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Abstract—A novel analytical approach to the synthesis of multiband electrical filters is pre-
sented. This approach allows to obtain the lowest possible order filters for a wide class of
specifications including ones with large number of pass- and stopbands and with narrow transi-
tion bands. Comparison of the new approach to direct optimization and composite approaches
is provided.
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1. INTRODUCTION

Currently, multiband filters are widely used in analog and digital technology. For example, in
modern microwave and RF communication systems, filters with several passbands corresponding to
various standards of wireless communications are often required. The development of filters with
multiband specifications is a difficult engineering task, especially if one wants to simultaneously
ensure both high performance of the component and its compact implementation. To the current
moment, there are no fully satisfactory and universal solutions to this problem in the literature.

An obvious approach is the composite one: a multiband filter is obtained by interconnecting
several single-band filters. Its disadvantage lies in too large orders of the synthesized filters, implying
their too large weight and dimensions. This explains the interest in the development of other
approaches that are ideologically more sophisticated but allow one to obtain filters of smaller orders
under the same specification. At the level of technical implementation, engineers employ methods
of microwave filter synthesis based on the use of multimode resonators [1, 2], as well as methods
based on the use of frequency transformations (e.g., [3, 4]). The complexity of these approaches
grows rapidly with the number of bands and the order of the filter. Also, applicable specifications
have significant limitations.

Finally, a common method of filter synthesis is the direct numerical optimization of magnitude
response. Here by optimal we mean a filter having the smallest order among all physically feasible
filters that meet the requirements of a given specification (or mask). The latter consists of the
following parameters: (1) boundary frequencies of all pass- and stopbands; (2) maximal acceptable
ripple at passbands and (3) minimal acceptable attenuation at stopbands. These data determine
the desired shape of the filter magnitude response and only indirectly affect its other characteristics
like phase response, impulse response, etc.

Methods of filter synthesis connected with direct numerical optimization usually use Remez-type
algorithms (see [5–7].) Due to their principal inherent instability, these methods have a limited

1 The research was carried out at the expense of the Russian Science Foundation, project no. 16-11-10349.
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applicability range: with computations in double precision, the number of filter passbands does not
exceed three, as a rule, while the filter order does not exceed twenty.

The authors of the article have developed an analytical approach to the synthesis of optimal
multiband filters, which can be applied to specifications with a total number of bands (currently)
up to 23 and with orders up to 1000. The aim of the article is to compare the new approach to the
synthesis of optimal multiband filters with the direct optimization method based on the Remez-type
algorithm, and also to compare optimal filters with nonoptimal composite filters obtained by the
corresponding approach. Section 2 introduces the optimization problem underlying the synthesis of
the optimal multiband filter. Section 3 contains a brief description of the new analytical approach
to this problem. In Section 4 the recipes are given that we used to solve the same problem by direct
optimization method. Section 5 describes the composite approach to the synthesis of nonoptimal
multiband filters. Section 6 contains the results of numerical experiments made for the comparison
of these three approaches.

2. PROBLEM FORMULATION

The search for an optimal filter corresponding to a given specification can be reduced to the
solution of a series of least deviation problems of a type given below. To this end, at each step
the filter order is fixed and one has to maximize, e.g., the attenuation at stopbands with all other
specification parameters fixed. Consider the following two formulations occurring in the literature.

Let E be the set containing m disjoint intervals of the real axis (frequency ranges) divided into
two parts, passbands E+ and stopbands E−. The ideal transition function F is equal to +1 on
intervals of E+ and to −1 on intervals of E−.

Problem 1. Find a real rational function Rn of degree at most n for which the deviation from
the transition function F is minimal in the uniform norm on E:

‖Rn − F‖C(E) := max
x∈E

|Rn(x)− F (x)| → min =: μ. (1)

Problem 2. Find a real rational function Qn(x) of degree at most n which will minimize the
quantity θ under the constraints

min
w∈E−

|Qn(w)| ≥ θ−1, max
w∈E+

|Qn(w)| ≤ θ. (2)

It is easy to show that these problems are equivalent, while their solutions differ by a linear
fractional substitution, i.e., Qn = l ◦ Rn, where l is a linear fractional transformation and the
quantities inverse to the minimal deviations are related by the Joukowski transformation, μ−1 =
(θ + θ−1)/2.

