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Abstract—We consider queueing networks which are made from servers exchanging their
positions on a graph. When two servers exchange their positions, they take their customers
with them. Each customer has a fixed destination. Customers use the network to reach their
destinations, which is complicated by movements of the servers. We develop the general theory
of such networks and establish the convergence of the symmetrized version of such a network
to some nonlinear Markov process.
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1. INTRODUCTION

In this paper we start studying a model of a queueing network comprised of moving servers.
The servers are moving over the set of nodes of a graph G in such a way that at any time each node
harbors a single server. Customers enter the network at each node. When a customer c arrives to
some node, it joins the queue of the server currently harbored by this node. In the following we
will simply say that a customer joins the queue at this node. Customer c has also a designated exit
node D(c), which it needs to reach in order to exit the network. In order to reach its destination,
a customer has to visit a series of intermediate servers. The time a customer spends at a server
depends on the service discipline of the server. Once a customer c being served by a server at node v
leaves, it is sent to the server located at the adjacent node v′ which is closest to the destination
node D(c). Once it gets to D(c), the customer leaves the system.

The main feature of the network we are considering here is that servers are moving over the
graph. This, while customers are waiting to be served, two servers located at adjacent nodes can
move by simultaneously swapping their locations. When two servers operate such a swap, each one
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QUEUEING NETWORKS WITH MOBILE SERVERS 179

brings along all the customers buffered in its queue. Thus, if the server at v currently containing c
moves, then the distance between c and its destination D(c) might change.

In such networks with moving servers, new effects take place, which are not encountered in the
usual situation with stationary servers. For example, it can happen that “very nice” networks—i.e.,
networks with fast servers and low load—become unstable. Here instability means that, in a large
network, queue sizes becomes bigger and bigger with time. In contrast, for the same parameters,
the queues remain finite in the network with stationary servers.

This instability, which appears as a result of the movement of servers, will be a subject of our
forthcoming paper [1]. In the present paper we focus on a mean-field approach to such networks
with moving servers. The mean-field version of the network consists of N copies of the latter,
interconnected in a mean-field manner. We show that in the limit N → ∞ the network state process
converges to a nonlinear Markov process (NLMP). The present paper is focused on the existence of
the NLMP and on this convergence theorem. We also have results showing that ergodic properties
of this NLMP are related to stability/instability properties of our prelimit networks. This relation
between the ergodicity and stability will not be discussed here and will be the object of the future
paper [1].

The mean-field idea. Here we remind the reader about the mean-field approach, which orig-
inates in statistical mechanics. Let us explain the main ideas on the simplest example, namely the
Ising model. The Ising model features a collection of spin variables σi = ±1, which are assigned
to sites i of the integer lattice Z

d of dimension d ≥ 1, or to sites of a finite set V ⊂ Z
d. The joint

distribution of the spins σV = {σi, i ∈ V } is governed by the Hamiltonian HV , which for the Ising
model is given by

HV (σV ) = −
∑

i∼j

σiσj, (1)

where the summation is over the pairs i, j ∈ V of nearest neighbor lattice sites. The stochastic
weight w(σV ) of a configuration σV is taken to be

w(σV ) = exp{−βHV (σV )},

where the parameter β > 0 is called the inverse temperature. The corresponding probability
distribution Pr(σV ) is obtained via normalization, Pr(σV ) = w(σV )/Z(V, β), where the partition
function Z(V, β) is just the sum: Z(V, β) =

∑
σV

w(σV ). With some care this definition can be

extended to the case of infinite V , including V = Z
d. The extension V → Z

d is called the
thermodynamic limit.

In spite of its simplicity, the Ising model turns to be quite interesting and nontrivial. It still
provides hard problems, and there are still long-standing open questions about it, particularly
so for the infinite model. To cope with these difficulties, physicists came up with the mean-field
approximation for the model. Instead of the d-dimensional graph V ⊂ Z

d, one considers the model
on the complete graph KN with N + 1 vertices, and replaces the Hamiltonian (1) by

HN (σKN
) = − 1

N

∑

i,j

σiσj, (2)

where the summation is now taken over all pairs i �= j. The extra factor
1

N
in (2) is needed in

order to make the “interaction” between the single spin σi and the rest of the world stay finite in
the thermodynamic limit N → ∞. The other definitions remain the same.

The mean-field Ising model is much easier to study than its lattice version. The reason is,
of course, the larger symmetry of the graph KN . One can also say that the mean-field model
corresponds to dimension d = ∞. What is surprising is that the mean-field models do capture
some relevant properties of the lattice models when the dimension d is not too low. For example,
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model (2) undergoes phase transition if the temperature β−1 is low enough. The same is true for
model (1) provided that d ≥ 2, while for d = 1 there is no transition. The literature on the Ising
model and the mean-field models is huge. A general result stating that the mean-field models do
capture the key features of the lattice models starting from “reasonable” dimensions is proved in [2].

Mean-field limits play a key role in the study of queueing systems in a variety of contexts.
A typical example is that of systems with selection of the shortest queue [3]. The approach was
later generalized in [4]. See also the papers [5, 6], where some general facts (like the Poisson
hypothesis) about the behavior of these mean-field limiting processes are proved.

Nonlinear Markov processes. Nonlinear Markov processes are central in the theory of mean-
field limit approximations. They were introduced in [7]. Here we recall what is meant by nonlinear
Markov processes. We do this for the simplest case of discrete time Markov chains taking values
in a finite set S, |S| = k. For the general case, see [5, Sections 2 and 3]. In the discrete case, the
set of states of a Markov chain is the simplex Δk of all probability measures on S, Δk = {μ =
(p1, . . . , pk) : pi ≥ 0, p1 + . . . + pk = 1}. The matrix P (i, j) of transition probabilities defines the
Markov evolution, which is the linear map P lin : Δk → Δk, given by μ � μP .

By definition, a nonlinear Markov chain is a family of transition probability matrices Pμ, μ ∈ Δk,
such that the matrix entry Pμ(i, j) is the probability of going from i to j in one step, starting in
the state μ. The (nonlinear) evolution P n-lin : Δk → Δk is then defined by μ � μPμ. Both P lin

and P n-lin are deterministic dynamical systems on Δk.

Ergodic properties of linear Markov chains are settled by the Perron–Frobenius theorem. In par-
ticular, if the linear map P lin is such that the image P lin(Δk) belongs to the interior Int(Δk) of Δk,
then there is precisely one point μ ∈ Int(Δk) such that P lin(μ) = μ, and for every ν ∈ Δk we have
the convergence Pn(ν) → μ as n → ∞. In the nonlinear case of P n-lin we are dealing with a more
or less arbitrary dynamical system on Δk, and the question about the stationary states of the chain
or about measures on Δk which are invariant under P n-lin cannot be settled in general.

In what follows we will alternatively use the following two equivalent points of view: either
one can talk about the deterministic dynamical system P n-lin on the space of probability measures
(given by nonlinear differential equations in the continuous case), or else one can consider the
stochastic evolution, given by the family {Pμ, μ ∈ Δk} of transition probability matrices. The finite-
dimensional probability distribution of a trajectory ω = {i0, i1, . . . , ik} of the nonlinear Markov
chain with initial state ν and the family {Pμ} of transition probability matrices is given by

Pr(ω = {i0, i1, i2, . . .}) = ν(i0)Pν(i0, i1)P(νPν)(i1, i2) . . . .

2. MAIN RESULT AND LAYOUT OF THE PAPER

2.1. Description of the Network and Main Result

We consider a queueing network, denoted by K1, with servers jumping on a connected graph

G = [V (G), E(G)].

We assume that at every node v ∈ V , at any time, there is one server with a queue qv of customers
in the (infinite capacity) buffer of that server, waiting there for service. Every customer c at v
has some destination, D(c) ∈ V (G), and the goal of the customer is to reach this destination.
In order to get there, a customer completing its service at v jumps along the edges of G to one of
the nodes v′ of G which is closest (in the graph distance) to D(c). There it joins the queue of the
server currently harbored by node v′. Once the destination of a customer is reached, it leaves the
network.

In the meantime, the servers of our network may jump. More precisely, two servers at v and v′,
which are neighbors in G, can exchange their positions with rate βvv′ = βv′v. The queues qv and qv′
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then exchange their positions as well. Of course, such an exchange may bring some customers
of qv and qv′ closer to their destinations, and some others further away from their destinations.
We assume that the rates βv′v of these jumps are uniformly bounded by a constant:

|βv′v| < β. (3)

The graphs G that we are interested in can be finite or infinite. The case of finite graphs is
easier, while the infinite case requires certain extra technical points. In particular, when we talk
about functions of the states of our network in the infinite graph case, we will assume that they
are either local or quasi-local. We recall that a function f is called local if there exists a finite
subset Λ ⊂ V such that f depends only on the states of the servers at the nodes v ∈ Λ. Similarly,
a function f is called quasi-local if for some finite subset Λ ⊂ V the dependence of f on the states
of the servers at nodes v /∈ Λ decays exponentially fast in the dist(v,Λ), in some appropriate norm.
This exponential decay property will be conserved by our dynamics.

