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Abstract—Two ensembles of low-density parity-check (LDPC) codes with low-complexity
decoding algorithms are considered. The first ensemble consists of generalized LDPC codes,
and the second consists of concatenated codes with an outer LDPC code. Error exponent
lower bounds for these ensembles under the corresponding low-complexity decoding algorithms
are compared. A modification of the decoding algorithm of a generalized LDPC code with a
special construction is proposed. The error exponent lower bound for the modified decoding
algorithm is obtained. Finally, numerical results for the considered error exponent lower bounds
are presented and analyzed.
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1. INTRODUCTION

A lower bound on the error exponent (error exponent of the total probability of decoding denial
and erroneous decoding), known as Forney’s error exponent, for concatenated codes over a binary
symmetric channel (BSC) was first obtained in [1]. Then a similar lower bound, known as the
Blokh–Zyablov bound, was obtained for generalized concatenated codes in [2]. It should be noted
that the decoding complexity of those code constructions is of the order O(n4), where n is the code
length.

Low-density parity-check (LDPC) codes [3] are known to have the minimal decoding complexity
growth with the code length. In [4] it was first shown that in the LDPC code ensemble there
exist codes capable of correcting a linear portion of errors under a bit-flipping algorithm with
complexity of the order O(n log n). Then in [5] the method developed in [4] was modified for the
case of generalized LDPC codes. In [6] the estimates from [4, 5] were improved, and in [7] an
estimate for an irregular LDPC code was obtained. In the present paper we use both the estimate
from [6] and a slightly modified estimate from [5].

The error exponents of expander codes were investigated in [8,9]. It was shown that in this case
there exist codes that attain the capacity of a BSC with positive exponent of error probability under
a low-complexity iterative decoding algorithm. In [10] a special code construction in the class of
generalized LDPC codes and a low-complexity decoding algorithm were proposed. A lower bound
on the error exponent for these codes under the proposed low-complexity decoding algorithm was
obtained. It was shown for the first time that an LDPC code with a special construction exists
such that the error probability of the low-complexity decoding algorithm exponentially decreases
for all code rates below the channel capacity.

1 The research was carried out at the Institute for Information Transmission Problems of the Russian
Academy of Sciences at the expense of the Russian Science Foundation, project no. 14-50-00150.
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In this paper we consider the concatenated code construction with an outer LDPC code proposed
in [2, Appendix 6.9, pp. 216–218] and an LDPC code with a special construction proposed in [10].
A low-complexity decoding algorithm is given for each code construction; moreover, a modification
of the decoding algorithm for the LDPC code with a special construction is proposed. In this paper
we investigate the error decoding probability P over a memoryless BSC with error probability p.
The estimation on the error decoding probability will be written in the following way:

P ≤ K(n) exp{−nE(·)},

where K(n) is a function slowly (not exponentially) increasing in n, E(·) is the desired error
exponent depending on the code construction parameters to be described below and on channel
parameters (in particular, on the code rate R and error probability p of the BSC), and n is the
code length. The following asymptotic (as n → ∞) properties of the code will be considered in the
paper:

• E(·) > 0 for some parameters of the code construction and of the channel (e.g., for R < C,
where C is the channel capacity of a BSC with error probability p);

• E(·) is independent of n.
In this paper we give lower bounds on the error exponent for the considered decoding algorithms.

In conclusion, numerical results for the considered error exponent lower bounds are presented and
analyzed.

2. LDPC CODES

Let us consider the construction of a parity-check matrix of a Gallager’s regular LDPC code.
Let Hb denote a block-diagonal matrix with b constituent parity-check matrices H0 of a single-
parity-check (SPC) code on the main diagonal:

Hb =

⎛
⎜⎜⎜⎜⎝

H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
b

,

where b is very large. If the length of SPC code is n0, then Hb is a b × bn0 matrix. Let π(Hb)
denote a random column permutation of Hb. Then the matrix

H =

⎛
⎜⎜⎜⎜⎝

H1

H2
...