Note that the two given formulations of the rational approximation problem coincide in essence
with the third and fourth Zolotarev’s problems for the condenser (E+, E−) [8]. The problem is
multi-extremal: the entire set of rational functions is divided into 2m−2 disjoint classes [9, 10],
in each of which the solution exists, is unique, and has an equioscillation characterization (or
equiripple property): there are 2n+ 2 points on E in which the deviation value for the solution of
degree n is attained with successive change of sign [11].

Until recently, the exact analytical solution of this problem was known only for the case m = 2
(for one passband and one stopband), which was found in 1870s by Chebyshev’s pupil E. I. Zolo-
tarev [12]. It was about half a century later that it was used by the German electrical engineer
W. Cauer [13] to construct the transfer functions of the optimal high- or low-pass filters, called
afterwards the Cauer–Zolotarev (elliptic) filters. To date, these filters are widely used in analog and
digital technology, while the method of magnitude response approximation according to Zolotarev–
Cauer has become classical.
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3. NEW ANALYTICAL APPROACH

Approach to the problems (1) and (2) proposed in this paper is based on explicit analytical
formulas obtained in [14] and generalizing Zolotarev’s solution to the case of m components of E
where m exceeds two. This approach was earlier used by the first author for optimizing the uniform
norm of polynomials [15]; its idea is as follows. The solutions of the optimization problem are very
specific, since they have a large number of equioscillation points and therefore lie on a certain
manifold of small dimension in the space of all rational functions. When solving problems of least
deviation, it is reasonable to move from searching the whole space of rational functions of a given
degree to the search over this small-dimensional manifold.

Indeed, the solution of the least deviation problem of degree n has 2n+2 equioscillation points
on E [11], and every such point lying in the interior of E will necessarily be a critical point of a
solution function which takes there a value in the set Q containing four elements: ±1± μ for the
problem (1) and ±θ and ±θ−1 for problem (2). In total, a rational function of degree n has 2n− 2
critical points counted with multiplicities; therefore, a solution of the considered least deviation
problem satisfies the following definition with a small parameter g.

Definition. A rational function R(x) is called g-extremal with respect to the 4-element set of
values Q if all its critical points except for g−1 ones are simple with their values in Q. The number
of exceptional critical points is given by

g − 1 =
∑

x:R(x)/∈Q
ord dR(x) +

∑

x:R(x)∈Q

[
1

2
ord dR(x)

]
, (3)

where the sum is over all points in the Riemann sphere; ord dR(x) is the zero order at a point x of
the differential of the holomorphic map R : CP1 → CP1 (for instance, at simple poles of R(x) this
quantity is equal to zero), and [ · ] is the integer part of a number.

Rational functions with extremality number g possess the following effective, low-parametric for
small g, and numerically stable representation [14], which generalizes the construction of Zolotarev’s
fractions:

R(x) = sn

( x∫

e

dζ +A(e)
∣∣∣ τ

)
, Q = {±1,±1/k(τ)}, (4)

where dζ is a holomorphic differential on a Riemann surface M of genus g whose periods lie in the
lattice of periods of elliptic sine, while the phase shift A(e) is also commensurable to this lattice.
The surface M is determined by the rational function R(x) as the double covering of the Riemann
sphere branched over the points e, where R(x) takes the values from the set Q with odd multiplicity.
The emerging Riemann surface is not arbitrary; it is the so-called Calogero–Moser curve: it covers
with due branching the torus defined by the set of distinguished values Q. By itself, the algebraic-
geometric representation (4) arises in the analysis of a functional equation of the Pell–Abel type
which is satisfied by the rational function R(x) (for more details, see [14]).

The use of ansatz (4) for solving the optimization problem 1 or 2 assumes finding all its parame-
ters. First of all, it is necessary to determine the topological type of the real curve M , i.e., its genus
and the number of real ovals, and also the location of the latter with respect to components of the
set E of filter bands. Assuming the alternation of the pass- and stop-bands, the genus g of the
curve M is related to the number m of filter bands by the inequalities m− 1 ≤ g ≤ 2m− 3. After
the discrete ansatz parameters are determined (currently, it requires a finite search or a qualified
work to reduce it), it is possible to write a system of transcendental equations for the moduli of
the pair (curve M , differential dζ), whose solution is the required parameters of ansatz (4), which
allow the solution of the optimization problem to be reconstructed.
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Fig. 1. Graph of the solution of the optimization problem (for a specification with m = 23).
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Fig. 2. Graph of the solution of the optimization problem (for a specification with m = 7).

