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1. INTRODUCTION

In the modern literature on the large deviation principle, one considers various conditions for
random processes guaranteeing rough exponential asymptotics for probabilities of rare events; see,
for example, [1–6]. In this paper we deal with birth-and-death Markov processes that are inho-
mogeneous in the state space: the rates of jumps are polynomially dependent on the position of
the process. For these processes we obtain an exponential asymptotic for the probabilities of the
normalized process to be in a neighborhood of a continuous function. Moreover, we provide this
asymptotic for both ergodic processes and transient (even exploding) processes.

The study of birth-and-death processes is of a certain mathematical interest and, moreover, is
important for a number of applications. As examples, we can refer to information theory (encoding
and storage of information [7, 8]), biology and chemistry (models of growth and extinction in
systems with multiple components [9]), and economics (models of competitive production and
pricing [10–12]).

Consider a continuous-time Markov process ξ(t), t ≥ 0, with state space Z
+ ∪ {∞}, where

Z
+ = {0} ∪ N. Let us assume that the process starts at 0.
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264 VVEDENSKAYA et al.

The evolution of the process ξ(·) is described as follows. For a given t ≥ 0, let ξ(t) = x ∈ Z
+. The

state of the random process does not change during random time τx having exponential distribution
with parameter h(x) > 0. At the moment t + τx the process jumps to the states x ± 1 with
probabilities

P(ξ(t+ τx) = x+ 1) =
λ(x)

h(x)
, P(ξ(t+ τx) = x− 1) =

μ(x)

h(x)
, (1)

respectively, where λ(x) + μ(x) = h(x), λ(x) > 0 when x ∈ Z
+, and μ(x) > 0 for x ∈ N.

Assume that for x = 0 the rates are μ(x) = 0 and λ(x) = λ0 > 0 (i.e., the process cannot leave
the set Z+), and the following asymptotics hold true:

lim
x→∞

λ(x)

P�x�
= lim

x→∞
μ(x)

Qmxm
= 1, (2)

where P� and Qm are positive constants, � ≥ 0, m ≥ 0, and max(�,m) > 0.

When � ≤ 1, the existence of a Markov process with the above properties is established in the
standard way (see, e.g., [13, ch. 17, Sections 4 and 5; 14, ch. 2, Section 5, Theorem 2.5.5; 15, chs. 6
and 7]).

When � > 1, the process ξ(·), generally speaking, can go to infinity (“explode”) during a random
time, finite with probability 1. There are two approaches to construct such processes: (1) One can
stop the process at a random time point (the time of explosion) (see, e.g., [16, ch. 15, Section 4; 17,
ch. 6]); (2) One can extend the phase space Z

+ by adding an absorbing state, denoted by ∞ (see,
e.g., [18, ch. 4, Section 48; 13, ch. 17, Section 10]). For our results it makes no difference which
version is used.

The above class of random processes is referred to as birth-and-death processes (see, e.g.,
[13, 18–20]).

There exist conditions on � and m which are sufficient for explosion and non-explosion. For
example, when � > 1 and m < �, the process ξ(·) explodes, while if m > �, it does not. For
references, see original papers [21, 22] and references therein; see also [23, ch. 23, Section 7; 14,
ch. 2, Section 5; 24, ch. 5, Section 3] (in [24] there are also results for general Markov chains, not
only birth-and-death processes).

We are interested in a local large deviation principle (LLDP) for the family of scaled processes

ξT (t) =
ξ(tT )

T
, 0 ≤ t ≤ 1,

where T > 0 is a parameter (see, e.g., [25, 26]). In a sense, the formulation and analysis of the
LLDP should precede the study of other forms of the large deviation principle.

The validity of our results does not depend on whether or not the process ξ(·) explodes within a
finite time. We focus on the asymptotic of the probability of the event that the trajectories of the
process ξT (·) stay in a neighborhood of a continuous positive function defined on the interval [0, 1].
This means that we are working on the set of trajectories which do not tend to infinity in the
time interval [0, T ]. The considered probabilities are positive even if the process ξ(·) explodes (see
equation (3) below).

Let D[0, 1] denote the space of right-continuous functions with left-limit at each t ∈ [0, 1]. For
any f, g ∈ D[0, 1], set

ρ(f, g) = sup
t∈[0,1]

|f(t)− g(t)|.

Definition. The family of random processes ξT (·) satisfies the LLDP on the set G ⊆ D[0, 1] with
a rate function I = I(f) : D[0, 1] → [0,∞] and a normalizing function ψ(T ) with lim

T→∞
ψ(T ) = ∞
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A LOCAL LARGE DEVIATION PRINCIPLE 265

if, for any function f ∈ G, the following equality holds true:

lim
ε→0

lim sup
T→∞

1

ψ(T )
lnP(ξT (·)∈Uε(f)) = lim

ε→0
lim inf
T→∞

1

ψ(T )
lnP(ξT (·)∈Uε(f)) = −I(f),

Here

Uε(f) = {g ∈ D[0, 1] : ρ(f, g) < ε}.

In the framework of this definition, there are various cases to consider. We separate three cases:
(1) � > m; (2) � < m; and (3) � = m.

Note that the case m = 1 and � = 0 follows from [11] (where a two-dimensional Markov process
is treated). A similar result is obtained in [27] for solutions of stochastic differential Itô’s equations.
The classical case � = m = 0 and ϕ(T ) = T follows, for example, from [28].

In this paper we use the approach developed in [11]. We would like to note that the large
deviation principle for the sequence of processes ξT (·) in the space D[0, 1] with Skorokhod metric
cannot be obtained even for non-exploding processes: one can show that the corresponding family
of measures is not exponentially dense, except for the classical case � = m = 0.

The paper is organized as follows: in Section 2 we introduce our definitions and notation and
state the main result (theorem) and key lemmas. In Section 3 we prove the theorem and key
lemmas. In the Appendix, some auxiliary technical assertions are established.

