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Abstract—Conditions for the existence of equilibrium stable cracks in the combined elastic field of the biaxial
wedge disclination dipole and external stress are analyzed. In the configuration space of the parameters of the
system under consideration (the strength and length of the disclinations dipole and the magnitude of the
external stress), the ranges of parameters are determined at which such cracks can appear. It is shown that an
increase in the external stress leads to a significant localization of the existence domain of stable microcracks,
originating in the vicinity of a disclination dipole, and its displacement towards smaller dipole lengths. The
ranges of the lengths of stable cracks are determined. It is shown that an increase in the external stress leads
to a contraction of the intervals of realization of stable crack lengths at each fixed value of the dipole arm and
a shift of the upper and lower boundaries of this interval towards smaller crack lengths.
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INTRODUCTION
Experimental and theoretical studies show that

many regularities of the mechanical behavior of poly-
crystalline solids at large plastic strains can be
explained on the basis of the concept of linear rota-
tional mesodefects: strain-induced junction disclina-
tions [1–4]. They arise at triple junctions of grain
boundaries due to the difference in plastic strain in the
grains of the polycrystal, as well as at the vertices of
strain-induced facets arising at the grain boundaries
during their interaction with localized lattice shears [2,
4, 5]. Junction disclinations induce powerful nonuni-
form fields of internal stresses. As a result, at true
strain ε > 0.2, in their vicinity, specific accommoda-
tion structures arise in the form of broken dislocation
walls, propagating from the triple junctions and verti-
ces of strain-induced facets into the body of grain [1].
This process underlies fragmentation of polycrystals,
i.e., splitting grains into mutually misoriented
domains (fragments). Theoretical studies of the nucle-
ation and evolution of broken dislocation boundaries
in elastic fields of junction disclinations using analyti-
cal and computer simulation methods were carried out
in [2–4].

Along with the plastic deforming, in a fragmented
structure, local regions appear that have exhausted the
resources of further accommodative adjustment of the

structure [4]. In this case, the only channel for relax-
ation of elastic stresses induced by junction disclina-
tions is the nucleation of microcracks. The rise and
accumulation of microcracks in such “critical” regions
of the fragmented structure triggers the appearance of
regions of ductile fracture, which precedes the macro-
scopic destruction of the material.

As follows from the aforesaid, an important stage in
the construction of the physical theory of ductile frac-
ture of polycrystalline solids is the development of
adequate models for the nucleation, growth, and
accumulation of microcracks in elastic fields of sys-
tems of rotational mesodefects.

The development of such a theory is still at an early
stage. Currently available theoretical studies in this
direction are limited to the consideration of the sim-
plest configurations of mesodefects. In particular, the
conditions for the appearance of microcracks in the
elastic field of a single wedge disclination were consid-
ered in [6–9]. Later, similar studies were carried out
for the case of a wedge disclination dipole and a discli-
nation the stress field of which is screened by a distrib-
uted dislocation ensemble [6]. In [10], the conditions
for the Zener–Griffith crack nucleation near a discli-
nation dipole were analyzed. In [11], an analysis was
made of the conditions for the existence of cracks in
the field of internal stresses from a rotational-shear
820
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Fig. 1. Schematic representation of a disclination dipole
with a crack located near the negative disclination dipole.
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mesodefect, which is a superposition of a wedge discli-
nation dipole and a planar mesodefect. In [12, 13], the
conditions of propagation of cracks originating on
rotational mesodefects in heterogeneous materials
were analyzed.

In this paper, we consider the conditions for the
equilibrium of a microcrack in the combined field of
external and internal stresses from a biaxial wedge dis-
clination dipole and determine the existence domain
of stable cracks in the configuration space of the
parameters of the system under consideration.

1. DESCRIPTION OF THE MODEL
Consider a biaxial wedge disclination dipole of

strength  with an arm  containing in the vicinity
of its negative disclination a crack of length  (Fig. 1).

We choose a right-handed Cartesian coordinate
system such that its origin coincides with the position
of the negative disclination of the dipole and the -axis
is directed along the dipole arm. The energetically
most favorable orientation of a crack generally
depends on the stressed state. Further on, for simplic-
ity, we will consider the case of uniaxial tension along
the axis  in which the orientation of the crack coin-
cides with the direction of the dipole arm. We will ana-
lyze the equilibrium conditions for such a crack in the
combined field of external stresses and internal
stresses (the latter) from a disclination dipole. For this,
we will use the configurational force approach [14].
For planar deformation of an isotropic material, the
expression for the configurational force  defined as
the value of the elastic energy released during the
propagation of a crack over a unit length, has the form

(1)

where   is the shear modulus,  is
Poisson’s ratio,  and  are the weighted average

combined stresses from the disclination dipole, ,
and external stress 

(2)

(3)

The components  and  of the stress tensor of
the disclination dipole [15] in the chosen coordinate
system have the form
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Analysis of the dependence of the configurational
force  on the crack length  makes it possible to find
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all points of unstable and stable equilibrium of the
crack, which satisfy the following relations:

— for the case of unstable equilibrium,

(5)

— for the case of stable equilibrium,

(6)

where  is the specific energy of the free surface.

