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Abstract—Calculated concentration dependences of interdiffusion coefficients and coefficients determining
contributions of initial and boundary conditions for various alloy components into distribution of concentra-
tions in the diffusion zone are illustrated. The analysis of these dependences shows that kinetics of component
redistribution is determined by the component that diffuses slowly, which distinguishes the results of this
approach from that of the generalized theories of the Darken approach.
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INTRODUCTION
The majority of alloys for industrial applications

have multicomponent composition and multiphase
microstructure. To predict a structure and its degrada-
tion upon the production of items from alloys and
under the operation condition, respectively, it is nec-
essary to understand and describe diffusion processes
in these systems [1–6]. However, peculiarities of the
diffusion in multicomponent alloys require clarifying,
because their origin is not always known [7–9]. In par-
ticular, this is true for the “sluggish” diffusion in high-
entropy alloys [9].

In [10], the approach that has been earlier devel-
oped for the case of binary systems [11–19] is general-
ized to ternary alloys. Its mathematical apparatus has
been developed, and the expressions for the interdiffu-
sion coefficients that determine contributions of initial
and boundary conditions into the distribution of con-
centrations in the diffusion zone have been derived.

In this work, the concentration dependences of the
aforementioned coefficients are calculated and the plots
that illustrate these dependences are given; on this basis,
the peculiarities of interdiffusion in ternary alloys and
possible causes for its retardation are analyzed.

SOLUTION OF SYSTEM 
OF DIFFUSION EQUATIONS 

FOR THREE COMPONENTS AND VACANCIES
In [10], basic equations for f lows of vacancies and

atoms in three-component system were derived by the
Gurov hole gas method [3, 4]. After substitution of the

expressions for f lows in the continuity equations, we
get the system of four nonlinear interrelated equations,
which is linearized as it has been done in the case of
the interdiffusion in binary systems [13]. In this case,
the concentration gradients were considered to be
small, because the f low equations were derived for the
same conditions [3, 4], the concentrations are repre-
sented as a sum of two terms:

(1)

where  is the vacancy concentration and ci is the
component concentration i = 1, 2, 3,  

The system of linearized equation for  and 
(see (5) in [10]) was solved using the Green’s functions
for parabolic equations [20], which allowed describing
the functions as series (for details see [13]):

(2)

where 
Taking into account the orthogonality of 

the system of diffusion equations in [10] was trans-
formed into a system of integral equations for 
and  This system of equations was solved using
the Laplace transformation. The characteristic equa-
tion ((9) in [10])) has eigenvalues that determine tem-
poral dependence of concentrations of alloy compo-
nents and vacancies. In this case, the distribution of
components concentration in the diffusion zone is
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determined  two interdiffusion coefficients with an
accuracy up to the vacancy concentration terms of the
higher order. These coefficients are roots of the qua-
dratic equation with the following coefficients:

(3)

Then, formulas for these roots are calculated as
follows:

(4)

(5)

where  are the self-diffusion coefficients,
and  is determined by the following expression:
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 is the Laplace image of function

which determines contributions of the first-order
boundary conditions set at the boundaries of interval l
in the solution of the diffusion equation for compo-
nent i.

To derive expression for , in , it is suf-
fice to change indices 1 → 2; 2 → 3; 3 → 1; and for

, 1 → 3; 3 → 2; 2 → 1.
Thus, temporal change in the concentration of

alloy components is determined by two coefficients 
and  Besides, the form of the concentration pro-
files depends not only on the coefficients, but also on
six remaining matrix elements of M1 (see (6)).

CONCENTRATION DEPENDENCES 
OF COEFFICIENTS  AND  
AND MATRIX ELEMENTS M1

Coefficients  and  as well as matrix elements of
M1 (6) demonstrate a complex dependence on the con-
centration of alloy elements. Therefore, for illustration,
such dependences are calculated and plotted for some
coefficients Di, which were considered independent on
concentration (often used in theoretical works). So,
Figs. 1 and 2 demonstrate dependences of  and 
for various proportions of coefficients D1, D2, D3.

Results shown in Figs. 1, 2 suggest that for different
concentrations  varies in the range between average
and maximum values of self-diffusion coefficients; 
varies in the range between minimal and average val-
ues of self-diffusion coefficients. This means that
terms of the second column of equation (6) change
slowly with time. In addition, these coefficients are
essentially lower than in any cases of linearly depen-
dent diagonal coefficients, e.g., in the generalized the-
ories of the Darken approach for three-component
alloys [4]. Besides, these deviations are maximal for
the equiatomic alloy composition.

To enhance analysis, the concentration depen-
dences of the coefficients  and  were calculated
for constant concentration of one of the components.
Results are demonstrated in Fig. 3.

