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Abstract—The development of modern computational techniques and equipment enables one to perform
high-precision calculations of complex processes for industry, including metallurgy. This review has classified
the basic physical and mathematical models of structure formation during heat and deformation treatment.
The Kocks–Mecking–Estrin model describing the dislocation structure at the initial stage of hot plastic
deformation has been analyzed. The models of dynamic, metadynamic, and static recrystallization kinetics
based on the Johnson–Mehl–Avrami–Kolmogorov equation have been considered. The models of the
kinetics of phase transformation upon heating and cooling of steel have been reviewed. The Kampmann–
Wagner model that describes the decomposition of supersaturated solid solution during the aging of alumi-
num alloys has also been considered. The main computational techniques to calculate microstructural evo-
lution, such as the cellular automaton, Monte Carlo, and multiphase-field techniques have been considered.
They exhibit high accuracy when calculating recrystallization processes and phase transformations. The sys-
tematization of the existing models that describe structural evolution has revealed the possibility to develop
complex models for the comprehensive calculation of full cycles to process metal materials by heating and
deformation. These models can be used for the optimization and development of new processing techniques.
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INTRODUCTION
The development of modern computational tech-

niques and equipment enables one to perform high-
precision calculations of complex processes for indus-
try, including metallurgy. The specific microstructure
and the corresponding level of properties are the main
factors that determine the quality of commercial met-
allurgical products. The microstructure in metal
materials forms primarily during the final stages of
metallurgical processing, namely, deformation and
heat treatment. Developing a systematic database of
physical and mathematical models describing micro-
structure formation during plastic deformation and
heat treatment is therefore an urgent task.

The models associating microstructural parame-
ters (volume fraction, recrystallized-grain size) with
deformation parameters, which are described by
Avrami–Kolmogorov-type equations, are currently
the most widespread for modeling structural evolution
under hot plastic deformation. They show high pre-
dictive accuracy, although they require a large amount
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SIMULATION OF MICROSTRUCTURE EVOLUTION IN METAL MATERIALS 1065
of experimental data to determine unknown constants.
Initially, mathematical equations relating the micro-
structural parameters with thermo-deformation ones
were employed for high-temperature alloys like
Waspalloy [1] and Inconel [2] and were later used for
a wider range of metal materials. However, models
based on such equations can predict microstructure
parameters only for alloys that are deformed in a sin-
gle-phase region. The Avrami–Kolmogorov-type
equations should be supplemented with equations
describing phase transformations for the alloys in
which hot plastic deformation initiates phase transfor-
mations. Identifying constants of these equations for
specific materials requires additional dilatometric and
microstructural studies, as well as complex calcula-
tions [3–6]. However, it significantly extends the pos-
sibilities of predicting the structure in materials after
multistage deformation and heat treatment. These
models are developed for low-carbon [7, 8] and hyper-
eutectoid chrome-bearing steels [9]. In addition, par-
ticular attention should be paid to the mathematical
characterization of the supersaturated solid solution
decomposition, resulting in the formation of the
metastable modifications of hardening phases (aging
products in aluminum alloys, carbide and carbonitride
phases in steels [10, 11], and others), because they
have a significant effect on the final properties of
products.

Computational methods, such as cellular automa-
ton, are alternative methods of modeling the structure
formation. This method involves dividing the region
under study into separate elements (cells) whose state
is determined not only by external factors (tempera-
ture, strain rate, degree of accumulated deformation)
but also by the state of neighboring cells. The calcula-
tion results in a complete picture of the evolution of
structural parameters in the simulated region of the
material during the whole process of deformation and
heat treatment. Despite the large volume of structural
studies required for accurate calculation, this method
is promising for structure modeling in modern materi-
als science, which is evidenced by the large number of
publications devoted to it. The cellular automaton
method was used to simulate structural evolution in an
AISI 304L steel [12], to describe dynamic recrystalli-
zation in a 42CrMo steel [13], to describe phase trans-
formations in two phase steel upon heating, and to
simulate other processes of structural formation
during deformation and heat treatment.

The aim of this review article is to systematize
modern physical and mathematical models and com-
putational methods simulating the structural evolu-
tion. This systematization enables one to create a the-
oretical foundation for the development of smart tech-
nologies of plastic deformation and thermal treatment
of metallic materials. A simplified algorithm for calcu-
lating and controlling the microstructural parameters
of metal materials during thermal and deformation
processing is shown in Fig. 1. Algorithmization of
PHYSICS OF METALS AND METALLOGRAPHY  Vol. 1
physical-mathematical and computation models
allows using them together with the methods of finite
element modeling, which is time and cost-effective for
the optimization of existing and the development of
new manufacturing technologies.

1. SIMULATION 
OF THE STRUCTURAL EVOLUTION 

UNDER HOT PLASTIC DEFORMATION
1.1. Dynamic Strain Hardening and Recovery

The first significant structural changes caused by
plastic deformation at both room and high tempera-
tures are associated with the processes of dynamic
work hardening and recovery (Fig. 2, stage I). This
stage is well described by the models proposed by
Kocks, Mecking, Estrin [14–16], and Nes [17–19].
These models describe the evolution of the dislocation
structure by the following law:

(1)

where  is the dislocation density (m–2) and  is the
strain degree.

