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Abstract—A Coulomb medium is a system of N charged particles of equal charge on an
interval with nearest-neighbor Coulomb interaction and constant external electric field. We
show that, asymptotically as N → ∞, stable configurations have four possible phases of the
particle density depending on the external field, which is assumed to be a function of N .
Moreover, we find these phases explicitly.
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1. INTRODUCTION

The problem of finding N -point particle configurations on a manifold having minimal energy
(or even fixed configurations) was regarded to be important long ago [1]. Therefore, we should
say some words about the history of this question. First of all, we consider systems of particles
with equal charges and with the Coulomb interaction. Immediately, the problem is separated into
the case of small N , where the problem is finding such configurations explicitly, and the case of
large N , where asymptotics is of the main interest. Already J.J. Thomson (who discovered the
electron) suggested the problem of finding such configurations on a sphere, and an answer for
N = 2, 3, 4 has been known for more than 100 years, but for N = 5 the solution was obtained quite
recently [2]. In the one-dimensional case, already T.J. Stieltjes studied the problem on an interval
with logarithmic interaction and found its connection with zeros of orthogonal polynomials on the
corresponding interval; see [3, 4]. However, the problem of finding minimal energy configurations
on the two-dimensional sphere for any N and for power interaction (sometimes, this is called
the seventh S. Smale’s problem; it is also connected with the names of F. Risz and M. Fekete)
was completely solved for quadratic interaction only (see [5–7] and review [8]). For more general
compact manifolds, see a survey [9].

Here we follow an alternative direction: namely, we study how a configuration could change in the
presence of a weak or strong external force. It appears that even in a simplified one-dimensional
model with nearest-neighbor interaction there is an interesting structure of fixed points (more
exactly, fixed configurations), rich both in the number and in the charge distribution. For the
constant force case, we find four phases of the charge density, with respect to a parameter which is
the ratio of the interaction strength constants and the value of the external force.

By a Coulomb medium we call the space of configurations

−L ≤ xN < . . . < x1 < x0 ≤ 0

of N + 1 point particles with equal charges on the segment [−L, 0]. Here N is assumed to be
sufficiently large; however, some results are valid for any N ≥ 2. We assume a repulsive Coulomb
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interaction of the nearest neighbors and an external force αextF0(x); i.e., the potential energy is

U =
N∑

i=1

V (xi−1 − xi)−
N∑

i=0

xi∫

−L

αextF0(x) dx, V (x) =
αint

|x| , (1)

where αext and αint are positive constants. This determines the dynamics of a system of charges
if one defines exactly what happens with particles 0 and N in the points 0 and −L, respectively;
namely, we assume completely inelastic boundary conditions. More precisely, when a particle x0(t)
at time t reaches the point 0 having some velocity v0(t−0) ≥ 0, then its velocity v0(t) immediately
becomes zero and the particle itself stays at 0 until the force acting on it (which varies accordingly
to the motion of other particles) becomes negative. Similarly for the particle xN (t) at the point −L.

To discover phase transitions, it is common to consider asymptotics as N → ∞, with the
parameters L and F (x) being fixed. Then the fixed points depends only on the “renormalized

force” F =
αext

αint
F0, and we assume that the renormalized constant αren =

αext

αint
(or the renormalized

force) can tend to infinity together with N , namely as αren = cNγ , where c, γ > 0. It is obvious
that if F0 ≡ 0, then for a unique fixed point and for all k = 1, . . . , N we have

δk = xk−1 − xk =
L

N
. (2)

The case where αren does not depend on N was discussed in detail in [10]; there are no phase
transitions but it is discovered that the structure of the fixed configuration differs from (2) only on
a submicroscale of the order N−2.

The necessity to consider cases where αren depends on N issues from particular examples where
αren � N . For instance, the linear density of electrons in some conductors (see [11]) is of the order

N ≈ 109 −1, αint =
e2

ε0
≈ 10−28 (in the SI system), and thus αext = 220

eV

m
≈ 352 × 10−19. Thus,

αren is of the order 1011. This is close to a critical point of our model, which, as will be shown
below, is asymptotically ccrN , i.e., is close to 4× 109 in our case.

