variables Ak+1 and χk+1, i.e., Ak+1 = Ik+1
p and χk+1 = χ

ck+1

k , where

ck+1 =
lnχ(xk, yk)

lnχk + lnχ(xk, yk) + ln cykxk + ln cxk−yk
1−xk

; . . . .

It is clear that this algorithm justifies the fact that χ−(�p;Ik
p ) ≥ χk = ec1...ck , and if we were

able to prove somehow that

c1 . . . ck = (
1

2 + o(1)
)k, (9)

then inequality 3 would be proved, since we would verify that

χ−(�p;Ik
p ) ≥ χk = e

( 1
2+o(1)

)k
= 1 +

1

(2 + o(1))k
.

To justify inequality (9), we invoke the following well-known lemma, which we give without proof.

Lemma 4. Assume that for any k the condition xk > 0 holds and lim
k→∞

xk = x > 0. Then
lim
k→∞

k
√
x1 . . . xk = x.

Thus, to complete the proof of inequality 3, it only remains to prove that lim
k→∞

ck = 1/2. First

of all, note that each ck is not greater than 1/2. Indeed, it is seen from the definition that for any
k > 1 we have ck ≤ F (1/k), where

F (x) =
lnχ(x, x/2)

lnχ(x, x/2) + ln c
x/2
x + ln c

x/2
1−x

.

By considering the graph of F (x) on the segment [0, 1/2], one can easily check that it does not
exceed 1/2.

The fact that each ck is not greater than 1/2 implies that χk ≤ e2
−k

, or equivalently, lnχk ≤ 2−k.
Now, using standard methods, one can check that

1

2
> ck >

lnχ
(1
k
,
1

2k

)

2−k+1 + lnχ
(1
k
,
1

2k

)
+ ln c

1/2k
1/k + ln c

1/2k
1−1/k

=

1

2

ln k

k
+O

(1
k

)

2−k+1 +
ln k

k
+O

(1
k

) k→∞−−−−→ 1

2
,

which completes the proof of inequality 3.

All other inequalities in Theorem 3 are, in essence, simple consequences of the first three.

Indeed, inequality 4 follows from inequality 2 and the fact that S2 ⊂ S3 ⊂ I3
p(1, 1, 1).

Inequality 5 follows from inequality 3 and the fact that Sk ⊂ Ik+1
p (1, . . . , 1).

PROBLEMS OF INFORMATION TRANSMISSION Vol. 54 No. 4 2018



384 SAGDEEV

Inequality 6 follows from inequality 1 and the fact that an �p-right triangle T (a, b, c) can be
“embedded” in the �p-rectangle I2

p(a, b).

Inequality 7 follows from inequality 2 and the fact that an �p-acute triangle T (a, b, c) can be “em-

bedded” in the �p-rectangular parallelepiped I3
p

(
p

√
ap + bp − cp

2
, p

√
bp + cp − ap

2
, p

√
cp + ap − bp

2

)
. �

To conclude this section, we note that though almost all statements of Theorem 3 will be im-
proved for fixed values of p in subsequent sections using other (more tricky) sets VI(n), inequality 3
cannot be improved in the framework of this method. We deduce this unimprovability from the
following lemma.

Lemma 5. In the notation of the auxiliary proposition, we have χ <
√
χA.

Proof. Put

γ =
lnχB

lnχA + lnχB + ln cB
.

Clearly, χ = χβ
B = χγ

A. It only remains to check that γ <
1

2
. To this end, we use Lemma 3:

γ =
lnχB

lnχA + lnχB + ln cB
≤ lnχB

lnχA + 2 lnχB
<

1

2
. �

Now it is clear that in the framework of the method used in this section the estimate for
χ−(�p;Ik

p ) cannot exceed

(χ−(�p;I1
p))

2−k+1
= 1 +

1

(2 + o(1))k
,

so inequality 3 of Theorem 3 cannot be improved in this way indeed.

5. CASE p = 2. PROOF OF THEOREM 4

Using our terminology, we may say that in [5], to justify the (�2;FI , χI)-super-Ramsey property
for the two-point metric space I(s), it was proposed to use not the sets VI(n) that were used
in Section 4 and which are usually referred to as (0, 1)-graphs but another (more general) con-
struction, the so-called (−1, 0, 1)-graphs. Thanks to that, it was proved that for χI one can take
1.23956674 . . . (cf. statement 2 of Theorem 1). Using this result, one can try to improve Theorem 3
for the case of the �2 metric in two ways.