H�

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

π1(Hb)
π2(Hb)

...
π�(Hb)

⎞
⎟⎟⎟⎟⎠

constructed using � > 2 such permutations as layers is a sparse �b × bn0 parity-check matrix H ,
which defines an ensemble of LDPC code with length n = bn0, where n � n0. We denote this
ensemble by EG.

Definition 1. For a given constituent code with parity-check matrix H0, define elements of
the ensemble EG by sampling the permutations πl, l = 1, 2, . . . , �, independently and equiprobably.

Remark 1. It is clear that the construction of a Gallager’s LDPC code can easily be generalized
by replacing the parity-check matrix H0 of an SPC code with another parity-check matrix of a
linear block code with length n0 and the corresponding code rate R0. In this case we obtain a
generalized LDPC code.
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ASYMPTOTIC BOUNDS ON THE DECODING ERROR PROBABILITY 207

The rate R of code with parity-check matrix H is lower bounded by

R ≥ 1− �(1−R0),

where R0 is the constituent code rate. The equality occurs if and only if the matrix H has full rank.

3. “OPTIMAL” LINEAR CODES

Codes from the ensemble of “optimal” linear codes will be used as constituent codes for the code
constructions considered below in this paper. This ensemble contains codes from the ensemble of
random linear codes with error exponent that satisfies the lower bound E0(·) under the maximum
likelihood decoding algorithm. The following theorem, proved in [11] in the general form and
formulated in [2] in the form given below, yields an estimate E0(·) on the error exponent of a linear
code under maximum likelihood decoding.

Theorem 1. For any code rate R less than the capacity C of a memoryless BSC there exist
binary linear block codes for which the error exponent under maximum likelihood decoding is lower
bounded by a function E0(R, p) defined by the following equations:

E0(R, p) = −δVG(R) ln(2
√
p(1− p)) for 0 ≤ R ≤ R0,

where R0 = 1− h
( 2

√
p(1− p)

1 + 2
√
p(1− p)

)
;

E0(R, p) = (1−R) ln 2− ln(1 + 2
√
p(1− p)) for R0 ≤ R ≤ R∗,

where R∗ = 1− h
( √

p
√
p+

√
1− p

)
;

E0(R, p) =
s

1− s
(1−R) ln 2− 1

1− s
ln
(
p1−s + (1− p)1−s),

R = 1− h

(
p1−s

p1−s + (1− p)1−s

)
, 0 ≤ s ≤ 1

2
, for R∗ ≤ R ≤ C = 1− h(p),

where δVG(R) is the Gilbert–Varshamov bound and h(p) = −p log2 p − (1 − p) log2(1 − p) is the
binary entropy function.

4. CONCATENATED CODES WITH AN OUTER LDPC CODE

4.1. Description of the Code Construction

Let us consider the concatenated code construction proposed in [2] with an LDPC code as an
outer code (in this case concatenated codes of the first order are constructed). The transmitted
information, i.e., k2 binary information symbols, is encoded with an LDPC code of length n2 = k1b1
(where k1 and b1 are positive integers) and code rate R2 = k2/n2, which will be referred to as an
outer code. Represent the obtained codeword as a k1×b1 binary matrixU in any manner (properties
of the concatenated code that we are interested in do not depend on a way of representing the LDPC
code codeword as a binary matrix U):

U = (u1,u2, . . . ,ub1),

where ui is a binary column vector of size k1.

Let G0 be an n1×k1 binary generating matrix of a code selected from the ensemble of “optimal”
linear codes with error exponent E0(·) under maximum likelihood decoding [11] and code rate R1.
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Then a codeword X of the concatenated code, i.e., a matrix of size n1 × b1, is obtained as a result
of multiplying the matrix G0 and matrix U , i.e.

X = G0U = (x1,x2, . . . ,xb1),

where xi is a column vector of size n1 (a codeword of the inner code).

Thus, we obtain a first-order concatenated code with length n = b1n1 =
n2

R1
and rate R = R1R2.

