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Abstract—High manganese steels with different contents of carbon and additionally alloyed with silicon are
investigated. Mechanical properties of the steels under tensile deformation are determined, and the changes
in their phase compositions are studied. The phase compositions of steels after quenching and after quench-
ing with subsequent deformation are investigated by the X-ray diffraction method. Magnetometric measure-
ments are performed directly during tensile deformation. It is shown that deformation has a different effect
on the phase composition of steels, namely: in steel 40G20, a small amount of strain martensite is formed as
a result of deformation; in steel 25G20S3, a substantial part of austenite undergoes a martensitic transforma-
tion (γ → ε).
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INTRODUCTION
High-manganese austenitic steels have been

known for over a hundred years [1]. High-manganese
austenitic steels are widely used as wear-resistant
materials [2, 3]. In addition, they exhibit a high cavita-
tion resistance, a lower tendency to swelling upon irra-
diation, and a relatively low cost [4, 5]. Interest in such
steels has increased in recent years, since they have
begun being used as structural materials with a unique
combination of strength and plasticity [6–8]. In par-
ticular, they are being used in the automotive industry
as high-strength steels for deep drawing [9].

Deformation of high-manganese steels is accom-
panied by substantial transformation induced plas-
ticity (TRIP) and twinning induced plasticity (TWIP)
effects [10, 11]. These kinds of steels are characterized
by a low yield point, a high strain-hardening rate, and
a high ultimate strength. Deformation proceeds with
little or no necking, with low tapering, and relatively
high elongation. This ensures their high plasticity and
strong hardening upon cold plastic deformation.

Deformation can be induced in Fe–Mn steels by
various mechanisms depending on the energy of
stacking fault (SFE), such as slipping, twinning, and
the formation of strain martensite [12–17].

It should be noted that the formation of the follow-
ing two types of martensite is possible in austenitic
Fe–Mn steels: ε-martensite with a hexagonal lattice

and α'-martensite with a cubic lattice. Different types
of martensites determine different structures and
strain hardening of steels [4, 5, 14].

It is known [18–22] that the content of ferromag-
netic phases (ferrite, quenched α-martensite, and
strain α'-martensite) can be estimated from the mag-
netic characteristics of a material.

The magnetometric method makes it possible to
study changes in the phase composition directly in the
process of deformation [23]. However, there are no
such studies published for Fe–Mn–C alloys, which
are promising structural materials.

MATERIALS AND TECHNIQUES
For the study, two austenitic high manganese steels

40G20 and 25G20S3 were taken (Table 1). The use of
different contents of carbon and additional alloying
with silicon made it possible to obtain steels with dif-
ferent stacking-fault energies (SFEs) that change the
deformation mechanism of steels [12, 15, 16]. Accord-
ing to the published data, the SFE [10, 12, 13] of the
investigated steels is approximately 20 MJ/m2 for steel
40G20 and 13 MJ/m2 for steel 25G20S3.

The changes in the phase compositions of the ini-
tial state (quenching from 1050°C in water) and after
tensile deformation were studied by the X-ray powder
diffraction (XRD) method on an XRD-7000 X-ray
32
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Table 1. Chemical compositions of steels under study, wt %

Steel C Si Mn P S Cr Ni

40G20 0.40 0.22 20.04 0.015 0.017 1.10 0.13
25G20S3 0.25 3.15 20.65 0.018 0.018 1.07 0.19

Table 2. Mechanical properties of steels under study

Steel σ0.2, MPa σUTS, MPa δ, % ψ, %

40G20 270 780 38 24
25G20S3 320 850 30 17
diffractometer. The phases were identified using the
PDF-2 database of the International Center for Dif-
fraction Data (ICDD). In addition, magnetometric
studies were performed directly in the process of ten-
sile deformation using a Remagraph C-500 device,
and the amount of the magnetic phase was calculated
from these data. Mechanical tests of samples were per-
formed on a Tinius OLsen SL-60 device at room tem-
perature.

EXPERIMENTAL RESULTS

An analysis of the XRD data showed that both
studied steels have an austenitic structure after
quenching from 1050°C into water (initial state). At
the same time, traces of the ε-phase (about 1%)—
which could appear during the preparation of sam-
ples—were found in steel 25G20S3.

Tensile tests made it possible to obtain the follow-
ing mechanical properties (Table 2). The steels under
study exhibit high plasticity: their deformation begins
at relatively low stresses, and their destruction occurs
at relatively high stresses. This indicates a high strain
hardening rate of the studied steels. However, defor-
mation in these steels is induced by different mecha-
nisms, which gives rise to a difference in the level of
mechanical properties [17]. For the steels under study,
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Fig. 1. Diffraction pattern of steel 40G20 after tensile
deformation.
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large uniform elongation is observed; as a result, the
samples are destroyed practically without necking
(TRIP and TWIP effects). This is also evidenced by
the low level of tapering.

Using the XRD method, X-ray diffraction patterns
were obtained in different places of the samples after
destruction, namely, in the immediate vicinity of the
place of destruction and at a distance of 13 cm from it
(see Figs. 1 and 2, respectively)

Based on the X-ray phase analysis results, the
phase compositions of the studied high-manganese
steels after tensile defromation were determined. The
results of the performed experiment are given in Table 3.

The chemical composition of steels has a dramatic
effect on the phase composition after deformation.
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Fig. 2. Diffraction pattern for steel 25G20S3 after tensile
deformation.