A representation of solutions in terms of conformal mappings of rectangular polygons (for in-
stance, computable using theta functions [16]) is given in [14]. A more detailed exposition of the
method based on the use of the explicit analytic formula (4) will be given in a separate article.

The employed parametrization of the extremal functions allows us to control the behavior of
the solution in transition bands of the filter, which corresponds to selection of the class, and solve
the problem of the filter of the least degree for a given specification directly, without considering
a chain of least deviation problems. Computational tools used to find extremal rational functions
by the explicit analytic formula involve the previously developed apparatus [14–18] for effective
computations on Riemann surfaces and allow one to compute in a stable way solutions of degrees n
up to a thousand and more.

Using the new analytical approach, examples of solutions of optimization problem 1 were com-
puted. A graph of a degree-654 solution function for a specification with the total number of bands
m = 23 is presented in Fig. 1. Figure 2 shows the graph of a solution (for a specification with
m = 7) from a class that admits poles in the first, second, third, and sixth transition bands.

4. DIRECT OPTIMIZATION

The solutions of the optimization problem can be computed approximately, e.g., using Remez-
type algorithms [9, 19, 20]. A starting point will again be the Akhiezer theorem [11]: an optimal
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rational function R(x) = ϕ(x)/ψ(x) of degree n must have at least 2n + 2 equioscillation points
on E. Assume that we have an approximate fraction given, for instance, by location of zeros and
poles or by coefficients of the numerator and denominator in some polynomial basis. Assume also
that we have a set of approximate equioscillation points, which we denote by A. The algorithms
in question consist in successive refinement of each of these two objects:

1. Having a set of points A ⊂ E, one can modify the fraction so that it will obey the equioscillation
condition on the discrete set A;

2. Having the fraction, one can modify the positions of points in order to increase the uniform
error norm over A, or make sure that this is impossible, i.e., the uniform error norm does not
decrease when being restricted from E to A.

Besides, an initial approximation is required, choosing which is very important due to the local
convergence property of Remez-type algorithms. We briefly describe recipes used for all the above-
mentioned steps.

Choice of initial approximation. We begin with choosing the set A, namely, we use the 1/(2n+2)-
quantiles of the equilibrium measure for the set E which is computed using a numerical solution of
the integral equation with logarithmic kernel [21].

Step 2 (refinement of A using a given fraction ϕ/ψ). First, we consider a wider set containing
the endpoints of our m intervals and critical points of the error function ϕ(w)/ψ(w) − F (w) lying
on E. The points corresponding to deviation less than that obtained previously at Step 1, are
discarded. The new set A must obey the sign alternation rule and contain 2n + 2 points. If the
number of points is smaller or greater, this is corrected with the help of the previously introduced
equilibrium measure; for example, we discard the points corresponding to smaller values of the
density of this measure. The search for critical points is carried out by the Brent method or, if the
approximation is good enough, in a simpler way, using the Newton method.

Step 1 (refinement of ϕ/ψ using a given set A). Unlike polynomial approximations, the equi-
oscillation condition for the set A cannot be represented, to our knowledge, in the form of a linear
system; the best formulation that one can obtain is a generalized eigenvalue problem of the form

(
V+ −V+

V− V−

) (
ϕ
ψ

)
= μ

(
0 Σ+V+

0 Σ−V−

) (
ϕ
ψ

)
(5)

for the first formulation of the extremal problem, and of the form
(
V− 0
0 Σ+V+

) (
ϕ
ψ

)
= θ

(
0 Σ−V−
V+ 0

) (
ϕ
ψ

)
(6)

for the second (see Section 2). The latter problem can be found in [9]. In equations (5) and (6), the
following notation is used: V± is the Vandermonde matrix corresponding to the nodes of A which
belong to E±, Σ± are diagonal matrices with entries ±1 fixed for every pass- or stop-band corre-
sponding to the nodes of A which belong to E±, ϕ and ψ are vectors of numerator and denominator
coefficients corresponding to the rational fraction, μ and θ are extremal alternating values. The
presence of matrices Σ± is due to the possible change of equioscillation signs in adjacent intervals.

As can be seen, the matrix problems (5) and (6) are nonsymmetric, and the corresponding matrix
pencils may turn out to be singular; even in the case of two intervals it may happen that standard
mantissa computations are not sufficient for getting at least one decimal digit of coefficients of ϕ
and ψ (not to speak of their roots). Besides, the search over all variants of equioscillation signs in
adjacent intervals means complexity exponential in m.