First, one can literally carry over the method of Section 4 with the only difference that the

“initial condition” χA =
1 +

√
2

2
can be replaced with a stronger estimate χA = 1.239 . . . .

Second, instead of Theorem 7 one can use the result that will be obtained from the auxiliary
proposition if one puts B = I(s) in it and takes for VB(n) the (−1, 0, 1)-graphs proposed in [5].
However, computer experiments have shown that the resulting estimate is even worse in this case,
so this approach will be of no use for us.

Thus, to justify the first inequality of Theorem 4, we apply Theorem 7 to the case

A = I1
2 , χA = 1.23956674, x = 0.148421, y =

x

2
.

This results in
χ−(�2;I2

2 ) ≥ 1.0471486 . . . ≥ 1.0471 . . . .

The second inequality of Theorem 4 is verified quite similarly. For that, it suffices to apply
Theorem 7 to the case

A = I2
2 , χA = 1.0471486, x = 0.0647204, y =

x

2
,
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which yields
χ−(�2;I3

2 ) ≥ 1.013684342 . . . ≥ 1.0136 . . . .

Finally, to justify inequality 3, we apply Theorem 7 to the case

A = I3
2 , χA = 1.013684342, x = 0.0279754, y =

x

2

to obtain

χ−(�2;I4
2 ) ≥ 1.00459332 . . . ≥ 1.00459 . . . .

Inequalities 4 and 6 do not need any justification, since they are particular cases of inequalities 3
and 5 in Theorem 3.

Inequality 5 easily follows from inequality 2 and the fact that S2 ⊂ S3 ⊂ I3
2 (1, 1, 1).

To justify inequalities 7 and 8, we would like to use the embedding trick again and embed Ok

in a regular cube Ik = Ik
2 (t, . . . , t) for some t. However, this can be done by far not always, and as

will be seen below, this question is closely related to existence of the so-called Hadamard matrices
of order k (see [42, pp. 238–263]). Recall that a Hadamard matrix of order k is a k × k square
matrix with entries 1 and −1 whose rows are pairwise orthogonal.

Lemma 6. If a Hadamard matrix of order k exists, then Ok ⊂ Ik.

Proof. Let Hk be the Hadamard matrix of order k guaranteed by the condition of the lemma.
Put s = 1/

√
k. Let v1, . . . ,vk be vectors corresponding to rows of the matrix sHk, and let z1, . . . , zk

be points in R
k corresponding to these vectors. It is clear that pairwise distances between the

elements of V = {z1, . . . , zk,−z1, . . . ,−zk} are precisely the same as should be in a k-dimensional
cross-polytope. Besides, all coordinates of these points are plus or minus s, and hence V is a subset
of vertices of the k-dimensional cube

Ck = {(x1, . . . , xk) : ∀ i x2i = s2},

which for t = 2s coincides with Ik = Ik
2 (t, . . . , t) as a metric space. �

Since a Hadamard matrix of order 4 exists, inequality 7 follows from inequality 3. Indeed, by
what was proved above, O3 ⊂ O4 ⊂ I4.

A quite plausible Hadamard conjecture says that a Hadamard matrix of order k > 2 exists if and
only if k is a multiple of 4. At present, this conjecture remains open, though many weaker results
have been proved. For us, the following result will be sufficient, which was first proved in [43].

Theorem 8. If p > 2 is a prime, then a Hadamard matrix of order 2(p+ 1) exists.

Since prime numbers are known to occur in the natural sequence “sufficiently frequently” (see
[33, 34]), the same concerns numbers of the form 2(p + 1). More formally, if for any natural k we
denote by m(k) the smallest integer of the form 2(p + 1) which is greater than k, then as k → ∞
we have

m(k) = k(1 + o(1)). (10)

Now Theorem 8 and Lemma 6 imply that Ok ⊂ Om(k) ⊂ Im(k). Hence, from (10) and state-
ment 4 of Theorem 4 it follows that

χ−(�2;Ok) ≥ χ−(�2;Im(k)) ≥ 1 +
1

(2 + o(1))m(k)
= 1 +

1

(2 + o(1))k
as k → ∞,

which completes the proof of inequality 8.