We will assume that the degrees of the vertices of G are finite and uniformly bounded by some
constant D(G). Of course, this automatically holds in the finite graph case.

The network KN . In order to make our network tractable, we will study its symmetrized, or
mean-field, modification, KN . This means that we pass from the graph G to its mean-field version,
the graph GN = G×{1, . . . , N}, and eventually take the limit N → ∞. By definition, the graph GN

has the set of vertices V (GN ) = V (G) × {1, . . . , N}; two vertices (v, k), (v′ , k′) ∈ V (GN ) define an
edge in E(GN ) if and only if (v, v′) ∈ E(G). As we shall see, the restriction of our state process
from G×{1, . . . , N} to the subgraph G ≡ G×{1} goes, as N → ∞, to a nonlinear Markov process
on G, which is a central object of our study. We denote by KN the network on the graph GN .
The limiting network K (which can be analyzed by the NLMP mentioned above) is the limit of
the networks KN on G × {1, . . . , N}. For the limit to exist, the rate of exchange βvv′ should be
renormalized as we pass from G to GN . For a server located at (v, k) ∈ V (G × {1, . . . , N}), the
swap with the server (v′, k′), where node v′ is a neighbor of node v, should have the rate

βvv′

N
.

This implies that the server at (v, k) will exchange its position with one of the servers positioned
at the nodes v′ × {1, . . . , N} with the rate βvv′ , independent of N .

Each customer has a class, κ ∈ K, where K is some finite alphabet of classes. If a customer
of class κ completes its service at the server at v and goes to the server at v′, it then gets a new
(deterministic) class κ′ = T (κ; v, v′). Once a server finishes serving a customer, it chooses another
one from its queue, according to the class of the customers present in the queue and the service
discipline. It can happen that the service of a customer is preempted if a customer with higher
priority comes, and then the interrupted service is resumed after an appropriate time.

The random service time η of a client c, which starts its service at the node v, depends on the
client class κ and on the node v; i.e., η = η(κ, v). If the servers at v and v′ swap, which can
happen if βvv′ �= 0, while the client c was served for time τ , then the distribution of its remaining
service time at v′ is just the conditional distribution of the random variable η(κ, v′)− τ under the
condition that η(κ, v′) > τ . We do not assume that η is exponential.

Every customer c in KN has its destination node, D(c) = v ∈ V (G) (or, equivalently, a destina-
tion set v × {1, . . . , N} ⊂ V (GN )). In spite of the fact that our servers do change their positions,
this location D(c) does not does not change with time. Customer c tries to get to its destination
node; in order to do so, if it is located at (v, k) and finishes its service there, then it goes to the
server at (v′, n), where v′ ∈ G is the neighbor of v which is closest to D(c). If there are several
such v′, one is chosen uniformly at random. The coordinate n ∈ {1, . . . , N} is chosen uniformly
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at random as well. If at the end of the service it happens that v is at distance 1 from D(c) or
that v coincides with D(c), then the customer leaves the network. However, while the customer
c is waiting for service completion at the server at (v, k), then nothing special happens with it,
even if v = D(c); this server might drift away from node D(c), and the distance between c and its
destination D(c) might then increase during its waiting time.

A more formal definition of the Markov process describing the evolution of the network KN will
be given in Section 5.1.

Our main result is the proof of the convergence of the network KN to some nonlinear Markov
process, which is the limiting mean-field system (see Section 2.5). The proof is based on the char-
acterization of the infinitesimal operator ΩN of the continuous time Markov process describing KN .
We want to pass to the limit N → ∞, since in this limit the nature of the process becomes simpler.
The key observation is that if this limit exists, then the arrivals to each server at every time is
a Poisson point process (with time-dependent rate function). Indeed, the flow to every server is

the sum of N flows of rates ∼ 1

N
. Since the probability that a customer served at a given node

revisits this node goes to zero as N → ∞, the arrivals to a given server in disjoint intervals are
asymptotically independent in this limit.

In order to check that the limit N → ∞ exists, we will formally write down the limiting
infinitesimal generator Ω. We will then show that it defines a (nonlinear) Markov process. Finally,
we will check that the convergence ΩN → Ω is such that the Trotter–Kurtz theorem applies.

The rest of the paper is organized as follows. We start with the limiting process, namely
the NLMP. We describe its state space in Section 2.2 and its possible jumps, together with its
evolution equation, in Section 2.5. Section 2.5 formulates our main results (in Theorem 1): the
first one concerns the existence of the NLM process and the second is about the convergence of the
networks KN to it as N → ∞. The existence result is proved in Section 3. Section 4 is devoted
to various compactification arguments. We leverage these arguments in Section 5 to check the
applicability of the Trotter–Kurtz theorem, which is used to prove the convergence result.

2.2. State Space of the Mean-Field Limit

We describe below the configuration space of the mean-field limit, which will be referred to as the
Comb. The state of the mean-field limit process will then be a probability distribution on the Comb.

At any given time, at each node v ∈ G, we have a server with a finite ordered queue qv of
customers, qv = {ci} ≡ {cvi } ≡ {cv1, . . . , cvl(qv)}, where l(qv) is the length of the queue qv. The

customers are ordered according to their arrival times to this server. We will denote by C(qv)
the customer of queue qv which is being served, and we denote by τ(C(qv)) the amount of service
that this customer has already received. (We need to keep track of this, since service times are not
exponential in general.) It can happen that the queue qv has customers of lower priority than C(qv),
which have already received some service but whose service was postponed due to the arrival of
higher priority customers.

Let i∗(qv) be the location of the customer C(qv) in the queue qv, i.e., C(qv) ≡ cvi∗(qv). The

service discipline is some rule Rv to choose the location i∗(qv) of the customer which has to be
served. In what follows we assume that the rule Rv is some function of the sequence κ1, . . . ,κl(qv)

of customer classes and of the sequence D(cv1), . . . ,D(cvl(qv)) of their destinations, so that

i∗(qv) = Rv

[
{κ1, . . . ,κl(qv)}, {D(cv1), . . . ,D(cvl(qv))}

]
.

We assume for simplicity that the function Rv depends on {D(cv1), . . . ,D(cvl(qv))} only through the

relative distances dist(D(cvi ), v). In what follows we consider only conservative disciplines. This
means that the server cannot be idle if the queue is not empty.
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QUEUEING NETWORKS WITH MOBILE SERVERS 183

The state of a server consists of

1. The classes κi ≡ κi(ci) ∈ K, |K| < ∞, of its customers. We will denote by κ̄(c) the class of
the customer c once its service at the current server is over. It is defined by the class function
T (κ; · , ·) mentioned above;

2. The destination nodes vi = D(ci) ∈ V (G) which the customers want to reach;
3. The amount of service already acquired by the customers cv1, . . . , c

v
l(qv)

. This will be denoted by
τ1, . . . , τl(qv). This vector will be called for brevity the vector of τ -times. At any given time,
the only τ variable which is growing is τi∗(qv) ≡ τ [C(qv)] ≡ τ [cvi∗(qv)]. Sometimes we will write

cv ≡ cv(κ, τ, v′) for a customer located at v, of class κ, which has already received the amount τ
of service, and whose destination is v′ ∈ V .

The space of possible queue states at v is denoted by Mv. The “coordinates” in Mv are those listed
in the three items above. Thus, Mv is a countable union of finite-dimensional positive orthants.
The orthants are indexed by finite strings of pairs w = {(κi,Di), i = 0, 1, . . . , l}, where κi ∈ K and
Di ∈ V . Such a string corresponds to a queue with l customers with types κi and destinations Di.
A point in the orthants represents a vector of received service times τ1, . . . , τl for the l customers.
Each Mv will also be called a Comb.

In the following, in order to ease the notation, we will not always list all the indices that our
variables depend on. For example, for certain questions, the destinations of the customers present
at a server are not important and will be omitted.

Let M =
∏
v∈V

Mv. The state of the NLMP is a probability measure μ on the product space M .

We denote by P the space of all probability measures on M . It turns out that we will encounter
only product measures on M . We will discuss this point below; see also [8], where we prove a
simple extension of de Finetti’s theorem.

2.3. Possible Jumps of the Mean-Field Limit Process

We list here all possible jumps of the NLM process and their rates.