Definition 2. Elements of the ensemble EC of concatenated codes of the first order with an
outer LDPC code are defined by independently and equiprobably sampling a Gallager’s LDPC code
from the ensemble EG and a code with length n1 and rate R1 from the ensemble of “optimal” linear
codes.

4.2. Decoding Algorithm

The decoding algorithm AC of the above-described concatenated code construction consists of
the following two steps:

1. A received sequence is represented as b1 codewords of a linear code of length n1, and then each
of these b1 codes is separately decoded by the maximum likelihood decoding algorithm;

2. A k1 × b1 matrix is constructed from the sequence obtained on the previous step by select-
ing k1 information symbols from each codeword of the linear code, and then the obtained matrix
is represented as a sequence of the LDPC code and is decoded with the bit-flipping algorithm.

4.3. Error Exponent

Let us introduce the notation which will be used below in the formulation of theorems:

• Entropy function (note the difference from the binary entropy function h(p))

H(β) = −β ln β − (1− β) ln(1− β);

• Auxiliary function

E∗(R1, n1, ωt, p, β) = βE0(R1, p) + E2(β, ωt, p)−
1

n1
H(β), (1)

where E2(·) is given by

E2(β, ωt, p) =
1

2

(
ωt ln

ωt

p
+ (2β − ωt) ln

2β − ωt

1− p

)
− β ln(2β)

and n1 satisfies the condition

− ln β0
E0(R1, p)

≤ n1 ≤
1

R1
log2 log2(n). (2)

Furthermore, E∗(·) is defined for R1 < C, where C is the capacity of a memoryless BSC with error
probability p, for the values of n1 satisfying condition (2), 0 < ωt < 1, and ωt ≤ β ≤ β0, where β0
is defined for each specific code construction.

In [2] an estimate for the error exponent of the considered concatenated code construction under
decoding algorithm AC was obtained, which we reformulate in the following way.

Theorem 2. In the ensemble EC there exists (with probability pn → 1 as n → ∞) a first-order
concatenated code with an outer Gallager’s LDPC code of length

n = b1n1 =
bn0

R1
,

PROBLEMS OF INFORMATION TRANSMISSION Vol. 51 No. 3 2015
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where n0 and n1 are accordingly selected constants (the lengths of the constituent outer LDPC code
and inner linear code, respectively), and n → ∞ (b → ∞ and b1 → ∞), with rate

R = R1R2,

such that the error exponent of this code over the memoryless BSC with error probability p under
decoding algorithm AC with complexity O(n log n) is lower bounded by

EC(R1, n1, ωt, p) = min
ωt≤β≤β0

{E∗(R1, n1, ωtR1, p, β)},

where ωt is the fraction of guaranteed errors corrected by a Gallager’s LDPC code [6], β0 =

min
(ωtR1

2p
, 1

)
, the function E∗(·) is defined in (1), and n1 satisfies condition (2).

Remark 2. Note that the proof of Theorem 2 (see the Appendix) requires the existence of a
Gallager’s LDPC code that is capable of correcting any error pattern of weight less than �ωtn	.
In [6] it was shown that such a Gallager’s LDPC code exists in the ensemble EG with probability
pn → 1 as n → ∞. Furthermore, in [12] it was shown that for any code rate R2 < 1 there exists
a Gallager’s LDPC code such that ωt > 0. Thus, we can omit the requirement of the existence of
such a Gallager’s LDPC code in formulations of this theorem and the following ones.

5. LDPC CODES WITH SPECIAL CONSTRUCTION

5.1. Description of the Code Construction

Let us now consider the construction of an LDPC code of a special type proposed in [10]. Let H0

be a parity-check matrix of an SPC code of length n0 and rate R0, and let H1 be a parity-check
matrix of an “optimal” linear code with length n1 and rate R1. We construct the following two
block matrices:

Hb0 =

⎛
⎜⎜⎜⎜⎝

H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...
0 0 . . . H0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
b0

and

Hb1 =

⎛
⎜⎜⎜⎜⎝

H1 0 . . . 0
0 H1 . . . 0
...