2. MAIN RESULTS AND NOTATION

Let F denote the set of functions f(t) ∈ C[0, 1] such that f(0) = 0 and f(t) > 0 for 0 < t ≤ 1.

Theorem. Let conditions (1) and (2) be fulfilled. Then the family of random processes ξT (·)
satisfies the following LLDP on F :

(a) If � > m, then the normalizing function is ψ(T ) = T �+1, and the rate function has the form

I(f) = P�

1∫

0

f �(t) dt, f ∈ F ;

(b) If � = m and P� 	= Qm, then ψ(T ) = T �+1 and

I(f) =
(√

P� −
√
Qm

)2 1∫

0

f �(t) dt, f ∈ F ;

(c) If � < m, then ψ(T ) = Tm+1 and

I(f) = Qm

1∫

0

fm(t) dt, f ∈ F.

The case where � = m and P� = Qm needs a different normalization; we do not discuss it in this
paper.

Consider a space- and time-homogeneous Markov process ζ(t), t ∈ [0, T ], on the phase space Z,
where the jump rate is 1 and the jump size is ±1, occurring with probability 1/2.

Denote by XT the set of all right-continuous step functions with a finite number of ±1-jumps
on [0, T ].
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266 VVEDENSKAYA et al.

Lemma 1. For any given T , the distribution P
(ξ)
T ( · ∩XT ) of the process ξ(·) on XT is absolutely

continuous with respect to the distribution P
(ζ)
T of the process ζ(·) on XT . The corresponding density

(the Radon–Nikodym derivative dP
(ξ)
T ( · ∩XT )

/
dP

(ζ)
T ) on XT has the form

pT (u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
2NT (u)

(NT (u)∏
i=1

e−(h(u(ti−1))−1)τiν(u(ti−1), u(ti))

)
e−(h(u(tNT (u))−1))(T−tNT (u))

if NT (u) ≥ 1,

e−(h(0)−1)T if NT (u) = 0.

(3)

Here it is assumed that the function u(·) on [0, T ] has exactly NT (u) jumps at time points
t1, t2, . . . , tNT (u), where 0 = t0 < t1 < . . . < tNT (u) ≤ T , τi = ti − ti−1, and

ν(u(ti−1), u(ti)) =

{
λ(u(ti−1)) if u(ti)− u(ti−1) = 1,

μ(u(ti−1)) if u(ti)− u(ti−1) = −1.

Observe that the probability P(ξ(·) ∈ XT ) in Lemma 1 is allowed to be less than 1. (Clearly,
this probability is positive.) Note that a similar density was used in [11].

In what follows, we denote by NT (ζ) the random number of jumps in the process ζ(·) on the
interval [0, T ].

The assertion of Lemma 1 is equivalent to the fact that for any measurable set G ⊆ XT

P(ξ(·) ∈ G) = eT E(e−AT (ζ)eBT (ζ)+NT (ζ) ln 2; ζ(·) ∈ G). (4)

We set

AT (ζ) =

T∫

0

h(ζ(t)) dt =

⎧⎪⎨
⎪⎩

NT (ζ)∑
i=1

h(ζ(ti−1))τi + h(ζ(tNT (ζ)))(T − tNT (ζ)) if NT (ζ) ≥ 1,

h(0)T if NT (ζ) = 0,

BT (ζ) =

⎧⎪⎨
⎪⎩

NT (ζ)∑
i=1

ln(ν(ζ(ti−1), ζ(ti))) if NT (ζ) ≥ 1,

0 if NT (ζ) = 0.

(5)

The expressions in (4) specify, in our context, the statement of the Radon–Nikodym theorem (see,
e.g., [29, ch. III, Section 10, Theorem 2]). Below we use expressions (4) for analyzing the asymptotic
behavior of the logarithm of the probability P(ξT (·) ∈ Uε(f)) for f ∈ F .

The theorem shows that for � 	= m the main contribution into the asymptotic is brought
by AT (ζ), whereas in the case � = m the asymptotic involves both AT (ζ) and BT (ζ).

Consider the family of scaled processes

ζT (t) =
ζ(tT )

T
, t ∈ [0, 1].

Let k+ and k− denote the number of positive and negative jumps in ζT (·) and set L = k+ − k−.

For ζT (·) ∈ Uε(f) we have the inequality

f(1)− ε ≤ ζT (1) ≤ f(1) + ε. (6)

The jumps in ζT (·) are ±1/T ; therefore, (6) yields the inequalities

(f(1)− ε)T ≤ L ≤ (f(1) + ε)T. (7)
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With these definitions and observations we can write

k+ + k− = NT (ζ), k+ =
NT (ζ) + L

2
, k− =

NT (ζ)− L

2
. (8)

For brevity, we write below ξT , ζT and AT , BT instead of ξT (·), ζT (·) and AT (ζ), BT (ζ). Also,
we set v = max(�,m).

Lemma 2. Let f ∈ F . In the case � 	= m we have

lim
ε→0

lim sup
T→∞

1

T v+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
≤ 0,

whereas in the case � = m,

lim
ε→0

lim sup
T→∞

1

T �+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
≤ 2

√
P�Qm

1∫

0

f �(s) ds.

Lemma 3. For f ∈ F , in the case � 	= m we have

lim
ε→0

lim inf
T→∞

1

T v+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
≥ 0,

and in the case � = m,

lim
ε→0

lim inf
T→∞

1

T �+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
≥ 2

√
P�Qm

1∫

0

f �(s) ds.

3. PROOFS OF THE THEOREM AND LEMMAS 1–3

Proof of the theorem. We are going to get the LLDP for functions f ∈ F . First let us
estimate the quantity AT . Fix a value ε > 0 until a further notice.