The first term in Eq. (1) stands for the athermal for-
mation of dislocation pileups, which for single-phase
coarse-grained materials can be determined from the fol-
lowing equation [16]:

(2)

for multiphase materials and alloys with a micrograin
structure:

(3)

where  is the abs. value of Burgers vector (m), L is
the average distance covered by a dislocation to full
stop (m), and k are constants, determining strain-
induced hardening. The constants depend on the
nature and concentration of alloying elements in a
solid solution, the volume fraction of phases, and oth-
ers. The value of constants is determined using experi-
mental data. The second term describes dynamic recov-
ery. The rate of recovery is usually determined by the
first-order reaction equation (the question of why it is
proportional to the first degree of forest dislocation
number density is a subject of discussion [20], but this
dependence is in agreement with experimental data):

(4)

where  is the constant that depends on many factors
(temperature, concentration of alloying elements,
energy of diffusion activation, stacking fault energy,
and others). The coefficient  is difficult to calculate.
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Fig. 1. Algorithm for calculating the structural formation process during heat and deformation treatment of metal materials.
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It is determined on the basis of experimental data for
some alloys. Authors [21] have shown that  for
armco iron varies in the range 5.8–42.5 depending on
the temperature and strain rate. The power depen-
dence of this constant on the Ziner–Hollomon

parameter Z =  was also found for tita-

nium alloy TA15 [22]:

(5)
 is the strain rate (s–1), T is the temperature (K), and

R is the universal gas constant.
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PHYSICS OF METAL
The evolution of the dislocation structure during
dynamic recovery upon deformation at elevated tem-
peratures in most cases initiates the formation of a
subgrain microstructure. The steady-state stage in
case of the suppression of dynamic recrystallization
due to rapid dynamic recovery processes is character-
ized by the constant average size of subgrains, their
constant dislocation angle, and the constant average
density inside the subgrains. The average subgrain size
(dS) can be determined using the dislocation density
calculated by Eq. (1), and provided that the disloca-
S AND METALLOGRAPHY  Vol. 121  No. 11  2020
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Fig. 2. Schematic structural changes and stress–strain dependence during hot plastic deformation of metallic materials [21].
(I) dynamic recovery, (II) dynamic recrystallization, and (III) steady-state f low.
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tion density inside subgrains is much lower than the
average dislocation density:

(6)

where ϕ is the misorientation angle between subgrains.
The misorientation angle between subgrains ϕ at the
steady-state stage is usually 1.5°–2°.

In practice, the identification of unknown coeffi-

cients  and  does not require rigorous structural
research. Their values and rate and temperature
dependencies can be found from the initial region of
the strain curve, knowing the relationship between the
yield strength and dislocation density [23]:

(7)

where  is the yield strength that is not constrained by
the resistance of newly generated dislocations
(approximately corresponds to the yield strength), α is

the constant coefficient ( ), and G is the shear
modulus (MPa). The parameters of a substructure can
be determined with sufficient accuracy by the region
of the strain curve from the beginning to the attain-
ment of a critical strain degree.

1.2. Dynamic Recrystallization

After achieving a critical deformation, the soften-
ing due to dynamic recovery is accompanied by the
nucleation of new grains with a perfect structure.
These grains also undergo strain hardening, which
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may lead to the formation of new grains within them.
This process is called dynamic recrystallization.

The kinetics of phase and structural transforma-
tions is known to be well described by the Johnson–
Mehl–Avrami–Kolmogorov model (JMAK) [24–26]:

(8)

where X is the fraction of the transformed substance,

is the time (s),  and  are constants.

Equation (8) in the case of dynamic recrystalliza-
tion can be put in the form:

(9)

where  is the volume fraction of dynamically

recrystallized grains and  is the critical strain degree
that empirically depends on the initial grain size (d0)

and the Ziner–Hollomon parameter:

(10)

 is the strain degree at which 50% of recrystallized
grains are formed in the structure. This value is usually
determined by the degree of softening caused by
dynamic recrystallization and corresponds approxi-
mately to the yield strength:

(11)

where  is the maximum yield strength (MPa) and

is the yield strength at the steady-state stage (MPa).
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Table 1. Mathematical models of structural evolution during dynamic recrystallization

Material
Volume fraction 

of dynamically-recrystallized grains

Size of dynamically-recrystallized 

grains dDRX, μm
Reference

EP666
kd = 1.76, ,

[39]

AISI 316

,

[40]

AISI 310S
kd = 1.78, ,

[41]

15Kh2NMFA
 

[42]

30KhN3M2FA
 

[42]

 ε = ε  
 

�

0.06
cr

28 930
0.014 exp

RT
 ε = ε  
 

�

0.05
0.5

27 200
0.053 exp

RT

−  ε  
 

�

0.01 69 800
8826 exp

RT

−  = ε − 
 

�

0.04
d

16 550
0.029 exp ,  k

RT
 ε = ε  
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�

0.06
cr

23 590
1.97 exp

RT
 ε = ε  
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�

0.124
0.5

51300
71 exp

RT

−  ε  
 

�

0.123 50 900
0.3 exp

RT

 ε = ε  
 

�

0.063
cr

33390
0.0175 exp

RT
 ε = ε  
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�

0.056
0.5

28 900
0.05 exp

RT

−  ε  
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0.067 60 970
3062 exp

RT

=d 3.42,k  ε = ε
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�
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cr 0

26900
0.022 exp ,d

RT
 ε = ε
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�

0.076 0.1
0.5 0

32600
0.022 expd

RT

− −  ε  
 

�

0.01 0.1
0

111400
314 302 expd

RT

=d 3.74,k  ε = ε  
 

�
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cr 0

10 900
0.076 exp ,d

RT
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0.19 exp

RT

− −  ε  
 

�

0.01 0.09
0

96 000
63 900 expd

RT
It was shown empirically that the value of ε0.5 also

depends on the initial grain size and the Ziner–Hollo-
mon parameter:

(12)

where a1, a2, n1, n2, m1, m2, Q1, Q2, and kd are the

parameters of a material, which can be found experi-

mentally,  = ln(2) = 0.693.