A certain advantage over the eigenvalue problems is due to to the reduction of problem (1)
formulated for a given set A to a linear programming problem. Here also emerges an exponential-
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in-m search related to the choice of the sign of denominator of the fraction for each interval. The
problem is as follows: minimize the quantity t > 0 under the nonlinear constraints

|ϕ(x) − ψ(x)F (x)| ≤ t|ψ(x)|, x ∈ A, j = 1, . . . ,m,

which turn to linear ones if we fix the sign of ψ(x) on each interval. Good results for this problem
are shown by the primal-dual interior point method [22].

Linear parametrization of numerators and denominators of the fraction substantially limits the
stability of Remez-type algorithms [19]. The maximal degree of a solution R obtained by such
methods working in double precision depends on a configuration of the set E but does not ex-
ceed n = 20.

5. COMPOSITE APPROACH

The composite approach is not connected with the formulated optimization problem and as-
sumes obtaining a (nonoptimal) multiband filter as a result of combining several single-band filters.
Architecturally, this can be implemented, for instance, by parallel connection of bandpass filters
each of which maintains one band of a given multiband specification, or by cascade connection of
bandpass and band-rejection filters.

Nonoptimal filters obtained by composite approach are hereinafter referred to as composite
filters. We used the following recipe for their construction: for each passband, the transfer function
of the corresponding passband elliptic filter was computed, and then the resulting functions were
added. Parameters of the elliptic filters were optimized by manual search to achieve the smallest
possible order of the resulting multiband filter under the condition that its magnitude response fits
into the corridor given by the specification.

6. EXAMPLES OF SYNTHESIS

Here we give examples of results of designing digital multiband filters using three approaches:
the new analytical approach, direct optimization method, and composite approach. The first two
approaches are based on the optimization problem formulated above and give optimal filters (i.e.,
filters of the minimum possible order for a given specification). The latter approach consists in
combining single-band elliptic filters and gives nonoptimal multiband filters.

Optimal digital filters were obtained from optimal analog ones by the standard (so-called bilin-
ear) frequency transformation.

The direct optimization did not yield satisfactory results for any of the considered examples
due to the complexity of the specifications. Its results are given for the first and second examples.
The composite approach, as can be seen from the examples, yields filters with significantly higher
orders in comparison with the optimal filters.

6.1. Single-Band Filter

With the help of the new analytical approach, we constructed a single-band optimal filter of
order 18 with strongly asymmetric widths of transition bands equal to 0.016 and 2 · 10−5. The
graph of its magnitude response is shown in Fig. 3.

The standard frequency transformation used in the synthesis of the passband elliptic filter from
the low pass prototype cannot provide such a difference in the widths of the transition bands; the
elliptic filter computed according to the same specification has a larger order, namely 28. The
graph of its magnitude response is presented in Fig. 4.
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Fig. 3. Magnitude response of a single-band optimal filter.
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Fig. 4. Magnitude response of a single-band elliptic filter.

Results of the direct numerical optimization for that specification are given in Table 1. In com-
putations using the Remez algorithm, boundaries of the filter bands were given by specification,
the passband ripple was fixed equal to −2 dB, and the attenuation in the stopbands (the second
column in the table) was determined from the order of the optimal filter obtained. The −46.9 dB
attenuation in the stopbands turned out to be unattainable for the direct optimization method due
to the fact that even the computation of the filter of order 10 required quite a lot of time.

6.2. Dual-Band Filter

As an example of an optimal dual-band filter, a filter of order 16 was constructed using the
analytical approach with a minimum attenuation at the stopbands equal to −40 dB and a passband
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Table 1. Results of the direct numerical optimization for a single-band filter.

3 −3.381 102
4 −4.227 154
5 −7.589 211
6 −10.612 308
8 −19.355 457
9 −22.378 652
10 – > 1000

18 −46.9 ?

Table 2. Results of the direct optimization for a dual-band filter.

3 −5.342 151
4 −9.178 273
5 −12.649 351
6 −16.013 408
7 −19.215 594
8 – > 1000

16 −40 ?

ripple equal to −2.6 dB. Widths of the transition bands were 0.012, 0.012, 0.003, and 0.008. The
magnitude response graph is shown in Fig. 5.