From equation (5) it follows that

AT :=

T∫

0

h(ζ(t)) dt = T

1∫

0

h(TζT (s)) ds.

If ζT ∈ Uε(f), then
(f(s)− ε) ≤ ζT (s) ≤ (f(s) + ε). (9)

Let δ ∈ (0, 1) be also fixed for the time being, and denote mδ := min
t∈[δ,1]

f(t). Since f ∈ F , we

have mδ > 0. Therefore, k0 = mδ − ε > 0 when ε is sufficiently small.

Let us estimate AT on the set of trajectories ω where inequality (9) is valid. From (9) it follows
that TζT (s) ≥ k0T for s ∈ [δ, 1]. Therefore, by virtue of condition (2), for any γ0 ∈ (0, 1) and
s ∈ [δ, 1], for T large enough we have the inequalities

1− γ0 ≤
h(TζT (s))

P�(TζT (s))�
≤ 1 + γ0 in the case � > m, (10)

1− γ0 ≤
h(TζT (s))

(P� +Qm)(TζT (s))�
≤ 1 + γ0 in the case � = m, (11)

1− γ0 ≤
h(TζT (s))

Qm(TζT (s))m
≤ 1 + γ0 in the case � < m. (12)
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Consider the case � > m. Owing to (9) and (10), for T sufficiently large we get

T

1∫

δ

(1− γ0)P�(T (f(s)− ε))� ds ≤ AT ≤ T

δ∫

0

h(TζT (s)) ds

+ T

1∫

δ

(1 + γ0)P�(T (f(s) + ε))� ds. (13)

Set M := max
(
max
t∈[0,1]

f(t), 1
)
. By using (9), for T large enough we have

h(TζT (s)) ≤ (1 + γ0)P�(T (M + ε))�.

Consequently, from (13) we obtain the inequality

T �+1P�

1∫

δ

(1− γ0)(f(s)− ε)� ds ≤ AT ≤ T �+1P�δ(1 + γ0)(M + ε)�

+ T �+1P�

1∫

δ

(1 + γ0)(f(s) + ε)� ds. (14)

By using the bound (14) and equation (4), we get the following:

e
−T �+1P�

1∫
δ

(1−γ0)(f(s)−ε)� ds

eT E
(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
≥ P(ξT (·) ∈ Uε(f)) = eT E

(
e−AT eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)

≥ e
−T �+1P�δ(1+γ0)(M+ε)�−T �+1P�

1∫
δ

(1+γ0)(f(s)+ε)� ds

eT E
(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
. (15)

Further, by virtue of (15),

− P�

1∫

δ

(1− γ0)(f(s)− ε)� ds+ lim sup
T→∞

1

T �+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)

≥ lim sup
T→∞

1

T �+1
lnP(ξT ∈ Uε(f)) ≥ lim inf

T→∞

1

T �+1
lnP(ξT ∈ Uε(f))

≥ −P�δ(1 + γ0)(M + ε)� − P�

1∫

δ

(1 + γ0)(f(s) + ε)� ds

+ lim inf
T→∞

1

T �+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
. (16)

Next, from(16) it follows that

− P�

1∫

δ

(1− γ0)f
�(s) ds + lim

ε→0
lim sup
T→∞

1

T �+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)

≥ lim
ε→0

lim sup
T→∞

1

T �+1
lnP(ξT (·) ∈ Uε(f)) ≥ lim

ε→0
lim inf
T→∞

1

T �+1
lnP(ξT (·) ∈ Uε(f))

≥ −P�δ(1 + γ0)M
� − P�

1∫

0

(1 + γ0)f
�(s) ds

+ lim
ε→0

lim inf
T→∞

1

T �+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
. (17)
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Note that inequality (17) is valid for all γ0 > 0 and δ > 0. Letting γ0 → 0 and δ → 0, we get

− P�

1∫

0

f �(s) ds + lim
ε→0

lim sup
T→∞

1

T �+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)

≥ lim
ε→0

lim sup
T→∞

1

T �+1
lnP(ξT (·) ∈ Uε(f)) ≥ lim

ε→0
lim inf
T→∞

1

T �+1
lnP(ξT (·) ∈ Uε(f))

≥ −P�

1∫

0

f �(s) ds+ lim
ε→0

lim inf
T→∞

1

T �+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
. (18)

In a similar way, by using (11) and (12), we obtain inequalities for the case � = m:

− (P� +Qm)

1∫

0

f �(s) ds+ lim
ε→0

lim sup
T→∞

1

T �+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)

≥ lim
ε→0

lim sup
T→∞

1

T �+1
lnP(ξT ∈ Uε(f)) ≥ lim

ε→0
lim inf
T→∞

1

T �+1
lnP(ξT ∈ Uε(f))

≥ −(P� +Qm)

1∫

0

f �(s) ds + lim
ε→0

lim inf
T→∞

1

T �+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
, (19)

and for the case � < m:

−Qm

1∫

0

fm(s) ds + lim
ε→0

lim sup
T→∞

1

Tm+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)

≥ lim
ε→0

lim sup
T→∞

1

Tm+1
lnP(ξT (·) ∈ Uε(f)) ≥ lim

ε→0
lim inf
T→∞

1

Tm+1
lnP(ξT (·) ∈ Uε(f))

≥ −Qm

1∫

0

fm(s) ds + lim
ε→0

lim inf
T→∞

1

Tm+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
. (20)

Observe that in the course of deducing the estimates (18)–(20) the limit T → ∞ precedes the
limit ε → 0.

Applying Lemmas 2 and 3 to (18)–(20) completes the proof of the LLDP for the functions
in F . �

Remark 1. The above argument allows us to extend the assertion of the theorem to the set of
functions f ∈ C[0, 1] with f(0) = 0, f(t) ≥ 0 for 0 < t ≤ 1, and f(t) = 0 at finitely many points
in [0, 1].