The size of dynamically-recrystallized grains at the
steady-state stage practically does not depend on the
strain degree and is determined only by the initial
grain size, strain rate, and temperature:

(13)

where a3, n3, m3, and Q3 are the parameters of a mate-
rial, which can be determined from microstructural
studies. Table 1 lists the values of these constants for
some materials.

There are also special models for calculating the
grain size for different types of dynamic recrystalliza-
tion (continuous, discontinuous, geometric). Thus,
the dynamically-recrystallized grain size for the geo-
metric dynamic recrystallization (the term is proposed
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PHYSICS OF METAL
by McQueen et al. in [27, 28]) is described by the
model of Pettersen et al. [29]. The model describes the
change in the grain size during deformation by the fol-
lowing differential equation:

(14)

where  is the dynamic grain growth and  is

the grain refinement by changing its geometric shape
and forming high angular boundaries. The rate of
grain growth with increasing deformation is inversely
proportional to the Ziner–Hollomon parameter and
the actual grain size:

(15)

where  is the constant. The grain refinement in turn
is described by the following empirical model:

(16)
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In addition, the kinetics of dynamic recrystalliza-
tion and the grain growth are significantly influenced
by second-phase nanoparticles [30], which reduce

coefficient  in Eq. (8) according to dependence:

(17)

where  is the driving force of grain growth during
recrystallization in the particle-free matrix phase and

 is the force of particle resistance to grain boundary
movement.

(18)

(19)

where   are the dislocation density in the grains
after deformation and recrystallization, respectively,

is the specific energy of grain boundaries, and  and
f are the radius and the volume fraction of the second-
phase particles, respectively.

Models describing grain structure formation in
materials containing micron-sized second-phase par-
ticles have also been developed. The more general
approach is to apply the Ziner–Smith model [31],
which was developed in the works of Gladman [32],
Nishizava [33], and others. The general form of the
equation relating the grain size to the parameters of
the second-phase particles is as follows:

(20)

where A and n are the constants characterizing a mate-
rial. This model has shown good results when calculat-
ing the grain size for the microalloyed steel [34] and
two-phase aluminum alloys [35].

There is a difficulty in the calculation of dynamic
recrystallization process, which is to determine the
critical strain degree. Based on the thermodynamics of
irreversible processes, Poliak and Jonas have deter-
mined that the moment of nucleation beginning cor-
responds to the point of inflection in the curve of the
strain-hardening coefficient (∂σ/∂ε) as a function of
the yield strength (σ) [36]. Another method for deter-
mining the moment when dynamic recrystallization
starts, which is based on the critical dislocation gradi-
ent, is proposed by Imran and Bambach [37].

This method takes into account the nonuniform
distribution of dislocations near boundaries and in the
grain body during deformation. The evolution of a dis-
location structure is described separately for mobile
and pinned dislocations. New grains begin to nucleate
only when the critical dislocation gradient is reached.
However, empirical dependence of the critical strain
degree as a function of the peak strain is most often

used in practical application [38]: 
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1.3. Metadynamic Recrystallization
Metadynamic recrystallization (MDR) starts after

the deformation process stops at critical degree  In
fact, MDR is the growth of grains (nuclei) formed as a
result of dynamic recrystallization. Therefore, this
process takes place without the incubation period,
which is typical of static recrystallization in a
deformed metal.

The kinetics of metadynamic recrystallization can
also be described by the JMAK model [43–45]:

(21)

where  is the fraction of recrystallized grains,
which in general should take into account the presence
of dynamically recrystallized grains, t is the annealing

time,  is the time, at which 50% metadynamically

recrystallized grains form in the structure, and  is

the empirically determined constant. The value  is
shown empirically to depend on the initial grain size,
strain rate, and temperature, just like in the case of
dynamic recrystallization:

(22)

where a4, n4, m4, and Q4 are the parameters of the
material. In some cases, the effect of the strain degree
is added to Eq. (22), but in most cases this factor is
neglected. The change in the grain size during the
MDR process is described by the power law:

(23)

where a5, n5, m5, and Q5 are the parameters of the
material. The microstructure of a material signifi-
cantly influences the constants. For example, the
authors of [46] show that increasing the volume frac-
tion of the δ phase in the structure of high-tempera-
ture nickel alloy from 0 to 16.7% significantly reduces
the effective energy of activation Q4 of metadynamic
recrystallization from 356 to 104 kJ/mol. However,
this model has a disadvantage. It cannot take the
kinetics of grain size change during MDR into
account. Obviously, recrystallization nuclei growth at
the initial stage should be significant (for example, for
300M steel in Fig. 3 [45]), which does not allow apply-
ing Eq. (23) for calculation. Therefore, Eq. (23)
should be changed to take into account grain growth at
the initial stage of recrystallization, for example, by
introducing an additional exponential multiplier:

(24)

where  is the initial grain size and  kinetic
constant of grain growth. Figure 3 illustrates a model
application.

However, the model (Eq. (23)) gives satisfactory
results in most practical applications. The values of

εcr.
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Fig. 3. Grain size as a function of the time of metadynamic

recrystallization of steel 300 M after deformation at a rate

of 0.01 s–1 at 1000°C [44].
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constants determining the behavior of some materials
upon MDR are presented in Table 2.