2.3.1. Arrival of external customers. An external customer cv(v′) of class κ ∈ K arrives
to the server at node v, with destination D(c) = v′, with rate λ = λ(κ, v, v′). We assume that

∑

κ,v′
λ(κ, v, v′) < C, (4)

uniformly in v. We will write that the queue state q = {qu, u ∈ V } changes to q′ = {qu, u ∈ V } ⊕
cv(v′). The τ -times of the customers present before the arrival stay the same, and the newly arrived
has its τ -time equal to 0. The associated jump rate σe(q, q

′) is

σe(q, q
′) = λ(κ, v, v′). (5)

2.3.2. Service completion. It is easy to see that the customer in service at node v, which

received the amount τ of service, finishes its service at v with the rate
F ′

κ(C(qv)),v
(τ)

1−F
κ(C(qv)),v(τ)

, where Fκ,v

denotes the distribution function of the service time. For future use we assume that this rate has
a limit as τ → ∞. We also assume that it is uniformly bounded by a constant F < ∞. The queue
state q = {qu, u ∈ V } changes to q′ = {qu, u ∈ V } � C(qv), so we denote this rate by

σf(q, q
′) =

F ′
κ(C(qv)),v

(τ)

1−Fκ(C(qv)),v(τ)
≤ F . (6)

The τ -times of the other customers stay the same. (Queuing theorists might be surprised by these
“departures without arrivals,” whereas customers do not necessarily leave the network. As we shall
see, in the mean-field limit, any single departure from v to v′ has no effect on the state of the

PROBLEMS OF INFORMATION TRANSMISSION Vol. 52 No. 2 2016



184 BACCELLI et al.

queues of v′. This can be explained by the uniform routing to the N mean-field copies in the pre-
limit and by letting N tend to infinity. However, the sum of the departure processes from all copies
of the servers at v leads to a positive arrival rate from v to v′, which is evaluated in Section 2.3.4
below.)

2.3.3. Servers jumping. Assume that the server at v jumps and exchanges its position with
the one at v′. As a result, the queue qv is replaced by a (random) queue Q distributed according to
the distribution law μv′(dQ), where μv′ is the marginal of μ on Mv′ . Thus, the state of the server
at v changes from qv to q′v, which is drawn from the distribution μv′ on Mv′ . The rate is

σex(qv, Q) dQ = βvv′ μv′(dQ). (7)

Of course, the new queue Q at v comes equipped with its own τ -times. Note that the server at v′

does not change its state after the swap. That is again the manifestation of the mean-field structure
of our model. In the pre-limit (namely for N < ∞), the jump event that we discuss corresponds to
the swap between the servers at (v, 1) and at (v′, k), for some k = 1, 2, . . . , N . But the probability
that k = 1 goes to zero as N → ∞.

2.3.4. Arrival of transit customers. For each v ∈ G we introduce the set N (v) of all vertices
of G which are neighbors of v. Let the node v′ ∈ N (v). Assume that a customer cv of class κ

located in the server at node v completes its service there. What are the chances that this customer
goes to node v′? For this to happen it is necessary that

dist(v,D(cv)) = dist(v′,D(cv)) + 1 and dist(v′,D(cv)) > 0.

If there are several such nodes in N (v), then all of them have the same chance. If dist(v,D(cv)) ≤ 1,
then customer cv leaves the network immediately. Let E(v,D(cv)) be the number of such nodes:

E(v,D(cv)) = #{w ∈ N (v) : dist(v,D(cv)) = dist(w,D(cv)) + 1}.

Thus, for every pair v,D ∈ V of sites with dist(v,D) ≥ 2, we define the function ev,D on the sites
w ∈ V :

ev,D(w) =

⎧
⎨

⎩

1

E(v,D)
if w ∈ N (v) and dist(v,D) = dist(w,D) + 1,

0 otherwise.
(8)

Then, in state μ, the rate of transits of customers arriving to node v′ with class κ and destination
w �= v′ is given by

σtr(q, q ⊕ cv
′
(κ, w)) ≡ σμ

tr(q, q ⊕ cv
′
(κ, w))

=
∑

v∈N (v′)

∫
dμ(qv) ev,D(C(qv))(v

′)
F ′
κ,v(τ(C(qv)))

1−Fκ,v(τ(C(qv)))
δ(κ̄(C(qv)),κ)δ(D(C(qv)), w), (9)

with δ being the Kronecker delta function. Here κ̄ is the class that the customer C(qv) gets after
its service is completed at v. Again, the τ -times of customers already present stay the same, and
the newly arrived has its τ -time set to 0.

Note that the two rates (7) and (9) do depend on the measure μ, which is the source of the
nonlinearity of our process.

2.4. Evolution Equations

For a warm-up we begin with the case where the measure μ =
∏

μv on M =
∏
v
Mv has a nice

density. The general situation will be treated below; see Proposition 2.
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For q ∈ Mv denote by e(q) the last customer in queue q and by l(q) the length of the queue.
Note that e(q) can also be denoted by cl(q) and that the quantity τ(e(q)) denotes the amount of
service that this customer has already received.

We then have
d

dt
μv(qv, t) = A+ B + C +D + E , (10)

where A, B, C, D, and E are operators acting on μ, described below.

The operator A corresponds to service progress:

A = − d

dτi∗(qv)(qv)
μv(qv, t). (11)

The operators B and C correspond to changes in queue qv due to customers arriving from the
outside and from other servers. For B, we have

B = δ(0, τ(e(qv)))μv(qv � e(qv), t)[σtr(qv � e(qv), qv) + σe(qv � e(qv), qv)], (12)

where qv is obtained from qv � e(qv) by the arrival of e(qv) from v′, and δ(0, τ(e(qv))) takes into
account the fact that if the last customer e(qv) has already received some amount of service, then
it cannot have just arrived from the outside or from another server (see (9) and (5)). For C, we
have

C = −μv(qv, t)
∑

q′v

[σtr(qv, q
′
v) + σe(qv, q

′
v)]. (13)

The operator D corresponds to service completions:

D =

∫

q′v: q′v�C(q′v)=qv

dμv(q
′
v, t)σf(q

′
v, q

′
v �C(q′v))− μv(qv, t)σf(qv, qv �C(qv)), (14)

where the first term describes the situation where the queue state qv arises after a customer was
served in the queue q′v (longer by one unit) such that q′v � C(q′v) = qv, while the second term
describes the completion of service of a customer in qv.

Finally, the operator E corresponds to the exchange of the servers:

E =
∑

v′∈N (v)

βvv′ [μv′(qv, t)− μv(qv, t)]. (15)

Remark 1. Equation (10)–(15) has to be understood as follows: instead of talking about the
evolution of measure μ(t), one has to consider the evolution of functionals of the measures. Thus,
let b be a bounded function on M with bounded derivatives. Consider the functional B(μ) =

∫

M
b dμ

on the state space. The equation should be understood as an equation on B(μ(t)) of the form

d

dt
B(μ(t)) = (Ω(B))(μ(t)),

for a certain operator Ω. This operator is written explicitly below, in equations (30)–(34). Since
its exact expression is not important now, we postpone its presentation.

2.5. Main Theorem

Before stating the main result, we have to make some important assumptions and observations on
the states of the network. Since we have to compare the networks KN and the limiting network K,
we need to describe their states by probability distributions on the same space. This can be
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achieved thanks to the permutation symmetry of the networks KN . For this to hold, we assume
that the initial state of KN is

∏
v∈V

Sv,N -invariant, where each permutation group Sv,N permutes

the N servers at the node v. Then the state has the same symmetry property at all later times.
After taking the quotient by the action of the permutation group (SN ), the configuration at any
vertex v ∈ V can be described by the atomic probability measure

Δv
N =

N∑

k=1

1

N
δ(qv,k,τ)

on Mv, where τ is the received service vector of customers in queue qv,k. We define ΔN = {Δv
N}.

We study the limit of KN as N → ∞. For this limit to exist, we need to choose initial states
of the networks KN appropriately. More precisely, we assume that the initial states νN of the
networks KN , which are atomic measures on M with atom weights 1/N , converge weakly to the
state ν of the limiting network K.

Below, a function G on the space of probability measures P will be said to be nice at infinity if G
can be extended to a continuous function on the compactification P̄ of P; see Section 5. We are
now in a position to state the main result.

Theorem 1. Let SN,t be the semigroup exp{tΩN} associated with the infinitesimal genera-
tor ΩN of network KN described in Section 2.1 and formally defined in (22)–(26). Let St be the
semigroup exp{tΩ} associated with the infinitesimal generator Ω of network K defined in (10)–(15)
for “nice” states and in (30)–(34) for the general case.

1. The semigroup St is well defined ; i.e., for every measure ν on M , the trajectory St(ν) exists and
is unique. In addition, this semigroup is Feller.

2. Let νN be the initial states of the networks KN . Then the measures SN,t(νN ) and St(νN ) are
close to each other in the following sense. For every function G on the space of the probability
measures P which is continuous in the weak topology and is nice at infinity, we have

lim
N→∞

sup
νN

|G(SN,t(νN ))− G(St(νN ))| = 0.