All expressions  have the same structure as in
the case of the two-component system (see [13]).
However, coefficients of functions dependent on 
which determine time dependence, have a more com-
plicated form, and it is difficult to express them conve-
niently in terms of . Therefore, Figs. 4–7
demonstrate plots of concentration dependences of
matrix elements of M1 for the above-described rela-
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Fig. 1. Concentration dependence of coefficients D+ (a) and D– (b) for diffusion coefficients ratio D1 : D2 : D3 as 3 : 2 : 1. The

case of equiatomic composition (с1 = с2 = с3 = 1/3),  
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Fig. 2. Concentration dependence of coefficients D+ (a) and D– (b) for diffusion coefficients ratio D1 : D2 : D3 as 10 : 4 : 1. The

case of equiatomic composition (с1 = с2 = с3 = 1/3),  
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tionships of self-diffusion coefficients. Besides, the
plots only represent matrix elements with higher order
of vacancy concentration. First, Figs. 4 and 6 show
plots for matrix elements of M1 (6), which determine
contributions of the terms controlled by initial and
boundary conditions for the first (see Eq. (6)) and
then for the second (Figs. 5, 7) components into the
dependence of the first-component concentration in
diffusion zone on coordinate and time.

It is necessary to note that coefficients have the
same order of magnitude. Besides, in a certain con-
centration range, elements of the right column of
matrix M1 (6), which determine contributions of
PHYSICS OF META
slowly changing terms (D– dependent), have higher
values than those of the matrix middle column
(D+ dependent). This means that in this concentration
region the slow time-dependent variation of the com-
ponent concentration prevails.

Figures 6 and 7 show dependences of the same
matrix elements for another relationship between the
self-diffusion coefficients.

The data presented demonstrate that they have
similar behavior and only somewhat differ in value.
Additionally,  and  are calculated for two rela-
tionships of self-diffusion coefficients, presuming that
their average values are the same (Figs. 8 and 9).

+D −D
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Fig. 3. Concentration dependence of coefficients D+ (a) and D– (b) for diffusion coefficients ratio D1 : D2 : D3 as 10 : 4 : 1 for
different values of component с3.
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Fig. 4. Concentration dependence of coefficients  (a) and  (b) for diffusion coefficients ratio D1 : D2 : D3 as 3 : 2 : 1. The

case of equiatomic composition (с1 = с2 = с3 = 1/3),   = 0.102.
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Analysis of the results shown in these figures
demonstrates that the higher the difference in the self-
diffusion coefficients in an alloy (for the same average

value), the less the  coefficient and the more pro-
nounced retardation of the interdiffusion in equi-
atomic and some other alloys. In addition, under these
conditions the contribution of such terms is also
higher, which originates from the М matrix compo-
nents.

−D
PHYSICS OF METALS AND METALLOGRAPHY  Vol. 1
CONCLUSIONS

Thus, in this work, concentration dependences of
diffusion coefficients that determine the redistribution
of the alloy components in the diffusion zone and the
kinetics of the diffusion transformations are studied.
The derived equations and presented figures demon-
strate that these coefficients depend nonlinearly on
concentration and self-diffusion coefficients. In this
case, the largest of these coefficients falls in the range
23  No. 5  2022
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Fig. 5. Concentration dependence of coefficients  (a) and  (b) for diffusion coefficients ratio D1 : D2 : D3 as 3 : 2 : 1. The

case of equiatomic composition (с1 = с2 = с3 = 1/3)   = 0.156.
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Fig. 6. Concentration dependence of coefficients  (a) and  (b) for diffusion coefficients ratio D1 : D2 : D3 as 10 : 4 : 1. The

case of equiatomic composition (с1 = с2 = с3 = 1/3),   = 0.124.
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Fig. 7. Concentration dependence of coefficients  (a) and  (b) for diffusion coefficients ratio D1 : D2 : D3 as 10 : 4 : 1. The

case of equiatomic composition (с1 = с2 = с3 = 1/3),  
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Fig. 8. Concentration dependence of coefficients D+ (a) and D– (b) for diffusion coefficients ratio D1 : D2 : D3 as 9 : 5 : 1. The

case of equiatomic composition (с1 = с2 = с3 = 1/3),  
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Fig. 9. Concentration dependence of coefficients D+ (a) and D– (b) for diffusion coefficients ratio D1 : D2 : D3 as 6 : 5 : 4. The

case of equiatomic composition (с1 = с2 = с3 = 1/3),  
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between average and maximal self-diffusion coeffi-
cients; the smallest one, between the minimal and
average. Preliminary results show that in the ternary
alloy the interdiffusion is slower than predicted by the
generalized theories of the Darken approach [4]. This
difference is the highest for the equiatomic alloys and
for higher deviation in self-diffusion coefficients. In
other words, it can be expected that the “sluggish dif-
fusion” will be observed in alloys in which the maxi-
mal self-diffusion coefficient is five or more times
larger than the minimal one.
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