Remark 2. For the Yule process (a process of pure birth with � > 0, P� > 0, and μ(x) ≡ 0; see,
e.g., [13]), the rate functional has the form

I(f) = P�

1∫

0

f �(t) dt, f ∈ FM ,

where FM is the set of nondecreasing continuous functions f(t) on [0, 1] with f(0) = 0.

Proof of Lemma 1. Let NT (ξ) be the number of jumps in the process ξ(·) in the time interval
[0, T ]. In the course of the proof we work on the event that the trajectory of ξ(·) belongs to XT ,
i.e., that NT < ∞. This event has a positive probability.
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270 VVEDENSKAYA et al.

As was mentioned above, the statement of the lemma means that for any measurable set G ⊆ XT

equality (4) is valid. Denote by X
(n)
T the set of functions u(·) ∈ XT with NT (u) = n, n = 0, 1, . . . .

Consider the one-to-one mapping

u ∈ X
(n)
T → (t1, . . . , tn;Δ1, . . . ,Δn) ∈ X

(n)
T = [0, T ]n< × {+1,−1}n, n = 1, 2, . . . . (21)

Here t1, . . . , tn is a sequence of jump times for the function u(·) in [0, T ], and Δi is the size of
the jump u(ti) − u(ti−1) (with Δ1 = u(t1)). Next, [0, T ]n< stands for the n-dimensional simplex
{(t1, . . . , tn) : 0 < t1 < . . . < tn ≤ T}.

The probabilities P(ξ(·) ∈ G) and P(ζ(·) ∈ G) are determined by

(a) the respective densities fξ and fζ relative to the summation measure
∑
n≥1

n∏
j=1

dtj on XT :=⋃
n≥1

X
(n)
T (here t0 = 0 for j = 1), and

(b) the probabilities P(ξ(t) = 0, 0 ≤ t ≤ T ) = e−λ(0)T , P(ζ(t) = 0, 0 ≤ t ≤ T ) = e−T .

The densities fξ and fζ are of the form

fξ(t1, . . . , tn;Δ1, . . . ,Δn) =

(
n∏

i=1

ν(xi−1, xi)e
−h(xi−1)τi

)
e−h(xn)(T−tn), (22)

fζ(t1, . . . , tn;Δ1, . . . ,Δn) = 2−n

(
n∏

i=1

e−τi

)
e−(T−tn), (23)

where x0 = 0, xi =
i∑

j=1
Δj, i = 1, . . . , n.

Each factor ν(xi−1, xi)e
−h(xi−1)τi in (22) gives the probability density h(xi−1)e

−h(xi−1)τi for the
time that the process ξ spent at state xi−1 multiplied by the probability ν(xi−1, xi)/h(xi−1) of
a jump from xi−1 to xi. The factor e−h(xn)(T−tn) is the probability to stay at xn until time T .

A similar meaning is attributed to the factors
1

2
e−τi and e−(T−tn). The products of terms in (22)

and (23) reflect the Markovian character of both processes.

The Radon–Nikodym derivative dP
(ξ)
T ( · ∩ XT )

/
dP

(ζ)
T in (3) is the ratio fξ/fζ , because the

mapping X
(n)
T → X

(n)
T is one-to-one. The Radon–Nikodym theorem can be applied here, since

both densities fξ and fζ are positive on X
(n)
T , and the measure

∑
n≥1

n∏
j=1

dtj on XT is finite (for the

formulation and proof of the Radon–Nikodym theorem, see, e.g., [29, ch. III, Section 10, Theorem 2;
30, Theorem 6.10]). �

Proof of Lemma 2. First, we upper bound the expected value E
(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
.

Given a > 1, represent this value as

E
(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
= E1 + E2,

E1 := E
(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f);NT (ζ) ≤ T a),

E2 := E
(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f);NT (ζ) > T a).

(24)

Let us bound E1 from above. If ζT ∈ Uε(f) and NT (ζ) ≤ T a, then by virtue of (2) it follows that
for any γ1 > 0 and T large enough,

BT =

NT (ζ)∑
i=1

ln(ν(ζ(ti−1), ζ(ti)))

≤ T a(ln(P�T
�(M + ε)�(1 + γ1)) + ln(QmTm(M + ε)m(1 + γ1))

)
,

Here, as above, M = max
(
max
t∈[0,1]

f(t), 1
)
.
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Set k1 = P�Qm(M + ε)�+m(1 + γ1)
2. Then the following inequality is fulfilled:

E1 ≤ exp{(T a + 1) ln(k1T
�+m)}. (25)

Next, we establish an upper bound for E2. Denote Mδ := max
s∈[0,δ]

f(s). Given u(·) ∈ XT , set

ν̃(u(ti−1), u(ti)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P�(u(ti−1))
� if u(ti)− u(ti−1) = 1, ti ≥ δT,

Qm(u(ti−1))
m if u(ti)− u(ti−1) = −1, ti ≥ δT,

P�(T (Mδ + ε))� if u(ti)− u(ti−1) = 1, ti < δT,

Qm(T (Mδ + ε))m if u(ti)− u(ti−1) = −1, ti < δT.

As above, the ti are the times of jumps in u(·).
If ζT ∈ Uε(f), then by (2) and because of the form of the function ν̃(ζ(ti−1), ζ(ti)), for T

sufficiently large and ti−1 < δT , we have the inequality

ν̃(ζ(ti−1), ζ(ti)) ≥ ν(ζ(ti−1), ζ(ti)). (26)

Next, if ζT ∈ Uε(f) and ε is sufficiently small, then for s > δ we have ζT (s) > min
s∈[δ,1]

f(s) − ε > 0.