Remark 2. The initial state νN is a measure on M (an atomic one). It is a usual initial con-
figuration of a usual Markov process. The measure SN,t(νN ), t > 0, is a random measure on M .
However, the measure St(νN ) is a nonrandom measure on M . Our theorem is a statement of
the same type as the law of large numbers for the random measure SN,t(νN ). One can also say
that if the measures νN → ν weakly, then for each t > 0 we also have SN,t(νN ) → St(ν) weakly.

3. THE NONLINEAR MARKOV PROCESS: EXISTENCE

In this section we prove Statement 1 of Theorem 1.

Our nonlinear Markovian evolution is a jump process on M =
∏
v
Mv with piecewise continuous

trajectories {qv : v ∈ V }. Between jumps, the states qv ∈ Mv only change in that the i∗(qv) co-
ordinate of the τ vector of qv increases at unit speed, in a deterministic way. The queue states
qv ∈ Mv can also perform various jumps, as is described in Section 2.4. (For the reader concerned
with the treatment of the case of V finite, we refer to the standard technique of the interacting
particle systems theory; see, e.g., [9].)

Theorem 2. Under the above symmetry assumptions, for every initial states μ(0) =
∏

μv(0),
equation (10)–(15) has a solution, which is unique. (The equations are understood in the sense of
Remark 1.)
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Proof. Assume that the theorem holds true. Then we deduce from the form of the generator
that, for all v′ and v, the rates λ̄v′v(t) of the Poisson point processes of arrivals of customer transiting
from the servers at v′ to a server at v coincide with the rates b̄v′v(t) of the departure point processes,
from tagged servers at nodes v′, of customers sent to v (note that these departure processes are
not Poisson in general).

Thus, let us look for an operator transforming the input point processes to exit point processes,
for which the rates λ̄v′v(t) are a fixed point. With that idea in mind, consider an auxiliary system
on the same set of servers with the same initial condition μ(0). Instead of internal Poisson flows of
the initial system with rates λ̄v′v(t) (which are (hypothetically) determined uniquely by μ(0)), we
consider, for each node v and each of its nearest neighbor v′, an arrival Poisson flow of customers
with an arbitrary rate function λv′v(t). The result of the service at v will then be a collection of
(individually non-Poisson) departure flows to certain nodes v′′. Since the service time distributions
have bounded densities (see Section 2.3.2), the following limit exists:

bvv′′(t) = lim
Δt→0

E(number of customers arrived from v to v′′ in [t, t+Δt])

Δt
.

These functions bvv′′(t) are rate functions of non-Poisson departure flows. Thus, we have an opera-
tor Ψμ(0), which transforms the collection λ = {λv′v(t)} to b = {bv′v(t)}. Our theorem about the ex-
istence and uniqueness will follow from the fact that the map Ψμ(0) has a unique fixed point, λ̄. Note
that the rate functions λ and b depend not only on the nodes v and v′ but also on the class of cus-
tomers. Below we often omit some coordinates of these vectors, but we always keep them in mind.

By the same properties of the service times distributions, the functions b are continuous and
uniformly bounded. Moreover, without loss of generality we may assume that they are Lipschitz,
with a Lipschitz constant 
 which depends only on F , the supremum of the service rates. Since we
look for fixed points, we may assume that the functions λ are bounded as well, and also that they
are integrable and Lipschitz, with the same Lipschitz constant. Thus, we restrict the functions λ
to be in the class of functions denoted by L�[0, T ]. In the case of G finite, we put the L1 metric on
our functions, i.e.,

T∫

0

|λ1(τ)− λ2(τ)| dτ ≡
∑

v′v

T∫

0

|λ1
v′v(τ)− λ2

v′v(τ)| dτ.

Note that this metric turns L�[0, T ] into a complete compact metric space, by the Arzelà–Ascoli
theorem. For countably infinite G, we choose an arbitrary vertex v0 ∈ V as a “root” and define
likewise

T∫

0

|λ1(τ)− λ2(τ)| dτ ≡
∑

v′v

exp
{
−2D(G)[dist(v0, v

′) + dist(v0, v)]
}

T∫

0

|λ1
v′v(τ)− λ2

v′v(τ)| dτ,

where the finiteness of the sum follows from a simple counting argument. We recall that D(G)
is the maximal degree in G. The topology on L�[0, T ] thus defined is equivalent to the Tikhonov
topology; in particular, L�[0, T ] is again a complete compact metric space.

The contraction arguments below cover only the case of finite G; the generalization to infinite G
is discussed at the end of the proof.

We now show that for every μ(0), the map Ψμ(0) is a contraction on L�[0, T ]; by the Banach
theorem, this will imply the existence and uniqueness of the fixed points for Ψμ(0). Without loss
of generality we may assume that T is small (since we can iterate our argument).
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Let {λ1
v(t), λ

2
v(t) : t ∈ [0, T ], v ∈ V } be two versions of the collection λ of Poisson inflows to our

servers; assume that for all v
T∫

0

|λ1
v(τ)− λ2

v(τ)| dτ < Λ.

We want to estimate the difference b10(t)− b20(t) of the rates of the departure flows at some tagged
node 0 ∈ V ; we show that the difference will be much smaller. Clearly, this will be sufficient.
The delicate point here is that the rates bi0(·) depend also on the rates λi

v(·) at v �= 0, due to
the possibility of servers jumps; after such jumps, the state at node 0 is replaced by that at the
neighboring node.

Let τ1 < τ2 < . . . < τk ∈ [0, T ], k = 0, 1, 2, . . . , be the (random) epochs when the state at 0 is
replaced by the state at a neighboring node, due to server jumps. We now derive an estimate on
T∫

0
|b10(t) − b20(t)| dt under the condition that the number k and the epochs τ1 < τ2 < . . . < τk are

fixed; since our estimate will be uniform in the conditioning, this will be sufficient. Note that the
probability to have k swaps during the time T is bounded from above by (Tβ)k (see (3)).

Informally, the contraction takes place because the departure rates b(t) for t ∈ [0, T ] with T
small depend mainly on the initial state μ(0): the new customers arriving during time [0, T ] have
little chance to be served before T if there are customers already waiting. Therefore the “worst”
case for us is where in the initial state the server at node 0 is empty, i.e., the measure μ0(0) is equal
to the measure δ0, with a unit atom at the empty queue ∅.

A. Let us start the proof by considering the case where no swaps of the server at v = 0 happen,
i.e., k = 0. Let λ1(t), λ2(t), t ∈ [0, T ], be the rates of two collections of Poisson inflows to the empty

server. We want to estimate the distance
T∫

0
|b1(t)−b2(t)| dt between the rates of the departure flows

from this server. For this we use a classical coupling between two Poisson inflows.

Consider the integral

IλT ≡ I
{λv′0}
T =

∑

v′∼0

T∫

0

|λ1
v′0(t)− λ2

v′0(t)| dt. (16)

For every value of the index v′, let us consider the region between the graphs of the functions

Hv′(t) = max{λ1
v′0(t), λ

2
v′0(t)} and hv′(t) = min{λ1

v′0(t), λ
2
v′0(t)}.

Let us introduce the auxiliary family of independent rate-one Poisson point processes ωv, v ∈ V ,
taking values in R

2
+. Then the integral

T∫

0

|λ1
v′0(t)− λ2

v′0(t)| dt

is just the expectation of the number of Poisson points ωv′ ∈ R
2
+ falling between the graphs of Hv′

and hv′ up to time T . Let us introduce the corresponding counting random variable:

αv′ = card
{
ωv′ ∩ {(s, t) : t ∈ [0, T ], hv′(t) ≤ s ≤ Hv′(t)}

}
.

Using the process ωv′ , we now define a coupling between the two Poisson inflows. Let us declare the
points of ωv′ falling below hv′ = min{λ1

v′0(t), λ
2
v′0(t)} as colorless; the points of ωv′ falling between

λ1
v′0(t) and h0′(t) are declared red, while the points of ωv′ falling between λ2

0′v(t) and h0′(t) get the
blue color. To every point of ωv′ falling below Hv′ and having abscissa t, we associate a customer
arriving to 0 at time t. Then the colorless plus red customers represent the first Poisson inflow,
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while the colorless plus blue customers represent the second. This defines defines the coupling
between the two input flows. The variable α0′ is thus the number of colored customers.