1.4. Static Recrystallization

If the critical strain during hot plastic deformation
is not achieved but the accumulated internal energy is
PHYSICS OF METAL

Table 2. Mathematical models of kinetics and grain size chan

Material
Volume fraction of metadynamica

recrystallized grains

SA508-III steel km = 0.508, 

Steel Fe–C–Mn
km = 1.5, 

Steel 300M
km = 1.21, 

Steel 316 km = 0.237, 

Steel 30Cr2Ni4MoV km = 0.31, 

− − = × ε 


�

5 0.335
0.5

116 2
9.8 10 expt

RT

− = ε −
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�

0.8
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1.1 expt

R

= ε −


�

0.039
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0.049 expt
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0.5 0

155
2.14 10 expt d

R

− − = × ε 


�

9 0.44
0.5

217 8
1.27 10 expt

RT
enough to form new grain nuclei, static recrystalliza-
tion (SR) takes place. Similar to metadynamic recrys-
tallization, the main characteristics, determining the

kinetics of the process, are power  and time  at
which 50% recrystallized grains form in the structure.

(25)

Despite the incubation period required for nucle-

ation, the equations describing  and  are similar
to those used to describe MDR. However, the accu-
mulated deformation in the case of static recrystalliza-
tion plays a significant role [50]:

(26)

(27)

where a6, a7, n6, n7, m6, m7, h6, h7, Q6, and Q7 are the
constants of a material. Table 3 lists the values of these
constants for some materials.

A large number of structural studies are required to
determine the unknown constants. The recrystallized
grain size can be determined in situ using a laser
microscope [53] and laser ultrasonic measurement
[53–56]. To decrease the number of structural studies,
special techniques are used to monitor the kinetics of
recrystallization using the degree of softening after
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ges during MDR

lly- Size of metadynamically-recrystallized 

grains dMRX, μm
Reference

[47]

[43, 48]

[45]

[40]

[49]





10

−

−

−  ε  
 

≥ μ
 −  ε    
 < μ

�

�

0.205

0

0.23 0.758
0

0

23 800
472.8 exp , 

if   120  m 

23 800
12.5 exp , 

if   120  m 

RT
d

d
RT

d





00

T
− − ε  

 
�

0.23 69 000
26 000 exp

RT





9 770

RT
− ε  
 

�

0.076 11535
62.36 exp

RT





000

T

( )− −ε�0.99 0.033
0

5115
1.57 expd

RT





00

−

−

−  ε  
 

≥ μ
 −  ε    
 < μ

�

�

0.22

0

0.22 1.77
0

0

47 900
4059 exp , 

if   225.4  m 

47 900
0.28 exp , 

if   225.4  m 

RT
d

d
RT

d



SIMULATION OF MICROSTRUCTURE EVOLUTION IN METAL MATERIALS 1071

Table 3. Mathematical models of kinetics and grain size changes during static recrystallization

Material Volume fraction of statically-recrystallized grains
Size of statically-recrystallized 

grains dSRX, μm
Reference

Steel 300M
ks = 0.114, 

[51]

Steel 316
ks = 0.31, 

[40]

Steel Ti–Nb–HSLA ks = 0.6, [52]
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Table 4. Constants in Eq. (28)

Material ns kgg Q8 Reference

Steel Ti–HSLA 10 2.6 × 1028 437000 [59]

Steel Nb–HSLA 4.5 4.05 × 1023 435000 [59]

Steel 12Kh2NMFA 4 8.4 × 1017 357720 [42]

26KhN3MFA 4 6.4 × 1016 347000 [42]
deformation. This technique involves an additive
effect of deformed and recrystallized regions of a
material on the yield strength. Moreover, there are two
ways to determine the time when the half volume of
the material is recrystallized during MDR and SR
(Fig. 4) [57, 58]. The first way is to load and deform a
material insignificantly (until the yield strength is
reached) within certain time periods τ1, τ2, and τN to

estimate the material response to this effect. The sec-
ond way is to measure the stress relaxation curve con-
tinuously after deformation. The time required for the
yield strength to decrease by half (σ0.5) must corre-

spond to the time required for material to recrystallize

by half ( ). Both methods have an essential draw-
back, because of recovery processes playing an essen-
tial role at the initial stage of relaxation. Their influ-
ence must be considered according to the method pro-
posed by Karjalainen [57]. In addition, even a slight
additional deformation under multiple loading can
affect the accuracy of the determination of kinetic
parameters.

1.5. Grain Growth during Annealing

The system tends to reduce internal energy, includ-
ing by reducing the number of defects, which leads to

0.5t
PHYSICS OF METALS AND METALLOGRAPHY  Vol. 1
grain growth in metal materials at increased tempera-

tures, regardless of the presence of internal defects.

This process is also sometimes called collective recrys-

tallization or normal grain growth. The main factors

affecting the growth rate and, as a consequence, the

final grain size, are the annealing time and tempera-

ture. The following dependence is generally accepted:

(28)

where    are the constants of a material. The-

oretically, constant  is 2, but in most cases, its value

is much higher due to a large number of factors affect-

ing the pinning of grain boundaries (atoms dissolved at

grain boundaries, phase precipitates, and others).

Table 4 lists the values of the constants that determine

grain growth during collective recrystallization for

some materials.

Input parameters for calculating the structure in

materials at the final stages of heat and deformation

treatment can be calculated using the models

describing structural evolution during hot plastic

deformation.