Inequalities 9 and 10 are verified much easier. Indeed, inequality 8 follows from inequality 1 and
the fact that a right triangle T (a, b, c) can be “embedded” in the rectangle I2

2 (a, b), and inequality 10
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follows from inequality 2 and the fact that an acute triangle T (a, b, c) can be “embedded” in

the rectangular parallelepiped I3
2

(√
a2 + b2 − c2

2
,

√
b2 + c2 − a2

2
,

√
c2 + a2 − b2

2

)
.

Now Theorem 4 is proved completely. �

6. CASE p = 1. PROOF OF THEOREM 5

The idea of our proof of Theorem 5 is very close to arguments in Section 4: we justify the
�1-super-Ramsey property for I = I(s) using an explicit sequence of sets VI(n), then reformulate
the auxiliary proposition for our particular case, and finally prove Theorem 5.

The construction which we will consider is usually called a (−1, 0, 1)-graph in �1. Precisely this
construction was used in [7] to establish the lower bound in statement 3 of Theorem 1.

Let k−1, k1, and q be arbitrary positive numbers satisfying the following inequalities:

0 < k−1 ≤ k1,
k−1 + k1

2
≤ q ≤ k−1 + k1 ≤

1

2
. (11)

Set k0 = 1 − k−1 − k1 and choose some natural-valued functions k−1(n), k0(n), k1(n), and q(n)
satisfying the following conditions:

1. ki(n) = kin+ o(n) for i ∈ {−1, 0, 1};
2. k−1(n) + k0(n) + k1(n) = n;

3. q(n) = qn+ o(n) is a prime;

4.
k−1(n) + k1(n)

2
≤ q(n) ≤ k−1(n) + k1(n) ≤

n

2
.

Existence of such functions follows from the fact already mentioned above that for some positive
function ϕ(n) = o(n) as n → ∞ it is true that for each n in the interval (n, n + ϕ(n)) there exists
a prime number (see, e.g., [33, 34]).

Put t(n) =
s

2q(n)
and define VI(n) as the set of all points in R

n which for each i ∈ {−1, 0, 1}
have exactly ki(n) coordinates equal to it(n). By estimating Ind((VI(n), �1);I) using the linear
algebraic method of [7], one can show that I is (�1;F (k−1, k1), χ(k−1, k1, q))-super-Ramsey, where

cba =
aa

bb(a− b)(a−b)
, α(q) = cq1 · 2q, F (k−1, k1) = ck11 c

k−1

1−k1
, χ(k−1, k1, q) =

F (k−1, k1)

α(q)
.

At the moment we cannot apply the auxiliary proposition in our case, since cI has not yet been
calculated. As in Section 4, a precise value of cI can be found using Remark 3, which states that
cI = cdeg. However, this time calculating the constant cdeg is rather difficult and spreads over
several lemmas.

Lemma 7. Let a set M1 consist of all ordered nontuples

m = (m−1,−1,m−1,0,m−1,1,m0,−1,m0,0,m0,1,m1,−1,m1,0,m1,1)

satisfying the inequalities

0 ≤ m−1,−1, 0 ≤ m−1,1, 0 ≤ m1,−1, m−1,−1 ≤ k−1 + k1 − q,

m−1,−1 +m−1,1 ≤ k−1, m−1,−1 −m1,−1 ≥ k−1 − q,

m−1,−1 +m1,−1 ≤ k−1, m−1,−1 −m−1,1 ≥ k−1 − q
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and equalities

m−1,0 = k−1 −m−1,−1 −m−1,1, m1,0 = k1 −m1,−1 −m1,1,

m0,−1 = k−1 −m−1,−1 −m1,−1, m0,1 = k1 −m−1,1 −m1,1,

m0,0 = k0 −m0,1 −m0,−1, m1,1 = k−1 + k1 − q −m−1,−1.

Put
G(m) = c

m−1,1

k−1
c
m−1,−1

k−1−m−1,1
c
m0,1

k0
c
m0,−1

k0−m0,1
c
m1,1

k1
c
m1,−1

k1−m1,1
, c1 = sup

m∈M1

G(m).

Then
cdeg = c1.

Proof. Let x = (x1, . . . , xn) ∈ VI(n) be an arbitrary fixed element of VI(n). Put

Cdeg(n) = |{y = (y1, . . . , yn) ∈ VI(n) : �1(x,y) = s}|.