On the event that none of the arrival flows have colored customers, the two departure flows are

identical. Therefore, for all v′′, the contribution of this event to the integral
T∫

0
|b10v′′(t)− b20v′′(t)| dt

is zero. Let C be the complement of this event; its probability is of order IλT when T is small.
Under the condition of the arrival of the colored customer c̄, the conditional probability that this
customer will affect the departure flow is of the order of FT (see (6)). Indeed, under this condition,
the departure process is affected if either customer c̄ is served and departs from the server at 0
in [0, T ], or the arrival of c̄ prevents the departure of some customer with lower priority whose
service was going to be completed in [0, T ]. Hence, for T small, the (unconditional) probability

of C is TFIλT , and therefore its contribution to the integral
T∫

0
|b10v′′(t)− b20v′′(t)| dt is bounded from

above by const · TFIλT , which is � Λ.

In the case of a nonempty initial queue the situation is even simpler, since we have more uncolored
customers.

B. Consider now the case where the server swaps, i.e., k > 0. We argue that the contribution

to
T∫

0
|b10v′′(t) − b20v′′(t)| dt of the event that k server swaps happen at node v = 0 is of order T k+1.

First consider the case k = 1, and let us condition on the event that τ1 = τ < T and the swap of
v = 0 is with the nearest neighbor node w. Thus, we need to compare the evolution at v = 0 defined
by the Poisson inputs with rates {λ1

v′0(t)} and {λ1
w′w(t)} with that defined by the rates {λ2

v′0(t)} and
{λ2

w′w(t)}. We use the same coupling between pairs of flows as that defined above. Before time τ , the
server at v = 0 behaves as is described inA. At time τ the pair of states μi

0(τ), i = 1, 2, that we com-
pare is replaced by that sampled independently from μi

w(τ), which then evolve according to the in-
flows {λi

v′0(t)}, i = 1, 2. All the arguments inA apply to the node w as well. Thus, under the forego-

ing conditions,
T∫

0
|b10v′′(t)−b20v′′(t)| dt is again bounded from above by const·TF max

(
I
{λv′0}
T , I

{λw′w}
T

)
,

which is � Λ. Here I
{λw′w}
T is defined as in (16), with 0 replaced by w.

The unconditioning over τ brings an extra factor Tβ, so the corresponding contribution to
T∫

0
|b10v′′(t)− b20v′′(t)| dt is const · T 2βF max

(
Iλ∗0
T , Iλ∗w

T

)
� TΛ.

The case of general values of k follows the same lines.

C. The contraction property established above shows that the initial condition μ(0) = {μv(0)}
uniquely defines all the inflow rates λv′v(t), for all t ∈ [0, T ]. If the graph G is finite, this implies
the uniqueness of the measures μ(t). For infinite graphs, it can in principle happen that different
“boundary conditions”—i.e., different evolutions of μ “at infinity”—are a source of nonuniqueness.
However, the argument of Part B shows that the influence on the origin 0 ∈ V from the nodes
at distance R during time T is of the order of TR, provided that the degree of G is bounded.
Therefore, the uniqueness holds for infinite graphs as well. �

Proposition 1. The semigroup defined by equations (10)–(15) is Feller.

Proof. Consider the inflow rates {λ̄v′v(t)} built above from the initial state μ0. Thanks to the
properties of service times (see Section 2.3.2), the associated departure flow rates, {b̄v′v(t)}, are
continuous functions of time t. As was already mentioned, the departure flow rates coincide with
the inflow rates: λ̄v′v(t) = b̄v′v(t) for all v, v

′, and t. Hence, the functions {λ̄v′v(t)} are continuous.
This in turn implies that the trajectories μt are continuous as well, in the weak topology. Obviously,
the departure rates {b̄v′v(t)} are continuous in the initial state μ0. Therefore, the dependence of
the rates λ̄v′v(t) on μ0 is continuous. Thus, the map μ0 � μt is continuous. �
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4. COMPACTIFICATIONS

In order to study the convergence of our mean-field type networks KN to the limiting nonlinear
Markov process network K, we want the latter to be defined on a compact state space. This means
that we have to add to the graph G the sites G∞ lying at infinity, obtaining some extended graph
Ḡ = G∪G∞, and to allow infinite queues at each node v ∈ Ḡ. We then have to extend our dynamics
to this bigger state space system. The way it is chosen among several natural options is of small
importance, since, as we will show, if the initial state of our network assigns zero probability to
various infinities, then the same holds for all finite times.

The compactification only plays a technical role here. It allows us to use some standard theorems
of convergence of Markov processes. The benefits it brings is that certain observables can be
continuously extended to a larger space, see Section 5.

4.1. Compactification Ḡ of the Graph G

The compactification that we define here is adapted to the network type considered. It uses the
fact that if a customer c is located at v and its destination D(c) is w, then the path c taken in order
to get from v to w is obtained using the greedy algorithm described above: c chooses, uniformly
among all the nearest neighbor (n.n.) sites, the site which brings it one unit closer to its destination.

To define the compactification, we proceed as follows. Let γ = {γn ∈ V } be an n.n. path on G.
We want to define a notion of existence of the limit L(γ) = lim

n→∞
γn. If the sequence γn stabilizes,

i.e., if γn ≡ g ∈ V for all n large enough, we define L(γ) = g. To proceed, for any v ∈ V we define
the Markov chain P v on G. It is an n.n. random walk such that at each step the walk makes its
distance to v to decrease by 1. If there are several such choices, one is chooses uniformly at random.
Therefore, the transition probabilities P v(u,w) are given by the function eu,v(w) defined in (8).
If T is some positive integer and u is at distance more than T from v, then we denote by P v,T

u the
T -step probability distribution on the trajectory of length T starting at u and heading towards v.

Consider now an infinite n.n. path γ. We say that the limit L(γ) = lim
n→∞

γn exists if for all u ∈ V

and all T , the limit lim
n→∞

P γn,T
u exists. In words, this means that, seen from u, the points γn and γm

are “in the same direction,” for n,m large enough. For two paths γ′, γ′′, we say that L(γ′) = L(γ′′)

if and only if both limits exist and moreover, for all u ∈ V and all T , the measures P
γ′
n,T

u and P
γ′′
n,T

u

coincide for all n ≥ n(u, T, γ′, γ′′) large enough.

Consider the union V̄ = V ∪ V ∞ ≡ V ∪ {L(γ) : γ is an n.n. path on G}. It is easy to see that
the natural topology on V̄ makes it into a compact. To give an example, consider the case G = Z

2.

Let f : Z2 → R
2 be the following embedding: f(n,m) =

(
sgn(n)

(
1− 1

|n|

)
, sgn(m)

(
1− 1

|m|

))
. Then

the closure V̄ will be the closure of the image of f in R
2.

We want to build a graph Ḡ with the set V̄ as a vertex set. To do this, we need to specify pairs
of vertices which are connected by an edge. If v′, v′′ both belong to V , then they are connected
in Ḡ if and only if they are connected in G. If v′ is in V while v′′ ∈ V ∞, then they are never
connected. Finally, if v′, v′′ ∈ V ∞, then they are connected if and only if one can find a pair of
paths γ′, γ′′ → ∞ such that L(γ′) = v′, L(γ′′) = v′′, and the sites γ′n, γ

′′
n ∈ V are n.n. In particular,

every vertex v ∈ V ∞ has a loop attached. Note that the graph Ḡ is not connected.

4.2. Extension of the Network to Ḡ

This is done in a natural way. Now we have servers and queues also at “infinite” sites. Note
that the customers at infinity cannot get to the finite part G of Ḡ. Also, the customers from G
cannot get to G∞ in finite time.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 52 No. 2 2016



QUEUEING NETWORKS WITH MOBILE SERVERS 191

4.3. Compactification of Mv

In order to compactify the manifold Mv, v ∈ V (G), into the compact set M̄v, we have to add
to it various “infinite objects”: infinite words, infinite waiting times, and infinite destinations.
Since the destinations of the customers in our network are vertices of the underlying graph, the
compactification of Mv will depend on it. For the last question, we use the graph Ḡ, with the
topology introduced earlier. The manifold of possible queues at v is the disjoint union of the
positive orthants R+

w, where w is a finite word describing the queue qv = {ci} ≡ {cvi } at v. Letters
of the alphabet, making the word w, are pairs (κi, vi), where κi ∈ K is the customer class and
vi = D(ci) ∈ Ḡ is its destination. Thus, our alphabet is compact. We have to compactify the set W
of finite ordered words w by adding infinite words to it.

To do this, we denote by O(w) the reordering of w corresponding to the order of service of the
queue w, which is defined by the service discipline Rv. This is just a permutation of w. We say
that a sequence wi of finite words converges as i → ∞ if and only if the sequence of words O(wi)
converges coordinatewise. If this is the case, we denote Ō = lim

i→∞
O(wi) and say that lim

i→∞
wi = Ō.

We denote by W̄ the set of all finite words, w ≡ (w,O(w)), supplemented by all possible limit
points Ō. We define the topology on W̄ by saying that a sequence wi ∈ W̄ is converging if and
only if the sequence O(wi) converges coordinatewise. In other words, we put on W̄ the Tikhonov
topology. Since K is finite, W̄ is compact in the topology of pointwise convergence.