Thus, for ti−1 ≥ δT , condition (2) implies that for any γ2 ∈ (0, 1) and T large enough, we have

(1− γ2) ≤
ν(ζ(ti−1), ζ(ti))

ν̃(ζ(ti−1), ζ(ti))
≤ (1 + γ2). (27)

Owing to inequalities (26) and (27), for any γ2 > 0 and T sufficiently large,

NT (ζ)∏
i=1

ν(ζ(ti−1), ζ(ti))1(ζT ∈ Uε(f), NT (ζ) > T a)

≤ (1 + γ2)
NT (ζ)

NT (ζ)∏
i=1

ν̃(ζ(ti−1), ζ(ti))1(ζT ∈ Uε(f), NT (ζ) > T a).

Next, set

f̃δ(s) =

{
Mδ if t ∈ [0, δ),

f(s) if t ∈ [δ, 1].

From the form of ν̃(ζ(ti−1), ζ(ti)) it follows that for ζT ∈ Uε(f) one of the inequalities

ν̃(ζ(ti−1), ζ(ti)) ≤ P�(T (f̃δ(ti−1/T ) + ε))� (28)

or
ν̃(ζ(ti−1), ζ(ti)) ≤ Qm(T (f̃δ(ti−1/T ) + ε))m (29)

holds true, depending on the sign of ζ(ti)− ζ(ti−1).

If ζT ∈ Uε(f), then, by virtue of (8), the process ζT (·) has
NT (ζ) + L

2
positive and

NT (ζ) − L

2
negative jumps. Hence, from (28) and (29) we obtain

NT (ζ)∏
i=1

ν(ζ(ti−1), ζ(ti))1(ζT ∈ Uε(f), NT (ζ) > T a)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 + γ2)
NT (ζ)T vL/2P

NT (ζ)+L

2
� Q

NT (ζ)−L

2
m

NT (ζ)∏
i=1

T
�+m
2 (M + ε)v if � 	= m,

(1 + γ2)
NT (ζ)P

NT (ζ)+L

2
� Q

NT (ζ)−L

2
m

NT (ζ)∏
i=1

T �(f̃δ(ti−1/T ) + ε)� if � = m.

(30)
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Set

k2(T ) := min
(
1, (P�/Qm)(f(1)−ε)T/2), k3(T ) := max

(
1, (P�/Qm)(f(1)+ε)T/2).

Then from (7) it follows that

k2(T ) ≤
(

P�

Qm

)L/2

≤ k3(T ). (31)

In addition, set k4 =

(
f̃δ(0) + ε

f̃δ(tNT (ζ)/T ) + ε

)�
. By inequalities (30) and (31), for T sufficiently large

we have

E2 ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k3(T )T
v(M+ε)T

2 E
NT (ζ)∏
i=1

2P
1
2
� Q

1
2
m(1 + γ2)T

(�+m)/2(M + ε)v if � 	= m,

k3(T )k4 E
NT (ζ)∏
i=1

2P
1
2
� Q

1
2
m(1 + γ2)T

�(f̃δ(ti/T ) + ε)� if � = m.

Following Remark 3 (see the Appendix), we get an exponential bound for E2:

E2 ≤

⎧⎪⎪⎨
⎪⎪⎩
k3(T )e

−TT
v(M+ε)T

2 exp
{
2P

1
2
� Q

1
2
m(1 + γ2)T

(�+m)/2+1(M + ε)v
}

if � 	= m,

k3(T )k4e
−T exp

{
2P

1
2
� Q

1
2
m(1 + γ2)T

�+1
1∫
0
(f̃δ(s) + ε)� ds

}
if � = m.

Then, for T sufficiently large, selecting a <
�+m

2
+ 1, we obtain from (25) that

E
(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
= E1 + E2 ≤ 2E2.

Finally, by taking into account that the value ln
(
k3(T )T

v(M+ε)T
2

)
is of order T lnT , while ln(k3(T )k4)

is of order T , we conclude that for any γ2 ∈ (0, 1) and δ ∈ (0, 1) the following bounds hold true:

lim
ε→0

lim sup
T→∞

1

T v+1
lnE(eBT+NT (ζ) ln 2; ζT ∈ Uε(f)) ≤

⎧⎪⎨
⎪⎩
0 if � 	= m,

2
√
P�Qm(1 + γ2)

1∫
0
f̃ �
δ (s) ds if � = m.

Taking the limit as γ2 → 0 and δ → 0 completes the proof. �

Proof of Lemma 3. Now let us lower bound E2 from (24). As above, we fix a sufficiently
small ε until the end of the argument. Throughout what follows, [ · ] stands for the integer part.

Introduce the event D :=
{
ω : max

1≤k≤NT (ζ)+1
τk ≤ T 1−β

}
, where 1 < β < a and τNT (ζ)+1 :=

T − tNT (ζ). Also consider the event Cε :=
{
ω : inf

t∈[t[εT/4],T ]
ζ(t) > ε/16

}
, where t[εT/4] is the time of

the [εT/4]th jump in ζ(t).

Obviously,

E2 = E 2NT (ζ)
NT (ζ)∏
i=1

ν(ζ(ti−1), ζ(ti))1(ζT ∈ Uε(f), NT (ζ) > T a)

≥ E 2NT (ζ)
NT (ζ)∏
i=1

ν(ζ(ti−1), ζ(ti))1(D,Cε, ζT ∈ U+
ε (f), NT (ζ) > T a),

where U+
ε (f) :=

{
g : min

t∈[0,1]
g(t) ≥ 0

}
∩ Uε(f).
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Let δ = min
{
s : min

t∈[s,1]
f(t) ≥ 2ε

}
. Denote r(δ) := min{i : ti ≥ Tδ}.

Assume that ζT ∈ U+
ε (f) and r(δ) + 1 ≤ i ≤ NT (ζ). Then by condition (2), for any γ3 ∈ (0, 1)

and T large enough, we have either

ν(ζ(ti−1), ζ(ti)) ≥ (1− γ3)P�(T (f(ti−1/T )− ε))� (32)

or
ν(ζ(ti−1), ζ(ti)) ≥ (1− γ3)Qm(T (f(ti−1/T )− ε))m, (33)

depending on the sign of ζ(ti)− ζ(ti−1).