By the symmetry of the construction it is clear that Cdeg(n) depends in no way on which element
x ∈ VI(n) is fixed. It is clear that if we prove that Cdeg(n) = (c1+o(1))n, the lemma will be proved
due to the definition of cdeg given in Remark 3.

To calculate Cdeg(n), assume that an element y is also fixed and reformulate the property
�1(x,y) = s in slightly other terms.

For i, j ∈ {−1, 0, 1}, define

mi,j(n) = |{k : xk = it(n), yk = jt(n)}|.

Clearly, not all of these quantities are “independent” of each other, since, for instance,

m−1,0(n) = k−1(n)−m−1,−1(n)−m−1,1(n),

m1,0(n) = k1(n)−m1,−1(n)−m1,1(n),

m0,−1(n) = k−1(n)−m−1,−1(n)−m1,−1(n),

m0,1(n) = k1(n)−m−1,1(n)−m1,1(n),

m0,0(n) = k0(n)−m0,1(n)−m0,−1(n).

(12)

Let us try to express the distance �1(x,y) through the introduced functions:

�1(x,y) = t(n)
(
m−1,0(n) + 2m−1,1(n) +m0,−1(n) +m0,1(n) + 2m1,−1(n) +m1,0(n)

)

=
s

2q(n)
2
(
k−1(n) + k1(n)−m−1,−1(n)−m1,1(n)

)
;

hence, �1(x,y) = s if and only if

m1,1(n) = k−1(n) + k1(n)− q(n)−m−1,−1(n). (13)

The remaining three quantities m−1,−1(n), m−1,1(n), and m1,−1(n) are in a sense “independent”:
neither of them can be rigidly expressed through the other two. However, now we will write out
inequality-type constraints satisfied by them. This set of constraints is equivalent to the fact that
all mi,j(n) ≥ 0:

0 ≤ m−1,−1(n), 0 ≤ m−1,1(n), 0 ≤ m1,−1(n),

m−1,−1(n) ≤ k−1(n) + k1(n)− q(n), m−1,−1(n) +m−1,1(n) ≤ k−1(n),

m−1,−1(n)−m1,−1(n) ≥ k−1(n)− q(n), m−1,−1(n) +m1,−1(n) ≤ k−1(n),

m−1,−1(n)−m−1,1(n) ≥ k−1(n)− q(n).

(14)
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Note that we have written out only eight inequalities, since the ninth, expressing the nonnegativity
of m0,0(n), happens to be satisfied automatically in our situation.

Thus, we have proved that if �1(x,y) = s, then the ordered nontuple m(n) corresponding to y
and consisting of the elements mi,j(n) belongs to the set M1(n) consisting of all ordered nontuples
satisfying the set of equalities (12), equality (13), and inequalities (14).

Furthermore, is clear that for each m(n) ∈ M1(n) there exit exactly

C
m−1,1(n)
k−1(n)

C
m−1,−1(n)
k−1(n)−m−1,1(n)

C
m0,1(n)
k0(n)

C
m0,−1(n)
k0(n)−m0,1(n)

C
m1,1(n)
k1(n)

C
m1,−1(n)
k1(n)−m1,1(n)

different y ∈ VI(n) located at distance s from x and corresponding to m(n).

Hence,

Cdeg(n)=
∑

m(n)∈M1(n)

C
m−1,1(n)
k−1(n)

C
m−1,−1(n)
k−1(n)−m−1,1(n)

C
m0,1(n)
k0(n)

C
m0,−1(n)
k0(n)−m0,1(n)

C
m1,1(n)
k1(n)

C
m1,−1(n)
k1(n)−m1,1(n)

. (15)

Now standard application of Stirling’s formula to (15) completes the proof of the fact that

Cdeg(n) = (c1 + o(1))n.

Thus, the lemma is proved. �
Using Lemma 7, for any fixed k−1, k1, and q we can approximately evaluate cdeg using computer.

However, we cannot do this with a required precision in a reasonable time, so our nearest goal is
to simplify Lemma 7.

Lemma 8. Let M2 be the set of all ordered nontuples

m = (m−1,−1,m−1,0,m−1,1,m0,−1,m0,0,m0,1,m1,−1,m1,0,m1,1)

satisfying the inequalities

0 ≤ m1,−1 ≤ min
(
k−1,

q

2

)
,

max(0, k−1 +m1,−1 − q) ≤ m−1,−1 ≤ min(k−1 + k1 − q, k−1 −m1,−1)

and equalities

m−1,1 =
(k−1 −m−1,−1)(m−1,−1 + q − k−1)

1− k−1 − k1 +m1,−1
,

m−1,0 = k−1 −m−1,−1 −m−1,1, m1,0 = k1 −m1,−1 −m1,1,

m0,−1 = k−1 −m−1,−1 −m1,−1, m0,1 = k1 −m−1,1 −m1,1,

m0,0 = k0 −m0,1 −m0,−1, m1,1 = k−1 + k1 − q −m−1,−1.