According to what was said in Section 2.2, our service discipline (and hence the function O) has
the following property. Let the sequence wi ∈ W of finite words converge in the above sense. Let c
be a customer, and consider the new sequence wi ∪ c ∈ W , where customer c is the last arrived.
Then we have the implication

lim
i→∞

O(wi) exists =⇒ lim
i→∞

O(wi ∪ c) exists.

The continuity of the transition probabilities in this topology on the set of queues is easily seen;
indeed, the closeness of two queues q and q′ means that the first k customers served in both of them
are the same. But then the transition probabilities PT (q, ·) and PT (q

′, ·) differ by o(T k). Thus, the
extended process is Feller, as well as the initial one.

The compactifications R̄+
w of the orthants R+

w are defined in an obvious way: they are products
of |w| copies of the compactifications R̄

+ = R
+ ∪∞. For the infinite words Ō we consider infinite

products, in the Tikhonov topology. The notion of convergence in the union
⋃

w∈W̄
R̄
+
w is that of

coordinatewise convergence.

The properties of service times formulated in Section 2.3.2 allow us to extend the relevant rates
in a continuous way to a function on τ ∈ R̄

+. Moreover, an analog of Proposition 1 holds.

5. PROOF OF CONVERGENCE

This section contains the proof of Statement 2 in Theorem 1. Let ΩN ,Ω: X → X be (un-
bounded) operators on the Banach spaceX. We are looking for conditions ensuring the convergence
of the semigroups exp{tΩN} → exp{tΩ} on X as N → ∞.

We will use the following version of the Trotter–Kurtz theorem (which is Theorem 6.1 in
[10, ch. 1], with the core characterization taken from Proposition 3.3 of the same ch. 1, where
a core of Ω is a dense subspace X̄ ⊂ X such that ∀F ∈ X̄

exp{tΩ}(F ) ∈ X̄. (17)

Theorem 3 (Trotter–Kurtz). Let X1 ⊂ X2 ⊂ · · · ⊂ X be a sequence of subspaces of the Banach
space X. We assume that there exist projectors πN : X → XN such that for every f ∈ X we have
fN = πN (f) → f as N → ∞. Assume that each of the semigroups exp{tΩN} defined on XN is a
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strongly continuous contraction. If for every F in the core X̄ of Ω we have

‖ΩN (FN )−Ω(FN )‖ → 0, (18)

then for every f ∈ X
exp{tΩN}fN → exp{tΩ}f. (19)

We now show how to apply this theorem to our setting. The main ideas of this application were
developed in [11].

We take for function space X the space C(P̄) of continuous functions on P̄ , with P̄ the com-
pactified version of P in the weak topology.

The strong continuity of the semigroups exp{tΩN} is straightforward, while that for the semi-
group exp{tΩ} follows from the fact that the trajectories Stμ are continuous in t. After compact-
ification, the set of probability measures μ ∈ P on the Comb is replaced by the set of probability
measures on its compactification and becomes a compact, P̄ , on which the family Stμ is equicon-
tinuous. This implies the strong continuity.

It is clear that the operation ΩN (FN ) consists of computing finite differences for the function F
at some atomic measures, while Ω(FN ) consists of computing derivatives at the same atomic
measures. We will have the convergence (18) when the derivatives exist and can be approximated
by finite differences. Therefore, for our space X̄ we need differentiable functions; we remind the
reader that in the case of an infinite graph G, the quasi-locality property of all functions considered
is always assumed. To define X̄, we first introduce the norm ‖ · ‖1 on P̄ . Let C(M̄v) be the space
of continuous functions on M̄v with the sup-norm, ‖ · ‖. Let C1(M̄v) ⊂ C(M̄v) be the subspace of
differentiable functions having finite norm ‖f‖1 = ‖f‖+ ‖f ′‖. The space P̄ of product probability
measures on

∏
M̄v belongs to the dual space

∏ C∗
1(M̄v), and we define the norm ‖ · ‖1 on P̄ to be

the restriction of the natural norm on
∏ C∗

1(M̄v).

For the core X̄ of the operator Ω, we take the set of functions F of the measures μ ∈ P̄ satisfying
the following properties:

• F is uniformly differentiable (in the sense of Fréchet with respect to the norm ‖ · ‖1);
• F belongs to the domain of the generator σ̂ of the time-shift semigroup;
• F is exponentially quasilocal.

The last property means the following. Let ρ be the graph metric on G; if G is not connected
(which is the case for our compactification) it can take the value ∞. F is called exponentially
quasilocal if there exists a vertex x ∈ G and a constant c(F ) such that for any μ ∈ P̄ and any two
measures h1, h2 ∈ P̄ supported by ∏

v: ρ(v,x)>R

M̄v

we have |F (μ)− F (μ+ h1 − h2)| < exp{−c(F )R}.
We check (18) in Section 5.1. We then need to check that this space X̄ of uniformly differentiable

functions is preserved by the semigroup exp{tΩ} (core property). The function exp{tΩ}F (μ) is just
F (Stμ), so if F is differentiable in μ, then the differentiability of F (Stμ) follows from that of Stμ.

To estimate the norm of the Fréchet differential, we have to consider a starting measure μ1 =∏
μv(t = 0), its perturbation μ2 =

∏
(μv + hv) with h = {hv} nontrivial for finitely many v (say),

the perturbation having norm ≈ ∑
v
‖hv‖; then take the difference μ2(T ) − μ1(T ) and write it as

μ2(T )− μ1(T ) = Φ(T, μ1)h+ o(‖h‖)h; (20)

and finally show that the norm of the operator Φ(T, μ1) is finite.

Note first that it suffices to prove this for T small, the smallness being uniform in all relevant
parameters.
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Now, if the increment h is small (even only in the (weaker) ‖ · ‖1 sense, i.e., only from the point
of view of the smooth functions—like, for example, a small shift of a δ-measure), then all the flows
in our network started from μ1 and μ2 differ only a little during a short time, its shortness being a
function of the service time distributions only. The amplitude of the flow difference is of the order
of D ×F × ‖h‖1, where D is the maximal degree of the graph G, and F is defined by (6). In fact,
it can be smaller; it is attained for the situations where a server, being empty in the state μ1,
becomes nonempty in the h-perturbed state. The order is computed in the stronger sup-norm ‖ · ‖.
Therefore, after time T the norm of the difference is such that

‖μ2(T )− μ1(T )‖ ≤ ‖h‖+ T ×D ×F × ‖h‖, (21)

which explains our claim about the operator Φ(T, μ1). We will give a formal proof in Section 5.2.

5.1. Generator Comparison

We start with the mean-field type network, made of N copies of the initial network.

We first describe the process as a process of the network containing N |G| servers, and then do
the factorization by the product of |G| permutation groups SN .

The former one will be described only briefly. At each of the N |G| servers, there is a queue of
customers. Some of the queues can be empty. As time goes, the queues evolve due to (1) arrivals
of external customers; (2) end of service of a customer which then leaves the network; (3) end of
service of a customer which then moves to the next server; (4) interchange of two servers. Each of
these events leads to a jump of our process. If none of them happens, the process evolves linearly:
the variables τ(C(qv)) grow with rate 1.

Consider the semigroup SN and its generator ΩN ; their existence is straightforward. ΩN acts

on functions F on measures μN ∈ PN which are atomic with atoms of weight
1

N
.

Our goal is now the following. Let μN → μ weakly, and let F be a smooth function on measures.
Let us look at the limit ΩN (F )(μN ) and the value Ω(F )(μ). For F smooth, we can replace certain
differences by derivatives; after this, we will see the convergence ΩN (F )(μN ) → Ω(F )(μ) in a
transparent way.