If the event Cε has occurred and [εT/4] ≤ i ≤ r(δ), then, owing to condition (2), for any
γ3 ∈ (0, 1) and a sufficiently large T the following inequality holds true:

ν(ζ(ti−1), ζ(ti)) ≥ (1− γ3)(Tε/16)
w , (34)

where w := min(�,m).

For ζT ∈ U+
ε (f) and 1 ≤ i ≤ [εT/4] we have

ν(ζ(ti−1), ζ(ti)) ≥ k5 := min
(
inf

x∈Z+
λ(x), inf

x∈N
μ(x)

)
. (35)

Let us introduce the function

f̂ε(s) =

⎧⎨
⎩

ε

16max(1, P�, Qm)
if s ∈ [0, δ),

f(s)− ε if s ∈ [δ, 1].

Using (8) and (32)–(35), we get the bound

E2 ≥ k6(T )EP
NT (ζ)+L

2
� Q

NT (ζ)−L

2
m (1− γ3)

NT (ζ)2NT (ζ)

×
NT (ζ)∏

i=[εT/4]+1

(T f̂ε(ti−1/T ))
w1(D,Cε, ζT ∈ U+

ε (f), NT (ζ) > T a),

where k6(T ) :=
( k5
max(P�, Qm)

)[εT/4]
.

From inequalities (7) and (31) we obtain

E2 ≥ k7(T )EP
NT (ζ)

2
� Q

NT (ζ)

2
m (1− γ3)

NT (ζ)2NT (ζ)

×
NT (ζ)∏
i=1

(T f̂ε(ti/T ))
w1(D,Cε, ζT ∈ U+

ε (f), NT (ζ) > T a),

where k7(T ) :=
k6(T )k2(T )

(MT )w[εT/4]
.

From Lemma 6 (see the Appendix) it follows that for any γ4 ∈ (0, 1) and T sufficiently large the
following holds true:

E2 ≥ k7(T )
∞∑

n=[Ta]+1

2n(1− γ4)
nP

n
2
� Q

n
2
mE

n∏
i=1

Tw(f̂ε(ti/T ))
w1(D,NT (ζ) = n). (36)

Here γ4 is expressed via γ3 and θ, whereas θ ∈ (0, 1) is introduced in Lemmas 5 and 6. To estimate
the product from (36), we use Lemma 4. Taking into account that n > T a, we get that for T large
enough,
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E
n∏

i=1

Tw(f̂ε(ti/T ))
w1(D,NT (ζ) = n)

= E
n∏

i=1

Tw(f̂ε(ti/T ))
w1(NT (ζ) = n)−E

n∏
i=1

Tw(f̂ε(ti/T ))
w1(D,NT (ζ) = n)

≥

(
Tw

T∫
0
(f̂ε(ti/T ))

w dt

)n

n!
e−T − 2T β

(
Tw

T∫
0
(f̂ε(ti/T ))

w dt− Tw+1α 1

Tβ

)n

n!
e−T , (37)

Here α 1

Tβ
=

1

2T β
inf

s∈[0,1]
(f̂ε(s))

w =
1

2T β

( ε

16max(1, P�, Qm)

)w
(cf. equation (40) in the Appendix).

Now let us now estimate the last term on the right-hand side of (37). Denote k8 := sup
s∈[0,1]

(f̂ε(s))
w.

Since a > β, for a sufficiently large T the following inequalities hold true:

2T β

(
Tw

T∫

0

(f̂ε(t/T ))
w dt− Tw+1α 1

Tβ

)n

≤ 2T β

(
Tw

T∫

0

(f̂ε(t/T ))
w dt

)n (
1− εw

2k8T β(16max(1, P�, Qm))w

)n

≤ 2T β

(
Tw

T∫

0

(f̂ε(t/T ))
w dt

)n (
1− εw

2k8T β(16max(1, P�, Qm))w

)Ta

≤
(
Tw

T∫

0

(f̂ε(t/T ))
w dt

)n

exp

(
β ln(2T )− εw

2k8(16max(1, P�, Qm))w
T a−β

)

≤ 1

2

(
Tw

T∫

0

(f̂ε(t/T ))
w dt

)n

.

Consequently, from (37) it follows that

E
n∏

i=1

Tw(f̂ε(ti/T ))
w1(D,NT (ζ) = n) ≥ 1

2

(
Tw

T∫
0
(f̂ε(t/T ))

w dt

)n

n!
e−T .

By virtue of (36), for T sufficiently large,

E2 ≥
k7(T )

2

∞∑
n=[Ta]+1

2n(1− γ4)
n(P�Qm)n/2

(
Tw

T∫
0
(f̂ε(t/T ))

w dt

)n

n!
e−T .

From this it follows that, selecting a < w + 1, for T large enough we obtain the inequalities

E2 ≥
k7(T )e

−T

2
exp

(
2(1 − γ4)

√
P�QmTw+1

1∫

0

(f̂ε(s))
w ds

)

− k7(T )e
−T

2
exp(a ln(T ) + (w + 2)T a ln(T ))

≥ k7(T )e
−T

4
exp

(
2(1 − γ4)

√
P�QmTw+1

1∫

0

(f̂ε(s))
w ds

)
. (38)
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By virtue of (38) and the fact that ln k7(T ) is a quantity of order T lnT , we now conclude that

lim inf
T→∞

1

T v+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
≥

⎧⎪⎨
⎪⎩
0 if � 	= m,

2(1− γ4)
√
P�Qm

1∫
0
f̂ε(s)

� ds if � = m.