Put
c2 = sup

m∈M2

G(m).

Then
cdeg = c2.

Proof. In the notation of Lemma 7, it only suffices to prove that c1 = c2.

One can check that the system of inequalities on m−1,−1, m−1,1, and m1,−1 given in Lemma 7
is equivalent to the following:

0 ≤ m1,−1 ≤ min
(
k−1,

q

2

)
, (16)
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max(0, k−1 +m1,−1 − q) ≤ m−1,−1 ≤ min(k−1 + k1 − q, k−1 −m1,−1), (17)

0 ≤ m−1,1 ≤ min(k−1 −m−1,−1,m−1,−1 + q − k−1). (18)

Since M1 is a compact set and the function G(·) is continuous on it, the maximum of G(·), equal
to c1, is attained.

Note that

dG(m)

dm−1,1
= G(m) ln

(
(k−1 −m−1,−1 −m−1,1)(q +m−1,−1 − k−1 −m−1,1)

m−1,1(1− k−1 − k1 − q +m1,−1 +m−1,1)

)
. (19)

Here we have found the total derivative of G(·) but not the partial one. These derivatives do not
coincide, since the equalities given in Lemma 7 imply that some arguments of G(·) depend on m−1,1.

It follows from (19) that in M1 we have

dG(m)

dm−1,1
≥ 0 ⇐⇒ (k−1 −m−1,−1 −m−1,1)(q +m−1,−1 − k−1 −m−1,1)

m−1,1(1− k−1 − k1 − q +m1,−1 +m−1,1)
≥ 1

⇐⇒ (k−1 −m−1,−1 −m−1,1)(q +m−1,−1 − k−1 −m−1,1)−
−m−1,1(1− k−1 − k1 − q +m1,−1 +m−1,1) ≥ 0

⇐⇒ m−1,1 ≤ ξ0 =
(k−1 −m−1,−1)(m−1,−1 + q − k−1)

1− k−1 − k1 +m1,−1
.

Thus, we have proved that for fixed values of m1,−1 and m−1,−1 the function G(m) attains its
maximum either at the point m−1,1 = ξ0 or on the boundary of the domain M1 if ξ0 does not
satisfy (18).

Now let us show that m−1,1 = ξ0 always satisfies inequality (18). Indeed,

ξ0 ≤ k−1 −m−1,−1 ⇐= m−1,−1 + q − k−1 ≤ 1− k−1 − k1 +m1,−1

⇐= 0 ≤ 1− k1 − q +m1,−1 −m−1,−1

⇐= 0 ≤ 1− k1 − (k−1 + k1) + 0− k−1 = 1− 2(k−1 + k1),

ξ0 ≤ m−1,−1 + q − k−1 ⇐= k−1 −m−1,−1 ≤ 1− k−1 − k1 +m1,−1

⇐= 0 ≤ 1− 2k−1 − k1 +m1,−1 +m−1,−1 ⇐= 0 ≤ 1− 2k−1 − k1,

and therefore ξ0 ≤ min(k−1 −m−1,−1,m−1,−1 + q − k−1). At the same time, nonnegativity of ξ0 is
obvious.

Thus, we have proved that for fixed values of m1,−1 and m−1,−1 the function G(m) attains its
maximum at m−1,1 = ξ0. Since global maxima of G(·) are at the same time its maxima in m−1,1

for some fixed values of m1,−1 and m−1,−1, the equality m−1,1 = ξ0 holds for them as well.

Hence, it suffices to look for an extremum of G(·) not over the whole domain M1 but over its
subdomain M2, which completes the proof of the lemma. �

It is easier to approximately evaluate cdeg using Lemma 8 rather than Lemma 7, since the
domain M2 is two-dimensional, whereas M1 is three-dimensional. In the general case, further
simplification is not possible.