For this, we apply the multiline formula (22)–(26) for the operator ΩN to a function F . On

each Mv, we have to take a probability measure Δv
N of the form

N∑
k=1

1

N
δ(qv,k,τ), where τ is the amount

of service already received by customer C(qv,k) of qv,k (at the position i∗(qv,k) in queue qv,k). Let
ΔN = {Δv

N}. Then

(ΩN (F ))(ΔN ) =
∑

v

∑

k

∂F

∂r(qv,k, τ(C(qv,k)))
(ΔN ) (22)

+
∑

v

∑

k

∑

v′ n.n. v

∑

k′

1

N
ev,D(C(qv,k))(v

′)σf(qv,k, qv,k � C(qv,k))

× [F (Jv,v′;k,k′(ΔN ))− F (ΔN )] (23)

(where, for a directed edge v, v′ and for all pairs of queues qv,k, qv′,k′ , we denote by Jv,v′;k,k′(ΔN )
the new atomic measure which is the result of the completion of the service of customer C(qv,k)
in queue qv,k at v and its subsequent jump into queue qv′,k′ , increasing thereby the length of the
queue qv′,k′ at v

′ by one)

+
∑

v

∑

k

∑

v′

∑

κ

λ(κ, v, v′)[F (ΔN − 1

N
δ(qv,k) +

1

N
δ(qv,k⊕cv(κ,0,v′)))− F (ΔN )] (24)
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(here we see the arrival of a new customer of class κ with a destination v′)

+
∑

v

∑

k

∑

v′: dist(v,v′)≤1

δ(D(C(qv,k)), v
′)σf(qv,k, qv,k � C(qv,k))

× [F (Jv;k(ΔN ))− F (ΔN )] (25)

(here we account for the customers which leave the network; the operator Jv;k(ΔN ) denotes the new
atomic measure which is the result of the completion of the service of customer C(qv,k) in queue qv,k

at v and its subsequent exit from the system: Jv;k(ΔN ) = ΔN − 1

N
δ(qv,k) +

1

N
δ(qv,kqv,k�C(qv,k)))

+
∑

v

∑

k

∑

v′ n.n. v

∑

k′

1

N
βvv′ [F (Tv,k;v′,k′ΔN )− F (ΔN )] (26)

(here the operator Tv,k;v′,k′ acts on ΔN by exchanging the atoms
1

N
δ(qv,k) and

1

N
δ(qv′,k′)).

Remark 3. If our graph is infinite, the sums in (22)–(26) are infinite. However, they make sense
for local functions F , as well as for quasilocal ones, which depend of far-away nodes (exponentially)
weakly.

Now we want to pass in the above formula to a formal limit, obtaining thus a (formal) expression
for the limiting operator Ω. It acts on functions F on probability measures on

∏
v
Mv . To do this,

we need to introduce extra notation.

There are two natural maps between the spaces R
+
w introduced in Section 2.4. One is the

embedding
χ : R+

w → R
+
w∪c (27)

corresponding to the arrival of the new customer c; it is given by χ(x) = (x, 0). The other one is
the projection

ψ : R+
w → R

+
w�ci∗(x)

(28)

corresponding to the completion of the service of the customer ci∗(x) currently served. It is given

by ψ(x) = (x1, . . . , xi∗(x)−1, xi∗(x)+1, . . . , x|w|). For |w| = 0 the space R
+
∅ is a point, and the map

ψ : R+
∅ → R

+
∅ is the identity. The third natural map ζvv′ : Mv × Mv′ → Mv × Mv′ is defined for

every ordered pair v, v′ of neighboring nodes. It corresponds to the jump of a customer which has
completed its service at v to v′, where it is going to be served next. It is defined as follows: if the
destination D(C(qv)) of the attended customer C(qv) of the queue qv is different from v′, then

ζvv′(qv, qv′) = (qv � C(qv), qv′ ⊕ c(C(qv))), (29)

where the customer c(C(qv)) has the following properties:

1. D(c(C(qv))) = D(C(qv));
2. κ(c(C(qv))) = T (κ(C(qv)); v, v

′);
3. τ(c(C(qv))) = 0.

If D(C(qv)) = v′ or if qv = ∅, then we put ζvv′(qv, qv′) = (qv, qv′).

Let Δ = lim
N→∞

ΔN . We will use the differentiability of F at Δ, i.e., the existence of the Fréchet

differential F ′ at Δ. This differential will be denoted by F ′
Δ(·); it is a linear functional on the

space of tangent vectors to P at Δ ∈ P. Due to the existence of the differential, we have another
multiline expression (30)–(34):

(Ω(F ))(Δ) = (σ̂(F ))(Δ) (30)

+
∑

v

∑

v′ n.n. v

ev,D(C(·))(v
′)σf × F ′

Δ(ζvv′(Δ)−Δ)
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(where σ̂ is the generator of the time-shift semigroup, ζvv′(Δ)−Δ is a (signed) measure (see (29)),
and ev,D(C(·))(v

′)σf×(ζvv′(Δ)−Δ) denotes the measure having density ev,D(C(q))(v
′)σf(qv, qv�C(qv))

with respect to (ζvv′(Δ)−Δ)(dq))

+
∑

v

∑

v′

∑

κ

λ(κ, v, v′)F ′
Δ(χv,v′;κ(Δ)−Δ) (31)

(here χv,v′;κ : Mv → Mv is the embedding corresponding to the arrival to v of an external customer
of class κ and destination v′; see (27))

+
∑

v

F ′
Δ(σf × (ψv

nn(Δ)−Δ)) (32)

(here

ψv
nn(q) =

{
ψv(q) for q with dist(v,D(C(q))) ≤ 1,

q for q with dist(v,D(C(q))) > 1,
(33)

where ψv : Mv → Mv is the projection, see (28), and the term σf × (ψv
nn(Δ) −Δ) is the (signed)

measure having density σf(q) with respect to the measure (ψv
nn(Δ)−Δ)(dq))

+
∑

v

∑

v′ n.n. v

βv′vF
′
Δ((Tv′vΔ)−Δ) (34)

(here the operator Tv′v acts on the measure Δ in the following way: it replaces the component Δv

of the measure Δ by the measure Δv′ (via identification between Mv and Mv′)).

We now check that the limiting operator Ω is the same one that we were dealing with in our
study of the nonlinear Markov process, (10)–(15).

Proposition 2. The operator (30)–(34) can be written in the form

(Ω(F ))(μ) = (σ̂(F ))(μ) + (F ′(μ))(g(μ)), (35)

where σ̂ is the generator of the time-shift semigroup acting on our manifold, F ′ is the Fréchet
differential of F , and the (signed) measure g(μ) is given by the right-hand side of (10)–(15).

Proof. For the convenience of the reader we repeat here equation (10)–(15):

d

dt
μv(qv, t) = − d

dri∗(qv)(qv)
μv(qv, t)

+ δ(0, τ(e(qv)))μv(qv � e(qv))[σtr(qv � e(qv), qv) + σe(qv � e(qv), qv)]

− μv(qv, t)
∑

q′v

[σtr(qv, q
′
v) + σe(qv, q

′
v)]

+

[ ∫

q′v: q
′
v�C(q′v)=qv

dμv(q
′
v)σf(q

′
v, q

′
v � C(q′v))] − μv(qv)σf(qv, qv � C(qv))

+
∑

v′ n.n. v

βvv′ [μv′(qv)− μv(qv)

]
.

The term (σ̂(F ))(Δ) obviously corresponds to − d

dri∗(qv)(qv)
μv(qv, t), and the term

∑

v

∑

v′ n.n. v

βv′vF
′
Δ((Tv′vΔ)−Δ),
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to
∑

v′ n.n. v
βvv′ [μv′(qv)− μv(qv)]. The “external customer arrival” term

∑

v

∑

v′

∑

κ

λ(κ, v, v′)F ′
Δ(χv,v′;κ(Δ)−Δ)

matches the terms

δ(0, τ(e(qv)))μv(qv � e(qv))σe(qv � e(qv), qv)− μv(qv, t)
∑

q′v

σe(qv, q
′
v).

The “intermediate service completion” term
∑

v

∑

v′ n.n. v

F ′
Δ

(
ev,D(C(·))(v

′)σf × (ζvv′(Δ)−Δ)
)

matches the terms

δ(0, τ(e(qv)))μv(qv � e(qv))σtr(qv � e(qv), qv)− μv(qv, t)
∑

q′v

σtr(qv, q
′
v).

Finally, the “final service completion” term
∑
v
F ′
Δ(σf × (ψv

nn(Δ)−Δ)) matches

[ ∫

q′v: q′v�C(q′v)=qv

dμv(q
′
v)σf(q

′
v, q

′
v � C(q′v))

]
− μv(qv)σf(qv, qv � C(qv)). �

Let us check that we indeed have the norm-convergence of the operators ΩN to Ω, the one
needed in the convergence statement (18). The norm that we use here is again ‖ · ‖1.

The precise statement that we need is the following.

Proposition 3. Let F be a function on P, with ‖F‖1 finite. We can restrict F on each sub-
space PN and then apply the operator ΩN , thus getting a function ΩNF on PN . We can also
restrict the function ΩF from P to PN . Then

‖ΩNF − ΩF‖PN
1 ≤ CN‖F‖1,

with CN → 0, where ‖ · ‖PN
1 is the restriction of the norm ‖ · ‖1 to the subspace of functions of the

measures PN .