2. CALCULATION RESULTS 
AND DISCUSSION

Numerical calculations were performed for the fol-
lowing parameter values:  μm, G =

   

and 
The dependences  calculated for 

and  for different strengths of the
disclination dipole  are shown in Fig. 2.

Analysis of these dependences shows that, at fixed
values of the external stress and dipole length, the exis-
tence of stable equilibrium cracks (henceforward, such
cracks will be called stable) is feasible only in a certain
range of .

The lower bound of this interval, , satisfies the
relations:
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Fig. 2. Configurational force  vs. the crack length  at
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lated for different values of  (a) (1) 
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The dependence  for  is shown in
Fig. 2a by curve 2.

The upper bound of this interval,  satisfies the
relations
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Figure 2a shows the dependence  for

 (curve 4).

The dependence  for an intermediate value of

 from the interval  is shown in Fig. 2a,
curve 3. In this case, with an increase in the crack
length, after reaching a certain value , the crack
reaches a state of unstable equilibrium. When ,
the crack opens spontaneously and reaches a position
of stable equilibrium,  (stable crack). Below, fol-
lowing the terminology proposed in [6, 11], the crack
with length  will be called a crack nucleus.

With an increase in the strength of the disclination
dipole  within the interval under consideration,

, the length of the crack nucleus decreases
and the length of the stable crack increases (Fig. 2b).
Carrying out similar calculations for different values of
the dipole arm  (at a fixed value of the external
stress), the dependences of  and  on the dipole
length can be found.

The results are shown in Fig. 3. The upper and
lower curves in Figs. 3b and 3c represent the depen-
dences  and , respectively. In the con-

figuration space , the curves  and

 cut off the domains (fields) of existence of sta-
ble cracks (Fig. 3, highlighted in gray).

As can be seen from the analysis performed, with
an increase in the dipole length, the interval 
gradually narrows and shrinks to a point at

 at a certain value of the disclination
dipole length  To illustrate the aforesaid, Fig. 4
shows the evolution of the dependences  with an
increase in the dipole length , calculated at the val-
ues of the dipole strength  It can
be seen that, with an increase in the dipole arm, the
difference between the values of the local maximum
Fmax and the local minimum  on the curves 
decreases and, at , the curve with the local
maximum and minimum degenerates into a curve
with an inflection (in this case, ).
With a further increase in the disclination dipole
length, the existence of stable cracks becomes impos-
sible.

Comparison of Figs. 3a, 3b, and 3c shows that a
successive increase in the external stress  leads to
an increasingly pronounced localization of the field of
existence of stable microcracks originating in the
vicinity of a disclination dipole and its shift towards
smaller values of the dipole length.
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Fig. 3. Domains of existence of a stable crack in the configuration parameter space  at (a) 

(b)  and (c) 
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Since stable equilibrium of cracks is possible only

at values of  inside the interval  and their

length at fixed  and 2а increases monotonically
with increasing  the crack length also turns out to

be enclosed in a certain interval  Its lower

bound  corresponds to the strength of the disclination

dipole  and the upper bound  corresponds

to  The region of possible lengths of stable

cracks calculated at  

and  are shown in Fig. 5. As
expected, an increase in the external stress leads to a
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contraction of the intervals of (the existence of) stable
crack lengths at each fixed value of the dipole arm and
a shift of the upper and lower bounds of this interval
towards smaller 

CONCLUSIONS
The analysis performed in this work shows that the

emergence of equilibrium stable microcracks in the
vicinity of a disclination dipole at a given value of
the external stress is possible only in a certain region of
the configuration space of the parameters of the meso-
defect under consideration.

Despite the relative simplicity of the presented
model, some conclusions can be drawn about the
character of the accumulation of cracks in the frag-

.l
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Fig. 5. Ranges of the lengths of stable cracks, calculated at different values of external stress: (a) 

(b)  and (c) 
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mented structure. In the first approximation, rota-
tional mesodefects in such a structure can be repre-
sented as a set of dipoles of junction disclinations of
different strength, distributed along the boundaries of
fragments. In this case, the emergence of stable cracks
is possible near those disclination dipoles whose
strengths fall within the critical interval  con-
sidered above. The rise of such critical structural sec-
tions during plastic deformation will lead to the accu-
mulation of microcracks in them and the formation of
ductile fracture centers.
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