0

1000

2000

0

1000

2000

3000

30 40 50 60 70 80 90

0.5 cm from fracture

~13 cm from fracture

ε-phase

γ-phase

100

2θ, deg

In
te

n
si

ty
, 

re
l.

 u
n

it
s



34 GERVASYEV et al.

Fig. 3. Magnetic hysteresis loops of steels in the initial state
and after destruction.
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This indicates a change in the deformation mecha-

nism. A small amount of ε-martensite (6%) was found

in steel 40G20. In steel 25G20S3, a substantial part of

the austenite present in the material transforms into

the ε-phase. In steel 25G20S3, the intense formation

of strain ε-martensite is observed (90–95%).
PHYSICS OF META

Table 3. Phase composition of steels after deformation, vol %

Steel
Sample cutting location relative 

to fracture location, cm
γ ε

40G20 13 94 6

0.5 94 6

25G20S3 13 10 90

0.5 5 95

Table 4. Changes in the magnetic characteristics of steels afte

Strain, % Hc, A/cm Br

Steel 4

0 1.8 2.28 ×

0.1 1.8 2.31 ×

7.3 2.8 3.92 ×

14.2 3.7 5.52 ×

27.3 6.7 1.12 ×

37.9 9.7 1.78 ×

Steel 25

0 7.3 1.96 ×

9.9 7.1 3.13 ×

14.4 7.7 3.53 ×

22.3 9.7 4.78 ×

29.9 13.4 7.13 ×
It should be noted that the phase composition after
deformation is nearly the same in different parts of the
sample, which indicates a uniform deformation pro-
cess along the entire length of the sample due to plas-
ticity induced by transformation or twinning. The
presence of α'-martensite after deformation was not
revealed by the XRD methods. This is due to the fact
that the XRD lines are substantially broadened after
deformation and do not allow one to detect small
amounts of the α' phase.

To determine the amount of the magnetic α' phase,
magnetometric mesurements were performed directly
during tensile deformation. At each time point of the
test, magnetic hysteresis loops were constructed (the
initial and final loops are shown in Fig. 3).

The coercive force is the main structurally sensitive
magnetic characteristic. Key magnetic characteristics
of the material, such as coercive force Hc, residual

induction Br, and saturation magnetization Ms, are

determined. The results are compiled in Table 4.

As can be seen from Table 4, the coercive force in
steel 25G20S3 is substantially higher than that in steel
40G20. This is due to the formation of a large amount
of ε-martensite during deformation in the former steel
and, as a result, a high concentration of defects in this
alloy.

An increase in the residual magnetic induction
upon deformation is mainly caused by an increase in
the content of the magnetic phase. To analyze the
properties of this phase, one can consider such a
parameter as the ratio of the residual magnetic induc-
tion to the saturation magnetization. It follows from
Table 4 that this ratio is initially slightly higher in steel
40G20. This may be related to the influence of the
LS AND METALLOGRAPHY  Vol. 123  No. 1  2022

r deformation

, T Ms, A/m Br/(μ0Ms)

0G20

 10–4 2.43 × 102 0.75

 10–4 2.78 × 102 0.66

 10–4 8.79 × 102 0.35

 10–4 1.36 × 103 0.32

 10–3 2.76 × 103 0.32

 10–3 3.10 × 103 0.46

G20S3

 10–3 5.92 × 103 0.26

 10–3 6.56 × 103 0.38

 10–3 7.70 × 103 0.37

 10–3 1.08 × 104 0.35

 10–3 1.58 × 104 0.36
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Fig. 4. Changes in the amount of the magnetic phase in the
process of tensile deformation.
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nonferromagnetic phases (γ and ε) on the magnetic
properties.

The saturation magnetization in steel 25G20S3 is
also higher at all deformation stages.

Using the test results and considering the magnetic
characteristics of the material, concentration P of the
magnetic phase, i.e., α-martensite, was calculated by
formula

(1)

where Mmag denotes the theoretical saturation magne-
tization that a material consisting of only one ferro-
magnetic phase would have. An empirical formula was
proposed in [21, 22] for the specific saturation magne-
tization of a multicomponent alloy, which is expressed
through its chemical composition as follows:

(2)

where the contents of chemical elements in the solid
solution of the alloy under study are indicated in
parentheses.

Using formula (2), we obtain Mmag = 1.23 × 106 A/m

for steel 40G20 and Mmag = 1.08 × 106 A/m for steel

25G20S3.

Figure 4 shows the change in the amount of the α
phase. As can be seen from Fig. 4, a very small amount
of the magnetic phase is formed during standard
mechanical tests. Substantially larger amounts of this
phase are formed in steel 25G20S3 (up to 1.5%). It is
well known [4, 5] that α'-martensite in high-manga-
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nese steels is formed in place of ε-martensite. As has
been established in this study, a large amount of ε-
martensite (90%) in steel 25G20S3 with a reduced
energy of stacking-fault defects is formed with rela-
tively low degrees of deformation under uniaxial ten-
sion. In steel 40G20, a small amount of α'-martensite
is formed (less than 0.2%).

CONCLUSIONS

Magnetometric measurements performed in this
study directly during tensile deformation and X-ray
diffraction studies before and after test runs have made
it possible to clarify the features of phase transforma-
tions that take place in the process of deformation of
Fe–Mn–Si–C alloys.

In austenitic steel 40G20, the deformation process
is accompanied by the formation of strain ε-marten-
site in a relatively small amount up to 6%. The forma-
tion of strain α-martensite is detected in a very small
amount (0.2%).

In steel 25G20S3, intense formation of strain
ε-martensite (90–95%) takes place, and strain α'-mar-
tensite (1.5%) is also formed.

The amount of strain α'-martensite is proportional
to the amount of ε-martensite, which confirms the
following sequence of formation of phases in the ten-
sile deformation process: γ → ε → α'.

The study of the phase compositions near the frac-
ture and at a considerable distance from it has shown
that the steel samples have practically the same phase
composition. This indicates uniformity of deforma-
tion over the sample length, which is a consequence of
plasticity induced by transformation or twinning.
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