Proof. We have to compare the operators given by (22)–(26) and (30)–(34) term by term. For
example, compare the term (24)

∑

v

∑

k

∑

v′

∑

κ

λ(κ, v, v′)

[
F
(
ΔN − 1

N
δ(qv,k) +

1

N
δ(qv,k⊕cv(κ,0,v′))

)
− F (ΔN )

]
,

which corresponds to the arrival of a new customer of class κ with a destination v′, and the
term (31) ∑

v

∑

v′

∑

κ

λ(κ, v, v′)F ′
ΔN

(χv,v′;κ(ΔN )−ΔN ),

where χv,v′;κ : Mv → Mv is the embedding corresponding to the arrival to v of an external customer
of class κ and destination v′. Due to the locality properties of F , it is sufficient to establish the
convergence

N∑

k=1

[
F
(
ΔN − 1

N
δ(qv,k) +

1

N
δ(qv,k⊕cv(κ,0,v′))

)
− F (ΔN )

]
→ F ′

ΔN
(χv,v′;κ(ΔN )−ΔN ) (36)

as N → ∞.

The measure ΔN is a collection of N atoms, corresponding to queues qv,k, k = 1, . . . , N . In the
first expression, we change just one of the N atoms, adding a new customer cv(κ, 0, v′) to each
of the queues qv,k, and then take the sum of the corresponding increments over k. In the second
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expression, we change all atoms simultaneously, obtaining the measure measure χv,v′;κ(ΔN ), and
instead of taking the increment F (χv,v′;κ(ΔN ))−F (ΔN ) we take the differential F ′

ΔN
of the measure

χv,v′;κ(ΔN )−ΔN . To see the norm convergence in (36), let us rewrite the increments

F
(
ΔN − 1

N
δ(qv,k) +

1

N
δ(qv,k⊕cv(κ,0,v′))

)
− F (ΔN ) = F ′

Qk,N

(
− 1

N
δ(qv,k) +

1

N
δ(qv,k⊕cv(κ,0,v′))

)
,

by the intermediate value theorem. Here the points Qk,N are some points on the segments

[
ΔN ,ΔN − 1

N
δ(qv,k) +

1

N
δ(qv,k⊕cv(κ,0,v′))

]
.

Note that the norms ‖Qk,N −ΔN‖ obviously go to zero as N → ∞, and so ‖F ′
Qk,N

−F ′
ΔN

‖ → 0 as
well. Thus,

N∑

k=1

F ′
Qk,N

(
− 1

N
δ(qv,k) +

1

N
δ(qv,k⊕cv(κ,0,v′))

)

= F ′
ΔN

[
N∑

k=1

(
− 1

N
δ(qv,k) +

1

N
δ(qv,k⊕cv(κ,0,v′))

)]

+
N∑

k=1

(F ′
Qk,N

− F ′
ΔN

)
(
− 1

N
δ(qv,k) +

1

N
δ(qv,k⊕cv(κ,0,v′))

)
,

with the second term is uniformly small as N → ∞. By definition,

χv,v′;κ(ΔN )−ΔN =
N∑

k=1

(
− 1

N
δ(qv,k) +

1

N
δ(qv,k⊕cv(κ,0,v′))

)
,

and this proves the convergence needed. The other terms are compared in the same manner. �
This completes checking relation (18) of the convergence theorem (Theorem 3).

5.2. Fréchet Differential Properties

Here we check the core property (17).

Proposition 4. The semigroup is uniformly differentiable in t. In the notation of Section 5
(see (21)) this means that for the Fréchet differential h(t) = [Dμ1(t)](h) of the trajectory μ1(t) at
the point μ1(t) in the direction h we have

∥∥μ2(t)− μ1(t)− [Dμ1(t)](h)
∥∥
1
≤ O(‖h‖21)

uniformly in t ≤ T and μ1, provided that T is small enough.

Proof. To write the equation for the Fréchet differential h(t) = [Dμ1(t)](h) of trajectory μ1(t)
at the point μ = μ1(t) in the direction h, we have to compare the evolving measures μ1(t) and μ2(t),
which are solutions of equation (10)–(15) with initial conditions μ and μ + h, and keep the terms
linear in h. In what follows we use the notation σμ

tr, where the superscript refers to the state in
which the rate σtr is computed; see (9).

For h = {hv , v ∈ V } we have

d

dt
hv(qv, t) = − d

dri∗(qv)(qv)
hv(qv, t) (37)

(derivative along the direction r(qv))
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+ δ(0, τ(e(qv)))hv(qv � e(qv))[σ
μ
tr(qv � e(qv), qv) + σe(qv � e(qv), qv)]

+ δ(0, τ(e(qv)))μv(qv � e(qv))[σ
h
tr(qv � e(qv), qv)], (38)

(qv is created from qv� e(qv) by the arrival of e(qv) from v′, and δ(0, τ(e(qv))) accounts for the fact
that if the last customer e(qv) was already served for some time, than it cannot arrive from the
outside; see (9) and (5))

− hv(qv, t)
∑

q′v

[σμ
tr(qv, q

′
v) + σe(qv, q

′
v)]− μv(qv, t)

∑

q′v

[σh
tr(qv, q

′
v)] (39)

(the queue qv is changing due to customers arriving from the outside and from other servers)

+

[ ∫

q′v: q
′
v�C(q′v)=qv

dhv(q
′
v)σf(q

′
v, q

′
v � C(q′v))

]
− hv(qv)σf(qv, qv � C(qv)) (40)

(here the first term describes the creation of the queue qv after a customer was served in a queue q′v
(longer by one customer) such that q′v�C(q′v) = qv, while the second term describes the completion
of service of a customer in qv)

+
∑

v′ n.n. v

βvv′ [hv(qv)− hv(qv)] (41)

(the β’s are the rates of exchange of the servers).

The existence of the solution to the (linear) equation (37)–(41) follows by the Peano theorem,
while the uniqueness of the solution is implied by the estimate (see (4))

‖h(t)‖ ≤ ‖h(0)‖eCt,

which follows from the Grönwall’s estimate.

Finally, we want to estimate the remainder

ρ(t) = [μ+ h](t)− μ(t)− [Dμ(t)](h).

Here μ + h ≡ μ(0) + h(0) ≡ [μ + h](0) is a small perturbation of μ, [μ+ h](t) is its evolution, and
[Dμ(t)](h) is the application of the Fréchet differential of the map ν(0) � ν(t) computed at the
point μ and applied to the increment h. Note that ρ(0) = 0 and it satisfies the equation

d

dt
ρv(qv, t) = − d

dri∗(qv)(qv)
ρv(qv, t)

+ δ(0, τ(e(qv)))ρv(qv � e(qv))σe(qv � e(qv), qv)

+ δ(0, τ(e(qv)))ρv(qv � e(qv))σ
[μ+h]
tr (qv � e(qv), qv)

+ δ(0, τ(e(qv)))[μ + h]v(qv � e(qv))σ
ρ
tr(qv � e(qv), qv)

+ δ(0, τ(e(qv)))hv(qv � e(qv))σ
h
tr(qv � e(qv), qv)−

− ρv(qv, t)
∑

q′v

[
σ
[μ+h]
tr (qv, q

′
v) + σe(qv, q

′
v)
]

− hv(qv, t)
∑

q′v

σh
tr(qv, q

′
v)− [μ + h]v(qv, t)

∑

q′v

σρ
tr(qv, q

′
v)

+

[ ∫

q′v: q′v�C(q′v)=qv

dρv(q
′
v)σf(q

′
v, q

′
v � C(q′v))

]

− ρv(qv)σf(qv, qv � C(qv)) +
∑

v′ n.n. v

βvv′ [ρv′(qv)− ρv(qv)].
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Note that the initial condition for the last equation is [ρ]v(q, t) = 0. The terms on the right-hand
side which do not contain ρ are

δ(0, τ(e(qv)))hv(qv � e(qv))σ
h
tr(qv � e(qv), qv)− hv(qv, t)

∑

q′v

σh
tr(qv, q

′
v),

which is of the order of ‖h‖2. Therefore, by Grönwall’s inequality the same bound holds uniformly
for the function [ρ]v(q, t), provided that t ≤ T with T small enough. �

Proposition 5. The set of uniformly differentiable quasilocal functions is a core of the generator
of our semigroup.

Proof. Follows from Proposition 4, via the chain rule, and the Stone–Weierstrass theorem. �
This implies that condition (17) of Theorem 3 holds as well, so in our case it is indeed applicable.

6. CONCLUSION

In this paper we have established the convergence of the mean-field version of a spatially extended
network with jumping servers to a nonlinear Markov process. The configuration of the N -compo-
nent mean-field network is described by the (atomic) measure μN (t), which randomly evolves in
time. We have shown that in the limit N → ∞ we have convergence of the measures μN (t) → μ(t),
where the evolution μ(t) is nonrandom. In a sense, this result can be viewed as a functional law of
large numbers.

Our results can easily be generalized to the situation where instead of the underlying (infinite)
graph G we take a sequence of finite graphs Hn such that Hn → G, consider the N -fold mean-field
type networks Hn,N , and take the limit as n,N → ∞.
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