− = +  
 

8 8 8
0 gg exp ,

n n Qd d k t
RT

8,n 8,Q ggk

8n
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Fig. 4. Schematic for determining the kinetics of metadynamic and static recrystallization by multiple loading for determining the
relaxation curve.
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2. SIMULATION 
OF PHASE TRANSFORMATION KINETICS 

IN STEELS

2.1. Austenite Formation during Heating

Transformations in carbon and alloy steels during
heating and cooling are crucial for structure and prop-
erty formation. Heating of a ferritic–pearlitic mixture
above the Ac1 point results in austenite formation,

where nuclei mainly form at the boundaries of ferritic
grains and pearlitic colonies. The kinetics of austenite
formation can be described by the classical theory of
the formation and growth of nuclei. According to Liu
et al. [60], the rate of nucleation in the case of over-
heating is described by the Arrhenius law:

(29)

where  is the threshold energy of the atomic migra-
tion through the interface. The preexponential multi-

plier  depends on a large number of factors, such as
the heating rate, pearlitic colony size, and ferritic grain
size. For example, the rate of austenite nucleation in
the 22MnB5 steel microstructure can be [61]:

(30)

where    are the constants of a material, which
can be found using experimental data, and  is the
heating rate.

 = − 
 

0exp ,NQN N
RT

NQ

0N

( )  = + − 
 

0 1 exp ,Am NQN A A
RT

v

0,A 1  ,A Am
v
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The rate of nucleus growth in the case of overheat-
ing is also mainly determined by diffusion and is
described by the following equation:

(31)

where  is the effective activation energy of the

growth and  is the preexponential factor. The rate of
the growth of volume fraction (f) of the austenitic
phase can be determined by combining Eqs. (30) and
(31) as follows:

(32)

where t is the time (s).

The model is simple, but a significant number of
assumptions severely limit its use. First, the model
must be artificially restricted to stop nucleation (for
example, when the volume fraction of austenite
exceeds the pearlitic volume fraction [61]). In addi-
tion, the model does not limit the threshold volume
fraction and the attenuation of its growth. In this
regard, the model must be converted to a form that
takes into account a decrease in the reaction volume
(JMAK model):

(33)

where  is the factual volume fraction of austenite.

This model becomes much more complicated if we
take into account the geometry of growing austenitic

 = − 
 

0exp ,
Q
RT

v

v v

Q
v

0v

=  .
df Ndt
dt

v

( )= −1 ,
R

Rdf dff
dt dt

Rf
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grains and that austenization may not occur com-
pletely [62]. Considering the growth of grains to be
radial, Eq. (32) can be changed to the following form:

(34)

where  is the radius of an austenitic grain (assuming

unlimited growth). The phase growth depends on the

atomic mobility (Mαγ) at the α/γ interface and the

driving force of the α → γ transformation ΔGγ:

(35)

Mαγ can be described by the Arrhenius equation:

(36)

where  and  are the preexponential factor and

the effective activation energy of interphase move-
ment, respectively.

The driving force of the transformation is propor-

tional to the equilibrium volume fraction of austenite 

(37)

where  are the coefficients of proportionality.
Thus, the equation of kinetics of austenite formation
has its final form:

(38)

The parameters of the model can be determined
using dilatometric research. For example, models
describing the austenization of a 55CrMo steel during
isochronous heating and isothermal exposure were
constructed in [63].

In addition, there are empirical models for deter-

mining the size of austenitic grain ( ) after heating

and holding at a certain temperature [64]:

(39)

where  , and  are the experimentally-deter-

mined constants.

Models simulating the formation of austenite
during heating in combination with calculation of
grain growth during collective recrystallization have a
great practical application for describing the refine-
ment of austenitic grains before final heat treatment.
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2.2. Processes of Austenite Transformation 
during Cooling

The simulation of structure formation during aus-
tenite decomposition is an important stage in selecting
the optimal process parameters for heat treatment of
steel. The formation of ferrite, pearlite, and bainite by
the diffusion mechanism during cooling of steel
depends on the temperature and time of the process
and is well described by the JMAK model (Eq. (8)). In
this case, the Avrami index is ~1 for ferrite formation,
~2 for perlite, and ~4 for bainite [65]. For continuous
cooling conditions, Kamamoto [66] suggested using
dimensionless parameter τ instead of time in Eq. (8):

(40)

where   are the temperatures of the beginning and
end of the process.

The decomposition of austenite by the diffusion
mechanism is also usually described by the model of
the formation and growth of nuclei. This model was
considered when modeling the kinetics of austenite
formation upon heating. However, one should keep in
mind that the decomposition process produces several
types of its products. Johns and Bhadeshia proposed a
model describing the possibility of simultaneous pre-
cipitation of ferrite and perlite during the decomposi-
tion of supercooled austenite [67]. In this case, the
kinetics of the precipitation of both phases depends on
their volume fraction:

(41)

(42)

where     are the rates of the nucleation

and growth of ferrite (α) and pearlitic (p) colonies and

 is the relation between the volume fractions of per-
lite and ferrite. Its value can be determined as:

(43)

Isothermal transformation diagrams (TTT dia-
grams) and continuous cooling transformation dia-
grams (CCT diagrams) are usually used for analysis of
phase transformations during cooling of austenite.
Their calculation would make it possible to predict
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the microstructure in steel after different cooling
treatments. In general, the TTT-diagrams can be
described by the equation proposed by Zener [68]
and Hillert [69]:

(44)

where  is the function that depends on the

steel composition and the austenitic grain size,  is
the supercooling degree relative to the start of the

transformation,  is the effective energy of transfor-
mation activation, n is the constant specifying the dif-

fusion mechanism, and  is the function describ-

ing the transformation rate [70]:

(45)

The martensite transformation is mainly deter-
mined by its temperature only. Koistinen and Mar-
burger proposed the following type of model to
describe a diffusionless transformation [71]:

(46)

where  is the constant (for example, for carbon

steels its value is 1.1 × 10–2),  is the temperature of
the start of martensite transformation. Lee et al. mod-
ified this model by adding a multiplier that takes into
account the presence of the transformed phase, which
limits the further movement of the transformation
front [72]:

(47)

where α, n,   are the parameters of a material.