We study the density ρ(x) (proving its existence) defined so that for any subintervals I ⊂ [−L, 0]
the limits

ρ(I) =

∫

I

ρ(x) dx = lim
N→∞

#{i : xi ∈ I}
N

exist. We find four phases: (1) uniform (constant) density, (2) nonuniform but positive smooth
density, (3) continuous density vanishing on some subinterval, (4) density of a δ function type.

The one-dimensional case shows what can be expected in the multidimensional case, which
is more complicated but has great interest in connection with static charge distributions in the
atmosphere or in a living organism. For example, case (4) of Theorem 2 is related to the discharge
possibility, since after disappearance of an external force a large concentration of charged particles
can produce strong discharge.

2. MAIN RESULTS

Lemma. Assume that F0(x) is continuous, nonnegative, and nonincreasing, i.e., F (x) ≤ F (y)
if x > y. Then for any N , L, and αren a fixed point exists and is unique. If y is such that
F (x) = 0, x ≥ y, and F (x) > 0, x < y, then δk+1 > δk if xk+1 < y.

In what follows we assume for simplicity that F0 > 0 is uniform (constant in x).
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Theorem 1 (critical force). For any N and L there exists Fcr = Fcr(N,L) such that for the
fixed point we have xN > −L for F > Fcr and xN = −L for F ≤ Fcr. If F = cNγ , γ > 1, then we
have xN → 0 as N → ∞ for any c > 0. Furthermore, Fcr ∼N→∞ ccrN , where

ccr =
4

L2
. (3)

Theorem 2 (four phases). (1) If F = o(N), then the density exists and is strictly uniform;
i.e., for all k = 1, . . . , N as N → ∞

max
k

∣∣∣(xk−1 − xk)−
L

N

∣∣∣ = o
( 1

N

)
; (4)

(2) If F = cN and 0 < c ≤ ccr, then xN = −L and the density of particles exists, is nowhere zero,
but is not uniform (not constant in x);

(3) If F = cN and c > ccr, then as N → ∞

−L < xN → − 2√
c
, (5)

and the density on the interval (− 2√
c
, 0) is not uniform;

(4) If F = cNγ , γ > 1, then the density ρ(x) → δ(x) in the sense of distributions.

3. PROOFS

Uniqueness: Proof of Lemma 1. Put

fk = δ−2
k , k = 1, . . . , N.

At least one fixed point exists because the minimum of U obviously exists. Any fixed point satisfies
the following conditions:

x0 = 0

and
fk+1 + F (xk) = fk, k = 1, . . . , N − 1. (6)

However, for the particle N there are two possibilities:

fN ≥ F (xN ) (7)

if xN = −L, and
fN = F (xN ) (8)

if xN > −L.

Forgetting for a while about fixed points, we will consider equations (6) as equations uniquely

defining (by induction on k) the functions fk of δ1, and thus δk =
1√
fk

, and also xk = −(δ1+. . .+δk).

It is obvious that fk and xk are decreasing and δk are increasing functions of δ1. Moreover, if δ1 → 0,
then all fk → ∞, and δk and xk tend to zero, and therefore, for δ1 sufficiently small, inequality (7)
holds. Thus, if δ1 increases, two cases are possible: (a) There exists δ1,final such that

F (xN ) = fN , xN > −L.

Furthermore, if δ1 > δ1,final, then F (xN ) and δN increase as functions of δ1, and fN decreases, and
therefore F (xN ) > fN . It follows that in this case there are no other fixed points; (b) Such δ1 does
not exist, but then for some δ1 we have

xN = −L, F (xN ) ≤ fN .

This defines the unique fixed point.
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Remark about nonuniqueness. The monotonicity assumption in the uniqueness lemma is
very essential. One can give an example of nonuniqueness, for a function F0(x) with a single
maximum, where the number of fixed points is of the order of at least N . Namely, on the interval
[−1, 1] put for b > a > 0

F0(x) = a− 2ax, x ≥ 0,

F0(x) = a+ 2bx, x ≤ 0.