...
. . .

...
0 0 . . . H1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
b1

,

where b0 and b1 satisfy n0b0 = n1b1.

Now we construct a parity-check matrix H of a generalized LDPC code of a special type in the
following way:

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

π1(Hb0)
π2(Hb0)

...
π�(Hb0)

π�+1(Hb1)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where, as above, πi, i = 1, �+ 1, is a random column permutation.
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It is easy to see that the first � layers of the parity-check matrix H form a parity-check matrix of
a Gallager’s LDPC code, which we denote by H2. Then the parity-check matrix H can be written
in the following way:

H =

(
H2

π�+1(Hb1)

)
.

Definition 3. The obtained construction of a generalized LDPC code will be called a Gallager’s
LDPC code with an additional layer composed of random linear codes selected from the ensemble
of “optimal” linear codes with error exponent E0(·) under maximum likelihood decoding [11] and
with rate R1 (LG-LDPC code).

Note that the length of the constructed code is n = b0n0 = b1n1, and the code rate R is lower
bounded as

R ≥ R1 − �(1−R0),

which, assuming that the rate of the Gallager’s LDPC code is R2, is equivalent to

R ≥ R1 +R2 − 1.

Definition 4. Define elements of the ensemble EGL are by independently and equiprobably
sampling random column permutations πi, i = 1, �+ 1.

5.2. Decoding Algorithm

In this paper we will consider a decoding algorithm A , which consists of the following two steps:

1. A received sequence is separately decoded with the maximum likelihood decoding algorithm for
each of the b1 linear codes with parity-check matrix H1 from the (�+ 1)st layer of H ;

2. The tentative sequence is decoded using the bit-flipping algorithm by a Gallager’s LDPC code
with parity-check matrix H2.

It is important to note that algorithm A is not iterative. Every received sequence is decoded only
once with the maximum likelihood algorithm using the linear codes H1 at first, and then the ob-
tained sequence is decoded with the iterative bit-flipping algorithm using Gallger’s LDPC code H2.

5.3. Modified Decoding Algorithm

The only difference between the modified decoding algorithm A ′ of an LG-LDPC code and the
decoding algorithm A is the second step. On the second step in the modified decoding algorithm
for bit-flipping decoding, the whole LG-LDPC code with parity-check matrix H is used, not only
the Gallager’s LDPC code with parity-check matrix H2. The idea of the bit-flipping algorithm for
an LG-LDPC code is (as previously) to reduce the number of unsatisfied checks on each iteration
step (i.e., a symbol is inverted if it reduces the number of unsatisfied checks in the LG-LDPC code).

Thus, the modified decoding algorithm A ′ consists of the following two steps:

1. A received sequence is decoded with the maximum likelihood decoding algorithm separately for
each of the b1 linear codes with parity-check matrix H1 from the (�+ 1)st layer of H ;

2. The tentative sequence is decoded with the bit-flipping algorithm by the LG-LDPC code with
parity-check matrix H .

5.4. Error Exponents

At first, let us consider the error exponent for an LG-LDPC code under decoding algorithm A .
We formulate the following theorem.
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Theorem 3. In the ensemble EGL there exists (with probability pn → 1 as n → ∞) an LG-
LDPC code of length

n = n0b0 = n1b1,

where n0 and n1 are accordingly selected constants (the lengths of constituent codes of the LG-LDPC
code) and n → ∞ (b0 → ∞ b1 → ∞) with rate

R ≥ R1 +R2 − 1

such that the error exponent of this code over a memoryless BSC with error probability p under
decoding algorithm A with complexity O(n log n) is lower bounded by

E(R1, n1, ωt, p) = min
ωt≤β≤β0

{E∗(R1, n1, ωt, p, β)},

where ωt is the fraction of guaranteed errors corrected by a Gallager’s LDPC code [6], β0 =

min
(ωt

2p
, 1

)
, the function E∗(·) is defined in (1), and n1 satisfies condition (2).