The models considered have been successfully
applied in calculation of phase transformations in
BR1500HS [73], HC380WD [6], 22MnB5 [74], and
1045 [75] steel during cooling of austenite. In addi-
tion, they are widely used to calculate the hardening of
steel parts during cooling using software tools (such as
Deform and Abaqus software programs) based on the
finite element method [76, 77].

3. SIMULATION OF THE STRUCTURAL 
EVOLUTION UNDER SUPERSATURATED 

SOLID SOLUTION DECOMPOSITION

The decomposition of a supersaturated solid solu-
tion is one of the final stages of structure and property
formation in precipitation-hardening alloys. To
achieve the maximum strength properties, nanoscale
particles should be uniformly distributed over the
entire volume of the material. To this end, it is useful
to simulate the structure beforehand to select the best
heat treatment conditions. Starink et al. [78] proposed
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a model of particle nucleation and growth during
annealing, which is similar to the Johnson–Mehl–
Avrami–Kolmogorov model. According to this

model, the cluster with volume  grows in accordance

with the equation:

(48)

where  is the average growth rate,  mp are the con-

stants, and  is the time taken by a particle to form.
The Kampmann–Wagner model predicts structural
transformations during heating, such as the nucle-
ation, growth, and enlargement of particles [79, 80].
The model is usually applicable to spherical-shaped
particles [81, 82]. However, in some cases, for exam-
ple, in 6xxx alloys, the model was tested on needle-
shaped precipitates [83].

The authors of [84] adapted the Zener–Hillert
equation to calculate the growth rate of needle-shaped
precipitates of the metastable β-phase modification:

(49)

where  and  are the solubility in Mg and Si

matrices, respectively,  and  their equilibrium

solubility,  and  are their solubility in particles,

 is the particle radius, and  is the relation between

the atomic volume of a matrix and a particle one. The
model contains several significant assumptions:

(i) Particle nucleation is homogeneous. The elastic
energy associated with particle formation is not taken
into account. Therefore, the nucleation rate obeys the
following law:

(50)

where  is the number density of nuclei,  is the rate

of nucleus growth,  is the Zel’dovich factor, and

is the activation energy of nucleation.

(ii) The particle shape factor remains constant
regardless of the absolute particle size and is 11.

The model was adjusted in terms of structural
parameters. It showed high accuracy in calculation of
both β-phase particle parameters and the yield
strength of an aluminum alloy 6061.

The models describing particle formation and
growth showed also good accuracy in calculation of
dispersoid formation in the aluminum alloy structure.
Robson and Prangnell [85] proposed a model describ-
ing the kinetics of the precipitation and distribution of
metastable L12 Al3Zr-phase particles, depending on

the zirconium concentration and homogenization
annealing conditions. The model is also based on the
Kampmann-Wagner model and takes into account
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intracrystalline zirconium segregation during solidifi-
cation. It also contains the following assumptions:

(i) Metastable precipitates have an exact stoichi-
ometry of the Al3Zr phase and are the only zirconium-

enriched phase. Therefore, the model is applicable for
7xxx alloys.

(ii) The precipitates are distributed uniformly and
the rate of their nucleation depends on the local zirco-
nium concentration. Heterogeneous nucleation,
which is possible only at grain boundaries, is excluded.

(iii) The particle growth is controlled by the diffu-
sion of zirconium at the matrix/particle interface.

(iv) Zirconium atoms are distributed uniformly
between the growing particles in the diffusion overlap-
ping zones.

The nucleation rate of particles is described by the
following classical Eq. [86]:

(51)

where  is the nucleation rate per volume unit,  is
the density of precipitations (number of zirconium
atoms per volume unit in the case of homogeneous

nucleation), and  is the activation energy of zirco-

nium diffusion in aluminum. Parameter  is calcu-
lated by the equation

(52)

The critical nucleus size is calculated according to
the Gibbs–Thomson equation for solid solutions. The
concentration at the boundary is equal to the average
concentration in the matrix. There is no gradient at the

grain boundary.  can be calculated from:

(53)

where  is atomic volume, c is the instant zirconium

concentration in the matrix, and  is the zirconium
concentration in the matrix in the equilibrium with the

Al3Zr phase. The values of  were obtained for the

metastable Al3Zr phase in the binary Al–Zr system by

calculating the solvus from Saunders’ work [87].

The equation of growth of spherical L12-phase par-

ticles looks as follows:

(54)

where D is the coefficient of diffusion, r is the particle

radius,  is the zirconium concentration at the

matrix/particle interface, and  is the zirconium
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and the Gibbs–Thomson equation, which can be pre-
sented in general terms as:

(55)

The segregation of zirconium can strongly affect
the uniformity of particle distribution in a matrix. The
effect of the composition and heat treatment condi-
tions on the width of precipitation-free zones is partic-
ularly interesting.