The composite filter constructed according to the same specification is of order 23. The graph
of its magnitude response is presented in Fig. 6.

Results of the direct optimization for that specification are given in Table 2. In computations,
boundaries of the filter bands were given by specification, the passband ripple was fixed equal to
−2 dB, and the attenuation in the stopbands (the second column in the table) was determined from
the order of the optimal filter obtained. In this case the Remez-type algorithm turned out to be
inapplicable for the search of optimal filters starting already from order eight, which means that
the optimal filter of order 16 obtained by the analytical approach cannot be found by the direct
optimization method.

6.3. Four-Band Filter

With the help of the analytical approach, we synthesized a four-band optimal filter of order 36
with a minimum attenuation at the stopbands equal to −42.8 dB, ripple at the passbands equal to
−2.0 dB, and widths of the transition bands from 0.002 to 0.005. The magnitude response graph
of the obtained filter is shown in Fig. 7.

The composite filter constructed according to the same specification is of order 55. The graph
of its magnitude response is presented in Fig. 8.

6.4. Five-Band Filter

For the five-band specification, an optimal filter of order 76 was computed with a minimum
magnitude response attenuation at the stopbands equal to −50 dB and passband ripple equal to
−2.0 dB. The widths of the transition bands lie in the interval from 0.002 to 0.005. The magnitude
response graph is shown in Fig. 9.
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Fig. 5. Magnitude response of a dual-band optimal filter.
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Fig. 6. Magnitude response of a dual-band composite filter.

The composite filter constructed according to the same specification is of order 121. The graph
of its magnitude response is presented in Fig. 10.

6.5. Notch Filter with Two Rejection Bands

The magnitude response graph of an optimal notch filter of order 16 performing accurate cutting
of two given frequencies is presented in Fig. 11. A fragment of the magnitude response containing
the rejected frequencies is presented on a larger scale in Fig. 12.

The composite filter maintaining the same magnitude response approximation quality is of or-
der 62.
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Fig. 7. Magnitude response of a four-band optimal filter.
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Fig. 8. Magnitude response of a four-band composite filter.

6.6. Filter with Two Passbands Critically Close to Each Other

With the help of the analytical approach, we constructed an optimal filter of order 24 with two
passbands critically close to each other. The corresponding magnitude response graph is given in
Fig. 13. Such filters can be used if it is required to extract a certain frequency range from the
spectrum while rejecting one or several frequencies contained within that range.

The composite filter maintaining the same magnitude response approximation quality is of or-
der 59.

7. CONCLUSION

The article gives a comparison of three approaches to the synthesis of multiband filters: the new
analytical approach, direct numerical optimization based on Remez method, and semi-analytical
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Fig. 9. Magnitude response of a four-band optimal filter.
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Fig. 10. Magnitude response of a four-band composite filter.

composite approach. Today, the direct numerical optimization has probably the widest algorith-
mic support: there exist (and are being improved) mature packages for engineering computations.
Unfortunately, the unavoidable instability of Remez-type algorithms does not allow to solve too
complicated problems: in double precision arithmetic (15 decimal digits), the filter order does not
attain 20, and good approximation properties are unreachable in the case of complicated specifi-
cations, for instance, with the large number of pass- and stop-bands, narrow transition bands, or
critically close passbands. The composite approach consists in breaking up a complex problem into
a series of simple ones and successively solving them by using Zolotarev’s fraction for constructing
the passband filter magnitude response. Its advantage is that in this way it is always possible to
obtain an (ersatz) solution for a given specification. As a rule, it is far from being optimal: the
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Fig. 11. Magnitude response of the optimal notch filter with two rejection bands.
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Fig. 12. Fragment of the magnitude response containing the rejected frequencies.

order of composite filter can be several times as large as the order of an optimal filter with the
same specification. The situation gets worse with increasing complexity of the filter specification.
In our opinion, the most promising—as well as the least studied from the algorithmic aspect—is the
analytical approach based on a complex mathematical apparatus. The authors intend to continue
their research in this direction.

The authors are grateful to Prof. L. Baratchart for a discussion of problems of uniform rational
approximation and also to Drs. F. Seyfert and V. Lunot (INRIA, Sophia-Antipolis) for providing
the software that computes optimal filters by a Remez-type algorithm.
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Fig. 13. Magnitude response of the optimal filter with two passbands critically close to each other.
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Fig. 14. Fragment of the magnitude response containing the rejected frequency.
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