However, preliminary computer calculations have shown that to obtain the best estimates for
chromatic numbers using the auxiliary proposition, one should set k−1 = k1 = q = k ≤ 1/4 (it is
easily seen that inequality (11) allows for this choice of parameters). In this particular case we can
explicitly indicate the point m(k) ∈ M2 where G(·) attains its maximum.

Lemma 9. Let 0 < k ≤ 1

4
k−1 = k1 = q = k. Define

m(k) =
(
m−1,−1(k),m−1,0(k),m−1,1(k),m0,−1(k),m0,0(k),m0,1(k),m1,−1(k),m1,0(k),m1,1(k)

)
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as follows:

m−1,−1(k) = m1,1(k) =
k

2
, m1,−1(k) = m−1,1(k) = −1

2
+ k +

√
1− 4k + 5k2

2
,

m1,0(k) = m−1,0(k) = m0,−1(k) = m0,1(k) =
1

2
− k

2
−

√
1− 4k + 5k2

2
,

m0,0(k) = −k +
√
1− 4k + 5k2.

Then
cdeg = G(m(k)).

Proof. In the notation of Lemma 8, it only suffices to prove that c2 = G(m(k)).

Since G(·) is continuous on the compact M2, it attains its maximum value c2 at some point. We
only need to check that this point is m(k).

Inequalities (16) and (17), which must be satisfied by all nontuples m ∈ M2, considerably
simplify in our case:

0 ≤ m1,−1 ≤
k

2
, (20)

m1,−1 ≤ m−1,−1 ≤ k −m1,−1. (21)

Let us try to use the same trick by which we have found in Lemma 8 the value of m−1,1 at the
global maximum of G(·). However, this time we will find the value of m−1,−1.

One can check that in M2 we have

dG(m)

dm−1,−1
= G(m) ln

(
(1− 2k +m1,−1 −m−1,−1)(k −m−1,−1 −m1,−1)(k −m−1,−1)

2

(1− 3k +m−1,−1 +m1,−1)(m−1,−1 −m1,−1)m
2
−1,−1

)
,

and therefore

dG(m)

dm−1,−1
≥ 0 ⇐⇒ (1− 2k +m1,−1 −m−1,−1)(k −m−1,−1 −m1,−1)(k −m−1,−1)

2

(1− 3k +m−1,−1 +m1,−1)(m−1,−1 −m1,−1)m2
−1,−1

≥ 1

⇐⇒ −(2m−1,−1 − k)
(
(1− k)m2

−1,−1 + (k2 − k)m−1,−1 +

+ k(k −m1,−1)(1− 2k +m1,−1)
)
≥ 0. (22)

The discriminant of the obtained quadratic expression in m−1,−1 is

D = k(1− k)(7k2 − 3k − 12km1,−1 + 4m1,−1 + 4m2
1,−1).

One can check, taking into account inequality (20), that the discriminant D monotonically increases

with m1,−1. But even at the point m1,−1 =
k

2
the discriminant is negative, since it equals

−k2(1− k)(1 − 2k) < 0,

and therefore the quadratic expression in m−1,−1 obtained in (22) is always positive. Thus, we
arrive at the following equivalence:

dG(m)

dm−1,−1
≥ 0 ⇐⇒ −(2m−1,−1 − k) ≥ 0.

Hence, at the global maximum point of G(·) we indeed must have

m−1,−1 = m−1,−1(k) =
k

2
, (23)

since m−1,−1(k) satisfies (21) for any m1,−1 satisfying (20).
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Now let us find what is the value of m1,−1 at the global maximum point. To this end, we proceed
as follows.

Taking into account (23), one can check that

dG(m)

dm1,−1
= G(m) ln

(
(1− 2k +m1,−1)(k − 2m1,−1)

2

m1,−1(2− 5k + 2m1,−1)2

)
,

and therefore

dG(m)

dm1,−1
≥ 0 ⇐⇒ (1− 2k +m1,−1)(k − 2m1,−1)

2

m1,−1(2− 5k + 2m1,−1)2
≥ 1

⇐⇒ (1− 2k)(k2 + 8km1,−1 − 4m1,−1 − 4m2
1,−1) ≥ 0.

It is easily checked that this quadratic function in m1,−1 has the following roots:

ξ± = −1

2
+ k ±

√
1− 4k + 5k2

2
.