The Scheil equation shows that the zirconium con-

centration in a solid phase ( ) depends on the volume

fraction of solid phases ( ) during solidification [88].

(56)

where  is the average concentration of zirconium and

 is the coefficient of proportionality. The change in
the average particle size and its volume fraction can be
calculated as a function of the distance from the
periphery to the center of a dendritic cell.

A similar model is proposed for homogeneous and
heterogeneous nucleation and growth of Al3Sc parti-

cles [89]. These two models are combined in [90] for
the simulation of hardening of a high-strength alumi-
num alloy alloyed with scandium and zirconium.

Clouet et al. propose another approach, which is
based on cluster dynamics, to simulate the kinetics of
Al3Zr and Al3Sc dispersoid formation [91]. This

approach describes different stages of homogeneous
nucleation and growth of dispersoids using only diffu-
sion coefficients and the free energy of interphase
boundaries. The rate of precipitate nucleation is
described in this model by the following system of
equations:

(57)

(58)

where  is the coefficient of diffusion of an element

into a matrix,  is the atomic volume,  is the cluster

radius, and  is the half the interparticle distance.

In summary, high-precision models have been
developed to calculate the volume fraction and the
average size of the products of supersaturated solid
solution decomposition. This, in turn, can predict the
strength of aluminum alloys with high accuracy
[92, 93].

4. COMPUTATIONAL METHODS 
FOR CALCULATING 

STRUCTURAL EVOLUTION

The development of computational techniques has
resulted in a significant number of numerical methods
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Fig. 5. Schematic position of neighbors of the cell described by (a) Neumann and (b) Moore. Schematic of interphase (grain)
boundary motion in the calculation by the cellular automaton method [108].
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for calculating the microstructure. The most common
of these are the cellular automaton [94–98], the
Monte Carlo [99–103], and the multiphase-field
methods [104, 105]. In addition to calculating the
quantitative microstructural characteristics, as the
physical and mathematical models presented above
do, these methods also provide information on the
most probable distribution of certain microstructural
elements in terms of phase and size due to the large
number of analyzed elements.

4.1. Cellular Automaton Method

The main principle of the cellular automaton
method is space and time discretization. Physical val-
ues, such as defect number density, structural-phase
state characteristics, and others, take a set of values in
each cell as a separate element of the microstructure.
The state of the cells and the relationship between
them at each moment of time is described by physical
and probability relations. The state of each cell, that
PHYSICS OF METAL
is, a set of quantitative values characterizing the

structural-phase state, is determined by external con-

ditions and the previous state of a cell and its neigh-

bors. Figures 5a and 5b exemplify the location of

neighboring cells. The states of not only the immediate

neighbors but also the neighbors from the second,

third, and further rows may be taken into account.

These values are updated simultaneously during the

simulation in accordance with a set of preliminary

specified transformation rules. This changes the state

of the system as a whole, e.g., a shift of the interphase

boundary (Fig. 5c). The cellular automaton method

describes microstructural evolution in time and space

terms. For example, the state of each element in the

case of simulating the microstructural evolution

during hot deformation can be determined by the fol-

lowing parameters: dislocation number density, crys-

tallographic orientation, identification of belonging to

a certain grain, and others. In addition, interaction

between some network elements that determine the
S AND METALLOGRAPHY  Vol. 121  No. 11  2020



SIMULATION OF MICROSTRUCTURE EVOLUTION IN METAL MATERIALS 1077
kinetics of grain nucleation and growth should be
described [106].

The general algorithm for constructing the micro-
structural evolution by the cellular automaton method
includes the following stages.

(1) The volume being simulated is divided into N
elements called cells.

(2) The initial state parameters are assigned to each
cell and its neighbors.

(3) The new state of a cell at the next time step is
calculated based on the states of its neighbors.

(4) The new state of the system is detected by iter-
ating the states of all cells in the volume simulated.
Thus the transition to the next step in time takes place.

The simple algorithm enables one to perform cal-
culations using this method together with the finite
element one. Thus, its functionality is considerably
extended, allowing both static and dynamic structur-
ing processes to be simulated. The main problem of
the method is to find physical and probability laws of
interaction between cells.

A static recrystallization model for a low-carbon
0.14C–0.2Si–0.4Mn steel was developed in [107]. The
rate of nucleation N was described by the following
equation:

(59)

where  is the activation energy of nucleation. Coef-

ficient  can be found by the equation:

(60)

where  is the constant,  is the amount of the

stored energy in a cell,  is the critical energy
required for nucleation, which depends on the critical

strain degree (  and energy of low-angle boundaries

 the value of which is ~0.2 J/m2:

(61)

where a and b are the experimentally-determined con-
stants, whose values for aluminum alloys are 0.1 × 10–8

and 0.9 × 10–7 m, respectively [109]. The probability
of nucleation in a certain cell was calculated as follows

(62)

where  is the volume, where a nucleus can form and

 is the time step.

The approach for calculation of the probability of
nucleation is universal, but a simpler probabilistic
approach is possible. According to it, the nucleation
rate does not depend on the stored energy and the
nucleation occurs at grain boundaries in a random
way, proportionally to the area of nucleus-free bound-
aries. This approach was applied to calculate the static
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recrystallization in a high-temperature nickel alloy
[110].

The rate of recrystallization nucleus growth can be
described as

(63)

where p is the driving force of recrystallization and
М is the grain boundary mobility, which is associated
with the atomic diffusion mobility at a grain boundary.

(64)

where D is the coefficient of grain boundary diffusion,
bB is the Burgers vector, and k is the Boltzmann con-
stant.