Furthermore, taking into account the definition of function f̂(s), we obtain

lim
ε→0

lim inf
T→∞

1

T v+1
lnE

(
eBT+NT (ζ) ln 2; ζT ∈ Uε(f)

)
≥

⎧⎪⎨
⎪⎩
0 if � 	= m,

2(1− γ4)
√
P�Qm

1∫
δ

f �(s) ds if � = m.

Taking the limit as δ → 0 and γ4 → 0 completes the proof of the lemma. �

APPENDIX

Here we prove the auxiliary assertions used in the arguments above.

Let X
(n)
T stand for the event that the process ζ has exactly n jumps on the interval [0, T ].

Lemma 4. Let g(t) be a nonnegative bounded Borel function and n ≥ 1. Then

E
n∏

i=1

g(ti)1(X
(n)
T ) =

(
T∫
0
g(s) ds

)n

n!
e−T , (39)

E
n∏

i=1

g(ti)1(X
(n)
T )1

(
max

1≤k≤n+1
τk > TΔ

)
≤ 2

Δ

(T∫
0
g(s) ds − TαΔ

)n

n!
e−T . (40)

Here Δ > 0 is a constant and αΔ :=
Δ

2
inf

t∈[0,T ]
g(t). Further, t1, . . . , tn are jump times on [0, T ] in

the process ζ(·), and τn+1 := T − tn.

Proof. First, we prove (39). To this end, write

E

( n∏
i=1

g(ti)
∣∣∣ X(n)

T

)
= E

( n∏
i=1

g(ti)
∣∣∣ η(T ) = n

)
,

where η is a Poisson process with mean E η(t) = t.

From [15, Theorem 2.3, p. 126] it follows that

E

( n∏
i=1

g(ti)
∣∣∣ η(T ) = n

)
=

n!

T n

T∫

0

( T∫

s1

. . .

( T∫

sn−1

n∏
i=1

g(si) dsn

)
. . . ds2

)
ds1 =

1

T n

( T∫

0

g(s) ds

)n

.

Therefore,

E
n∏

i=1

g(ti)1(X
(n)
T ) =

1

T n

( T∫

0

g(s) ds

)n

P(η(T ) = n) =

(
T∫
0
g(s) ds

)n

n!
e−T .

Next, we turn to the proof of (40):

E
n∏

i=1

g(ti)1(X
(n)
T )1

(
max

1≤k≤n+1
τk > TΔ

)

≤
[2/Δ]∑
r=1

E
n∏

i=1

g(ti)1(η(T ) = n)1

(
η

(
rTΔ

2

)
−η

(
(r − 1)TΔ

2

)
= 0

)
:=

[2/Δ]∑
r=1

Dr;
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here we used the fact that if max
1≤k≤n+1

τk > TΔ, then there exists an r with 1 ≤ r ≤
[ 2

Δ

]
and with

no jumps on the interval
[ (r − 1)TΔ

2
,
rTΔ

2

]
.

Consider

D1 = E
n∏

i=1

g(ti)1(η(T ) = n)1

(
η

(
TΔ

2

)
= 0

)

= E
n∏

i=1

g(ti)1

(
η(T )− η

(
TΔ

2

)
= n

)
1

(
η

(
TΔ

2

)
= 0

)
.

By using the independence of increments in and the homogeneity of the Poisson process and for-
mula (39), we obtain

D1 =

(
T∫

TΔ
2

g(s) ds

)n

n!
e−T (1−Δ/2) P

(
η

(
TΔ

2

)
= 0

)
=

(
T∫

TΔ
2

g(s) ds

)n

n!
e−T .

Similarly, for any r, 1 ≤ r ≤
[ 2

Δ

]
, one obtains

Dr =

( ∫
[0,T ]/Br,Δ

g(s) ds

)n

n!
e−T ,

where Br,Δ =
[ (r − 1)TΔ

2
,
rTΔ

2

]
.

In view of the relations min
1≤r≤[ 2

Δ ]

∫
[
(r−1)TΔ

2
, rTΔ

2

] g(s) ds ≥ T
Δ

2
inf

s∈[0,T ]
g(s) = TαΔ, we get

E
n∏

i=1

g(ti)1(X
(n)
T )1

(
max

1≤k≤n+1
τk > TΔ

)
≤ 2

Δ

(
T∫
0
g(s) ds − TαΔ

)n

n!
e−T . �

Remark 3. Lemma 4 implies that

E

η(T )∏
i=1

g(ti)1(η(T ) ≥ 1) = e−T

(
exp

{ T∫

0

g(s) ds

}
− 1

)
.

Lemma 5. Consider a sequence b1, b2, . . . , bn where each bi equals either −1 or 1. Denote by cd
the number of sequences with the following property :

∣∣∣∣
r∑

k=1

bk

∣∣∣∣ ≤ d, ∀r, 1 ≤ r ≤ n.

Take d = [TΔ] and n = O(T β) where T → ∞ while Δ > 0 and β > 1. Then for any θ ∈ (0, 1)
and a sufficiently large T we have the bound

cd ≥ (1− θ)n+12n.

Proof. It is clear that if a sequence b2(p−1)d+1, . . . , b2pd with 1 ≤ p ≤ n

2d
has equally many 1’s

and −1’s, and in the sequence b2d[ n
2d

]+1, . . . , bn the difference between the numbers of 1’s and −1’s
is at most 1 in the absolute value, then the required property is fulfilled. The number of such

sequences is not less than
(
Cd
2d

)[ n
2d

]
.
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Using Stirling’s formula gives

(
Cd
2d

)[ n
2d

] ∼
(√

2(2d)2d√
πdd2d

)[ n
2d

]

=

(√
222d√
πd

)[ n
2d

]

≥ 2n−2d(πd)−
n
4d .