Clearly, ξ− is negative and therefore does not satisfy inequality (20) for any k. At the same
time, one can check that ξ+ satisfies (20) for any 0 < k ≤ 1/4. Hence, at the global maximum
point of G(·) over M2 we must have the equality

m−1,1 = ξ+ = −1

2
+ k +

√
1− 4k + 5k2

2
,

which is precisely equivalent to
m−1,1 = m−1,1(k). (24)

Since all the other mi,j are uniquely expressed through m−1,−1 and m−1,1 by the identities given
in the assertion of Lemma 8, one can now easily deduce from (23) and (24) that at the global
maximum point of G(·) over M2 we have

∀ i, j ∈ {−1, 0, 1} mi,j = mi,j(k).

Lemma 9 is completely proved. �
Thus, we finally understand how the auxiliary proposition looks like in the case of our construc-

tion.

Theorem 9. Let A = (A, dA) be an (�1;FA, χA)-super-Ramsey finite metric space. Let I(s)
be a pair of points at distance s from each other. Then A×1 I(s) is also (�1;F, χ)-super-Ramsey
with some values of the parameters F and χ. These values can be chosen, e.g., as follows:

F = F 1−β
A (F (k, k))β , χ = (χ(k, k, k))β , β =

lnχA
lnχA + lnχ(k, k, k) + lnG(m(k))

,

where a value of the auxiliary parameter 0 < k ≤ 1

4
can be chosen arbitrarily.

To justify the first inequality of Theorem 5, it suffices to apply Theorem 9 to the case

A = I1
1 , χA =

1 +
√
3

2
, k = 0.1122.

Admissibility of this χA follows from the fact that

1 +
√
3

2
= χ

(
3−

√
3

6
,
3−

√
3

6
,
3−

√
3

6

)
.
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Note that we have pointed out the global maximum of χ(· , · , ·), but this fact is of no importance
for us now.

Applying Theorem 9 in the above-described way, we obtain

χ−(�1;I2
1 ) ≥ 1.0738908466 . . . ≥ 1.07389 . . . .

The second inequality of Theorem 5 is justified quite similarly. To this end, it suffices to apply
Theorem 9 to the case

A = I2
1 , χA = 1.0738908466, k = 0.05194,

which yields
χ−(�1;I3

1 ) ≥ 1.0218824299 . . . ≥ 1.02188 . . . .

All the other inequalities in Theorem 5 are, in essence, consequences of already proved facts.

Inequalities 3 and 5 trivially follow from the corresponding inequalities in Theorem 3.

Inequality 4 follows from inequality 2 and the fact that S2 ⊂ S3 ⊂ I3
1(1, 1, 1).

Inequality 6 follows from inequality 1 and the fact that an �1-right triangle T (a, b, c) can be
“embedded” in the �1-rectangle I2

1 (a, b).

Finally, inequality 7 follows from inequality 2 and the fact that an �1-acute triangle T (a, b, c)

can be “embedded” in the �1-rectangular parallelepiped I3
1

(a+ b− c

2
,
b+ c− a

2
,
c+ a− b

2

)
. �

7. CASE p = ∞. PROOF OF THEOREM 6

To prove the first statement of Theorem 6, we will use arguments similar to those used in the
proof of the auxiliary proposition but better adapted to our particular case.

Let among positive numbers a1 ≤ . . . ≤ ak there be exactly s distinct numbers, which we denote
by b1, . . . , bs arranging them in ascending order. Putmi = |{j : aj = bi}|. Clearly, m1+. . .+ms = k.

For an arbitrary c > 0 define a sequence of sets V (n; c) as follows:

V (n; c) = {(x1, . . . , xn) : ∀ i xi ∈ {0, c}}.

Clearly, |V (n; c)| = 2n.

Let f1(n), . . . , fs(n) be arbitrary natural-valued functions satisfying the following two conditions:

1. ∀n ∈ N

s∑
i=1

fi(n) = n; 2. ∀ i fi(n) =
n

s
+ o(n) as n → ∞.

Set
Vs(n) = V (f1(n); b1)× . . . × V (fs(n); bs).

Clearly, Vs(n) ⊂ R
n and |Vs(n)| = 2n. Let Vs(n) = (Vs(n), �∞).

A key point of our proof of Theorem 6 is the following theorem.

Theorem 10. As n → ∞ we have

Ind
(
Vs(n);Ik

∞(a1, . . . , ak)
)
≤

(
2

s−1
s + o(1)

)n
.