In [10] a corollary of Theorem 3 was obtained, which in this paper is formulated in the following
way, omitting one of the conditions (see the Appendix).

Corollary. We have E(·) > 0 if R → C, where C is the capacity of a memoryless BSC with
error probability p, in such a way that R1 → C and R2 < 1.

In [12] a novel condition was obtained on the existence of a symbol inverted during iteration of
the bit-flipping algorithm. This condition is independent of a type of a constituent code and does
not require their uniformity. Hence, using this condition and generalized methods developed in [5],
we can obtain an estimate for the fraction ω′

t of guaranteed errors corrected by an LDPC code
with the proposed construction (LG-LDPC code). Using this result we can obtain the following
estimate for the error exponent of an LG-LDPC code under decoding algorithm A ′.

Theorem 4. In the ensemble EGL there exists (with probability pn → 1 when n → ∞) an
LG-LDPC code of length

n = n0b0 = n1b1,

where n0 and n1 are accordingly selected constants (the lengths of constituent codes of the LG-LDPC
code) and n → ∞ (b0 → ∞ b1 → ∞), with rate

R ≥ R1 +R2 − 1

which is capable of correcting any error pattern of weight less than �ω′
tn	, and the error exponent

of this code over a memoryless BSC with error probability p under decoding algorithm A ′ with
complexity O(n log n) is lower bounded by

E′(R1, n1, ω
′
t, p) = min

ω′
t≤β≤β0

{E∗(R1, n1, ω
′
t, p, β)},

where β0 = min
(ω′

t

2p
, 1

)
, the function E∗(·) is defined in (1), and n1 satisfies condition (2).

6. NUMERICAL RESULTS

In Fig. 1, the error exponent estimates EC(·), E(·), and E′(·) are plotted versus the rate of the
linear code R1 for the fixed parameters R = 0.5, n1 = 2000, and p = 10−3.

Figure 2 presents plots of maximum achievable values of the error exponent estimates EC(·),
E(·), and E′(·) versus the code construction rate R for the fixed parameters n1 = 2000 and p = 10−3.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 51 No. 3 2015



212 RYBIN, ZYABLOV

0.5

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

1

1.5

2

2.5

3

3.5

0

×10−3

R1

E

E(·)
EC(·)
E′(·)

Fig. 1. Error exponent estimates EC(·), E(·), and E′(·) versus the rate R1 for the fixed parameters
R = 0.5, n1 = 2000, and p = 10−3.
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Fig. 2. Maximum achievable values of the error exponent estimates EC(·), E(·), and E′(·) versus R
for the fixed parameters n1 = 2000 and p = 10−3.

As one can see from Figs. 1 and 2, the error exponent estimate for the concatenated code
construction under decoding algorithm AC slightly exceeds the error exponent estimate for an
LG-LDPC code under decoding algorithm A . Furthermore, the difference between the estimates
increases as the code rate R decreases. Although the code length of an LDPC code in the concate-
nated code construction is smaller (which is reflected by the factor R1 at ωt in the estimate) than
the code length of an LDPC code in the LG-LDPC code construction, the observed difference can
be explained in the following way. For a fixed code construction rate R and fixed rate R1 of a linear
code, the rate of the LDPC code R2 can be chosen much lower in the case of the concatenated
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code construction than in the case of the LG-LDPC code construction, because in the case of the
LG-LDPC code construction the LDPC code contains parity-check symbols of the linear code as
information symbols, which increases its code rate. The lower code rate of a Gallager’s LDPC yields
a larger estimate on ωt, which in turn increases the estimate on the error exponent. However, the
error exponent estimate for an LG-LDPC code under decoding algorithm A ′ significantly exceeds
both of the estimates, because on the second step of decoding algorithm A ′ the redundancy of the
linear code is also used (i.e., the total redundancy of the code construction), unlike what is done
in A and AC .