Thus, owing to the fact that −2d ln 2 − n lnπd

4d
= o(n), we obtain that, for any θ ∈ (0, 1) and T

sufficiently large,

cd ≥ (1− θ)2n exp

{
−2d ln 2− n ln πd

4d

}
≥ (1− θ)n+12n. �

Lemma 6. Take β > 1 and n ≥ T β, and let g(·) be a nonnegative bounded Borel function. For
any θ > 0 and all T sufficiently large, the following estimate holds true:

E g(t1, . . . , tn)1
(

max
1≤k≤n+1

τk ≤ T 1−β
)
1(X

(n)
T )1(ζT ∈ U+

ε (f))1(Cε)

≥ (1− θ)2nE g(t1, . . . , tn)1
(

max
1≤k≤n+1

τk ≤ T 1−β
)
1(X

(n)
T ),

where U+
ε (f) :=

{
g : min

t∈[0,1]
g(t) ≥ 0

}
∩ Uε(f), Cε :=

{
ω : inf

t∈[t[εT/4],T ]
ζ(t) > ε/16

}
, and t[εT/4] is the

point of the [εT/4]th jump in process ζ(t).

Proof. Since f(t) is uniformly continuous on [0, 1], for δ > 0 sufficiently small we have the
inequality

sup
s,t: |s−t|≤δ

|f(s)− f(t)| < ε

4
.

Fix δ with 1/δ ∈ N, and let 1 ≤ r ≤ 1/δ.

Let Bmr ,δr be the event that the process ζ has exactly mr jumps on the interval [Tδ(r−1), T δr].
Then we can write

E g(t1, . . . , tn)1
(

max
1≤k≤n+1

τk ≤ T 1−β
)
1(X

(n)
T )1(ζT ∈ U+

ε (f))1(Cε)

=
∑

m1,...,m1/δ

E g(t1, . . . , tn)1
(

max
1≤k≤n+1

τk ≤ T 1−β
)
1(X

(n)
T )1(ζT ∈ U+

ε (f))1(Cε)

1/δ∏
r=1

1(Bmr ,δr),

The summation here is over all collections with min
r

mr ≥ δT β ,
∑
r
mr = n.

Take a collection m1, . . . ,mr satisfying the above condition. Consider a piece of a trajectory
of ζ on the interval [0, δT ]. Denote by t1,1, . . . , tm1,1 the jump points of ζ lying in this interval.
Assume that the jumps satisfy the following conditions:

1. The jumps at times t1,1, . . . , tdε,1,1 are positive, where dε,1 := [Tε/4];

2. The jumps at times tdε,1+1,1, . . . , tm1,1 are such that for any integer k ∈ [dε,1 + 1,m1] we have
the inequality ∣∣∣∣∣

k∑
�=dε,1+1

ζ(t�,1)

∣∣∣∣∣ ≤
[
Tε

8

]
.

Then, for T large enough, the trajectory ζT (t) has the following properties:

1. The trajectory is nonnegative and lies in an ε-neighborhood of f for t ∈ [0, δ];

2. ζT (t) ≥ ε/16 for t > tdε,1,1/T ;

3. |ζT (δ)− f(δ)| ≤ 3ε/8.
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Now consider a piece of a trajectory of ζ(·) defined on the interval [δT, 2δT ] and having the
property |ζ(δT )−Tf(δ)| ≤ 3εT/8. Denote by t1,2, . . . , tm2,2 the jump points of ζ(·) in this interval.
Let these jumps satisfy the following conditions:

1. At times t1,2, . . . , t|dε,2|,2 the jumps are positive or negative in accordance with the sign of dε,2 :=
[T (max(ε/4, f(2δ)) − ζT (δ))];

2. At times t|dε,2|+1,2, . . . , tm2,2, the jumps are such that for any integer k ∈ [|dε,2| + 1,m2] the
following inequality holds true:

∣∣∣∣∣
k∑

�=|dε,2|+1

ζ(t�,2)

∣∣∣∣∣ ≤
[
Tε

8

]
.

Then, again for T large enough, the trajectory ζT (t) has the following properties:

1. The trajectory is nonnegative and lies in a ε-neighborhood of f for t ∈ [δ, 2δ];
2. ζT (t) ≥ ε/16 for t ∈ [δ, 2δ];
3. |ζT (2δ) − f(2δ)| ≤ 3ε/8.

Further pieces of the trajectory are dealt with by induction.

Let us count the trajectories whose jumps satisfy the above properties. Since max
1≤k≤n+1

τk ≤ T 1−β,

we have that for any r with 1 ≤ r ≤ 1/δ the interval [Tδ(r− 1), T δr] contains at least [δT β ] jumps
of the process ζ(·), where β > 1. Using Lemma 5 yields that, when T is sufficiently large, on
[Tδ(r − 1), T δr] the number of pieces of the trajectory with the above-described properties will be
not less than

(1− θ)mr+1−|dε,r |2mr−|dε,r | > (1− θ)2mr2mr .

Consequently, the number of trajectories that fulfill the above properties for all r is not less than

∏
r

(1− θ)2mr2mr = (1− θ)2n2n. (41)

Next, the jump directions in ζ are mutually independent and depend on neither the number of
jumps within the interval nor the jump times. Hence, we can use equality (41) to obtain

∑
m1,...,m1/δ

E g(t1, . . . , tn)1
(

max
1≤k≤n+1

τk ≤ T 1−β
)
1(X

(n)
T )1(ζT ∈ U+

ε (f))1(Cε)

1/δ∏
r=1

1(Bmr ,δr)

≥
∑

m1,...,m1/δ

(1− θ)2n2n

2n
E g(t1, . . . , tn)1

(
max

1≤k≤n+1
τk ≤ T 1−β

) 1/δ∏
r=1

1(Bmr ,δr)

= (1− θ)2nE g(t1, . . . , tn)1
(

max
1≤k≤n+1

τk ≤ T 1−β
)
1(X

(n)
T ). �
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