Proof. We prove the theorem by induction on s. The induction base, the case s = 1, is almost
obvious. Indeed, if s = 1, then both in the space Ik

∞(a1, . . . , ak) and in the space Vs(n) the distance
between any two distinct points equals b1, and therefore

Ind
(
Vs(n);Ik

∞(a1, . . . , ak)
)
= |Ik

∞(a1, . . . , ak)| − 1 = 2k − 1,

which, of course, can be represented as (20 + o(1))n.
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Now let prove the induction step. For that, represent Vs(n) in the form A×B with

A = V (f1(n); b1)× . . .× V (fs−1(n); bs−1), B = V (fs(n); bs).

For any b ∈ B, the set A×{b} will be referred to as a layer. It is clear that in this way we partition
Vs(n) into r = 2fs(n) layers.

Let W ⊂ Vs(n) be any one of small independent sets, i.e.,

|W | = Ind
(
Vs(n);Ik

∞(a1, . . . , ak)
)
,

and let Wi be the intersection of W with the ith layer, 1 ≤ i ≤ r. Without loss of generality we
may assume that for some t the sets Wi contain a copy of the metric space Ik−ms∞ (a1, . . . , ak−ms)
if and only if i ≤ t. Clearly,

Ind
(
Vs(n);Ik

∞(a1, . . . , ak)
)
= |W | =

t∑
i=1

|Wi|+
r∑

i=t+1

|Wi|, (25)

and to complete the proof of the theorem it only remains to estimate these two sums from above.

We start with estimating the first sum. It is clear that each |Wi| can be estimated from above
trivially:

|Wi| ≤ |A| = 2n−fs(n) =
(
2

s−1
s + o(1)

)n
. (26)

Furthermore, it is clear that t cannot be “too large.” Namely, if we had t ≥ 2ms , by taking one copy
of the space Ik−ms

∞ (a1, . . . , ak−ms) from each of the first 2ms layers we would find in W a copy of
Ik
∞(a1, . . . , ak), which is impossible. Hence, t ≤ 2ms . This inequality and (26) immediately imply

that
t∑

i=1

|Wi| ≤ 2ms
(
2

s−1
s + o(1)

)n
=

(
2

s−1
s + o(1)

)n
. (27)

Now we pass to estimating the second sum on the right-hand side of (25). First, it is clear that
for i > t we have

|Wi| ≤ Ind
(
(A, �∞);Ik−ms

∞ (a1, . . . , ak−ms)
)
. (28)

Since among the a1, . . . , ak−ms there are only s− 1 distinct numbers, we may apply the induction
hypothesis, which states that

Ind
(
(A, �∞);Ik−ms

∞ (a1, . . . , ak−ms)
)
≤

(
2

s−2
s−1 + o(1)

) s−1
s

n+o(n)
=

(
2

s−2
s + o(1)

)n
. (29)

Furthermore, it is clear that in this sum there are

r − t ≤ r = 2fs(n)

terms. This inequality, (28), and (29) imply that

r∑
i=t+1

|Wi| ≤ 2fs(n)
(
2

s−2
s + o(1)

)n
=

(
2

s−1
s + o(1)

)n
. (30)

Relations (25), (27), and (30) complete the proof of the induction step and thereby of the whole
theorem. �
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One can easily see that Theorem 10 in essence says that our metric space Ik
∞(a1, . . . , ak) is

(�∞; 2, 21/s)-super-Ramsey. As we have already noted, this implies

χ−(�∞;Ik
∞(a1, . . . , ak)) ≥ 21/s,

which completes the proof of the first statement of Theorem 6.

Let us see what we have proved for the case 1 = a1 = . . . = ak. In this case s = 1, and thus we
have proved that

χ−(�∞;Ik
∞(1, . . . , 1)) ≥ 2.

Since S1 ⊂ Sk ⊂ Ik+1
∞ (1, . . . , 1), we have the following chain of inequalities:

2 ≤ χ−(�∞;Ik+1
∞ (1, . . . , 1)) ≤ χ−(�∞;Sk) ≤ χ−(�∞;S1) = 2,

where the last exact equality follows from statement 4 of Theorem 1. Hence, Theorem 6 is com-
pletely proved. �

Remark 4. Note that we have also proved that χ−(�∞;Ik
∞(1, . . . , 1)) = 2. However, this equality

adds nothing new to the assertion of Theorem 6, since it is easy to check that Ik
∞(1, . . . , 1) = S2k−1.
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