APPENDIX

Let us proceed to the proofs of the theorems. First, we formulate and prove the following lemma.

Lemma. The complexity of decoding algorithm A for an LG-LDPC code with length n is of

order O(n log n) if the length of the linear code satisfies the inequality n1 ≤
1

R1
log2 log2(n).

Proof. Since the length of the linear code is n1 and the code rate is R1, the complexity of the
maximum likelihood decoding algorithm for a single code is of order O(2R1n1). The total number
of codes is b1, which is proportional to n, and then the decoding complexity for all codes is of order
O(n2R1n1).

In [6] it was shown that the complexity of the bit-flipping decoding algorithm for an LDPC code
is O(n log n).

Therefore, the complexity of decoding algorithm A is of order O(n log2 n) if the following con-
dition is satisfied:

2R1n1 ≤ n log2(n).

Hence we find a condition on n1:

n1 ≤
1

R1
log2 log2(n). 
 (3)

Remark 3. Similar lemmas can be formulated for algorithms AC and A ′.

Now we pass to the proofs of Theorem 3 and its corollary.

Proof of Theorem 3. Let on the first step of decoding algorithm A for the LG-LDPC code
the decoding error occur exactly in i linear codes. Since each code contains no more than n1 errors,
the total number of errors W after the first decoding step is not greater than in1. Let i = βb1,
where β is the fraction of linear codes in which the decoding failure occurred; then

W ≤ βb1n1 = βn.

According to [6], an LDPC code is capable of correcting any error pattern of weight W such
that

W < W0 = �ωtn	,
where ωt is the fraction of guaranteed errors corrected by a Gallager’s LDPC code [6, Theorem 1].
Hence, for β < ωt the decoding error probability P of the LG-LDPC code under decoding algo-
rithm A is 0:

P = 0, β < ωt.

For β > ωt the decoding error probability is defined in the following way:

P =
b1∑

i=�ωtb1�

(
b1
i

)
P2(W ≥ W0 | i)P i

1(n1, R1, p)
(
1− P1(n1, R1, p)

)b1−i
, (4)
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where P1(n1, R1, p) is the decoding error probability for the linear code,

P1 ≤ exp{−n1E0(R1, p)},

and P2(W ≥ W0 | i) is the probability of the event that the number of errors after the first step
of decoding algorithm A is not less than W0 provided that a decoding error occurred in exactly i
linear codes.

Since in the case of erroneous decoding of the maximum likelihood decoding algorithm the

number of errors in a block can at most become twice as large, there must be more than
W0

2
errors

before the first step in i erroneous blocks in order to have more than W0 errors after the first step
of decoding algorithm A . Then we can write P2(W ≥ W0 | i) in the following way:

P2(W ≥ W0 | i) =
in1∑

j=�ωtn
2

�

(
in1

j

)
pj(1− p)in1−j.

Using the Chernov bound, we obtain

P2(W ≥ W0 | i) ≤ exp{−nE2(β, ωt, p)},

where

E2(β, ωt, p) =

⎧⎪⎨
⎪⎩

1

2

(
ωt ln

ωt

p
+ (2β − ωt) ln

2β − ωt

1− p

)
− β ln 2β, β < β0,

0, β ≥ β0.
(5)

Here β =
i

b1
> ωt, and

β0 = min
(ωt

2p
, 1

)
,

because β > 1 has no sense.

According to (5), the probability P2(W ≥ W0 | i) can be replaced with a trivial estimate
P2(W ≥ W0 | i) ≤ 1 for i ≥ �β0b1�; then the sum (4) is upper bounded as follows:

P ≤
�β0b1�∑

i=�ωtb1�

(
b1
i

)
P2(W ≥ W0 | i)P i

1(n1, R1, p)
(
1− P1(n1, R1, p)

)b1−i

+
b1∑

i=�β0b1�

(
b1
i

)
P i
1(n1, R1, p)

(
1− P1(n1, R1, p)

)b1−i
.