Then there exists Ccr > 0 such that for all sufficiently large N and αren = cN , c > Ccr, one can
similarly show that for any odd N1 < N there exists a fixed point such that

−1 = xN < . . . < xN1 < 0 < xN1−1 < . . . < xN1+1

2

=
1

2
< . . . < x0 < 1.

Moreover, any such point will give a local minimum of the energy.

Critical force: Proof of Theorem 1 and case (4) of Theorem 2. In the case of a constant
positive force it follows from (6) that

fi > fi+1 ⇐⇒ δi < δi+1, i = 1, . . . , N − 1, (9)

i.e., the lengths δi of intervals strictly increase with i. Therefore,

δ1 <
L

N
. (10)

Summation of equalities (6) over i = 1, . . . , k − 1 gives that for any k = 1, . . . , N

fk = f1 − (k − 1)F, k = 1, . . . , N. (11)

Similarly to (11), summing over i = N − 1, . . . , k − 1, we obtain

fk = fN + (N − k)F. (12)

Then from (11) we get

δk =
(
δ−2
1 − (k − 1)F

)− 1
2 = δ1

(
1− δ21(k − 1)F

)− 1
2 (13)

and, since a fixed point exists,

1− δ21(k − 1)F > 0, (14)

or

δ1 <

(
1

(N − 1)F

) 1
2

. (15)

To prove Theorem 1, consider a simpler auxiliary model with L = ∞. In other words, we assume
that the particles are located on the interval (−∞, 0], and the force F is constant on the whole
(−∞, 0]. In this model for any F > 0 there is a unique fixed point, given explicitly by

fN = F, fk = (N − k + 1)F, k = N − 1, . . . , 1,

which follows from (12). Hence we obtain

δN = F− 1
2 , δk =

1√
(N − k + 1)F

(16)
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and

−xN =
N∑

k=1

δk =
1√
F

N∑

k=1

1√
k
.

The relation of this model to the initial one is quite simple. If S ≤ L, then the fixed points for both
models coincide. If S ≥ L, then xN = −L. In fact, assuming that xN > −L for the critical point in
the main model, we obtain a contradiction with the auxiliary model. Therefore, the critical force
can be found from the condition that xN = −L in the auxiliary model; i.e.,

F = Fcr =

(
1

L

N∑

k=1

1√
k

)2

∼N→∞
( 2

L

)2
N.

One can also say that for any x < 0 there exists a unique F = Fx such that xN = x.

For F = cN , c > ccr, we have

−xN = L =
N∑

k=1

δk =
1√
F

N∑

k=1

1√
k
∼ 2√

c
,

whence (3) follows, and this gives Theorem 1. Case (4) of Theorem 2 follows similarly, since xN → 0
for F = cNγ , γ > 1.

Nonuniform density: Proof of cases (2) and (3) of Theorem 2. First, consider the case
F = cN , c > ccr. Then for k = aN we have from (16)

δk =
1√

(N − k + 1)F
∼ 1√

(1− a)c

1

N
.

Therefore, the density exists; moreover, it equals zero on [−L, xN ] and is nonuniform on [xN , 0].

Now let c ≤ ccr. One can assume that δ1 = b
L

N
, 0 < b = b(N) ≤ 1. Then for k = aN , a < 1,

from (13) we obtain

δk = b
L

N

(
1− L2cb2

k − 1

N

)− 1
2 ∼ b

L

N

(
1− b2cL2a

)− 1
2 .

Thus, the density is not uniform.

Uniform density: Proof of case (1) of Theorem 2. From (10) we have

δ21(k − 1)F ≤ δ21(N − 1)F = o(1). (17)

Then

L =
N∑

k=1

δk = δ1

N∑

k=1

(1− δ21(k − 1)F )−
1
2

= δ1

N∑

k=1

(
1 +

1

2
δ21(k − 1)F +O

(
(δ21(k − 1)F )2

))

= Nδ1 +
1

4
δ31FN2 + o(δ31FN2). (18)

But by (17) we have
δ31FN2 = o(Nδ1),

and therefore

δ1 =
L

N
+ o

( L

N

)
.

The result for all k follows from (13).
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