Let PII denote the first sum on the right-hand side of this inequality and PI denote the second.
Let us consider each of the sums separately.

The sum PI is easily estimated as a tail of the binomial distribution with probability P1 using
the Chernov bound:

PI ≤ exp{−nEI(R1, n1, ωt, p)},
where

EI(R1, n1, p) = β0E0(R1, p)−
1

n1
H(β0)

and P1 satisfies the condition
P1(n1, R1, p) ≤ β0,

whence

n1 ≥
− ln β0

E0(R1, p)
. (6)
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Now consider the sum PII:

PII ≤ �(β0 − ωt)b1� max
ωt≤β≤β0

{(
b1
βb1

)
P2(W ≥ W0 |βb1)P βb1

1 (1− P1)
(1−β)b1

}
.

Hence, as n → ∞ (b1 → ∞ and b0 → ∞), we obtain

EII(R1, n1, ωt, p) = min
ωt≤β≤β0

{
E2(β, ωt, p) + βE0(R1, p)−

1

n1
H(β)

}
. (7)

Note that if the minimum on the right-hand side of (7) is attained at β0, then according to (5)
we obtain EII = EI. Consequently, EII ≤ EI.

It is easily seen that, as n → ∞, the inequality

P ≤ exp{−nE(R1, n1, ωt, p)}

is satisfied, where E(R1, n1, ωt, p) = min{EII(R1, n1, ωt, p), EI(R1, n1, p)} = EII(R1, n1, ωt, p).

According to the lemma proved above, the complexity of decoding algorithm A is of order
O(n log n) if condition (3) is satisfied, but for the obtained estimate to hold, condition (6) must
also be satisfied. Thus,

− lnβ0
E0(R1, p)

≤ n1 ≤
1

R1
log2 log2 n,

which completes the proof. 

Remark 4. The proof of Theorem 4 differs from that of Theorem 3 only in the fact that W0 is

set to be �ω′
tn	, where ω′

t is the fraction of guaranteed error correcteds by the LG-LDPC code.
It should be noted that the dependence of errors and their positions are not important for the
proof; important is only the number of errors.

Remark 5. The proof of Theorem 2 differs from the proof of Theorem 3 only in the fact that W0

is set to be �ωtR1n	, because the length of the Gallager’s LDPC code in the concatenated code
construction is n2 = nR1.

Proof of the corollary. The correctness of the corollary is easily checked by noting that
E0(·) > 0 for R1 < C [11] and E2(·) ≥ 0, which follows from (5), and that we can always se-

lect n1 in a such way that
1

n1
H(β) < βE0(·) +E2(·), because n1 can be arbitrarily large according

to condition (2). Furthermore, as was noted above, in [12] it was shown that for any code rate
R2 < 1 there exists a construction of a Gallager’s LDPC code with ωt > 0, which allowed us to omit
this condition in the assertion of the corollary (unlike the assertion of a similar corollary in [10]). 


REFERENCES

1. Forney, G.D., Jr., Concatenated Codes, Cambridge: MIT Press, 1966. Translated under the title Kaskad-
nye kody, Moscow: Mir, 1970.

2. Blokh, E.L. and Zyablov, V.V., Lineinye kaskadnye kody (Linear Concatenated Codes), Moscow: Nauka,
1982.

3. Gallager, R.G., Low-Density Parity-Check Codes, Cambridge: MIT Press, 1963. Translated under the
title Kody s maloi plotnost’yu proverok na chetnost’, Moscow: Mir, 1966.

4. Zyablov, V.V. and Pinsker, M.S., Estimation of the Error-Correction Complexity for Gallager Low-Den-
sity Codes, Probl. Peredachi Inf., 1975, vol. 11, no. 1, pp. 23–36 [Probl. Inf. Trans. (Engl. Transl.), 1975,
vol. 11, no. 1, pp. 18–28].

PROBLEMS OF INFORMATION TRANSMISSION Vol. 51 No. 3 2015



216 RYBIN, ZYABLOV
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