The driving force depends on two factors: the dif-
ference between the dislocation number density (Δρ in
the nucleus and a noncrystallized matrix):

(65)

where  is the tangential (shear) modulus of elasticity,
and grain boundary energy dependent on the curva-
ture of the boundary ( ):

(66)

where  is the energy of a high-angle boundary

(~0.6 J/m2):

(67)

where  is the energy of a high-angle boundary

with a critical misorientation angle 

(68)

Where  is the Poisson ratio. The curvature can be
determined directly by analyzing the location of two or
more layers closest to the analyzed cell [106]:

(69)

where А is the topological parameter (А = 1.28),  is

the cell size,  is the number of cells, which form a f lat
boundary in the volume analyzed (i.e., in case of two

layers of the nearest neighbors  = 15, in case of three

 = 28),  is the number of cells that belong to the

same grain as the analyzed cell,  is the total number
of analyzed neighbors.

There is a good agreement between the data calcu-
lated by the JMAK model [107] and experimental
results [111]. High-accuracy prediction of structural
evolution during static recrystallization in the tem-
perature range 970–1040°C after hot plastic deforma-
tion was demonstrated for high-temperature nickel
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Fig. 6. Schematic transition from the coordinate system of a material to the coordinate system of cells after deformation [116].
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alloy [110, 112] and cold-worked ferritic–pearlitic
low-alloy steel [113].

The considered algorithm in the case of dynamic
recrystallization is supplemented with a preliminary
step to determine the possibility for the formation of a
recrystallization nucleus, i.e. to achieve a critical dis-
location density (in general, the total density of dislo-
cations within boundaries and inside subgrains) in
separate cells. The dislocation density as a function of
hot plastic deformation conditions is described by the
Kocks–Mecking–Estrin model (Eqs. (1)–(4)). The
critical strain degree can be determined by the model
of Poliak and Jonas [36]. The evolution of dislocation
density in an integrated form at the dynamic recovery
stage is described by the following formula:

(70)

where  and  can be found using strain curves. The-
ses constants are related to each other as:

(71)

where  is the stress at the steady-state dynamic
recovery stage (see Fig. 2) and  is the coefficient, the
value of which is close to one.

In addition, for the process of dynamic recrystalli-
zation to be taken into account, into the equation for
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calculating the  rate of nuclei formation (59)  the effect
of strain rate is introduced [114]:

(72)

where  and  are the constants. The nucleation
occurs only at grain boundaries, which is typical of
discontinuous recrystallization. The orientation of the
nuclei is specified arbitrarily.

The main difficulty in simulating the dynamic
recrystallization process is a change in the grain shape,
which affects the nucleation and nucleus growth.
Therefore, the procedure of transition from the coor-
dinates of the material to the coordinates of cells after
each iteration is needed. The schematic transition is
shown in Fig. 6. Grain boundary position during
deformation changes in accordance with the following
law as a result of this transformation [115]:

(73)

where  and  are new and old vectors, determining

the cell coordinates and  is the strain matrix. How-
ever, this approach does not take into account the dif-
ferences in the degree of deformation of old uncrystal-
lized grains and new ones that grew from nuclei. The
lower dislocation density enables new recrystallized
grains to deform much more and, as a result, creates
conditions for new nucleation. In addition, the scale
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factor is also limiting, since the minimum grain size is
the size of the cell simulated. To solve these problems,
the authors [98] proposed the dimensional cell autom-
aton method, which describes the dislocation distri-
bution near the moving grain boundaries with high
accuracy, and dynamically determines the minimum
cell size required for the correct results.

Regardless of a considerable simplification and
assumptions, this method showed high accuracy in
calculation and good predicting ability when modeling
dynamic recrystallization in a wide range of metallic
materials. For example, Chen et al. [116] showed that
the initial grain size influenced grain refinement in the
austenitic stainless 316LN steel during hot plastic
deformation. At an initial grain size of 450 μm, the
volume fraction of recrystallized grains was only 43%

even at a true strain of 3 (  = 1 s–1, t = 950°C). Liu
et al. [117] simulated the grain refinement in the high-
temperature nickel alloy during deformation. He
showed a good correspondence between the calcu-
lated and experimental values of the grain size. He also
determined the fact that dynamic recrystallization at
the initial stage of deformation proceeds heteroge-
neously and becomes uniform only after reaching a
certain degree of strain. Chen et al. [13] improved the
calculation accuracy of the dynamic recrystallization
process in 42CrMo steel by introducing the nucleation
rate N (72) and grain boundary mobility (64) as power
functions of the initial grain size. The kinetics of
dynamic recrystallization in tool steel Cr12MoV [118],

medium-carbon steel 36Cr2Ni2Mo [119], pure copper

[120], and magnesium alloy AZ80 [121] were
described using the cellular automaton method and
the JMAK model.

In addition to dynamic recrystallization, the cellu-
lar automaton method is used for the simulation of
other thermomechanical processes. Yazdipour and
Hodgson calculated the softening of austenitic stain-
less 304 steel after hot plastic deformation, which
occurred due to static and metadynamic recrystalliza-
tion [122]. The input parameters were the energy
stored as a result of deformation, the volume fraction
and the size of dynamically-recrystallized grains, the
temperature, strain degree, and strain rate. The
authors showed a significant deceleration of the soft-
ening process during dynamic recrystallization, which
decreased the half-softening time with increasing
degree, rate, and temperature of deformation.

The finite element method is also applicable for
describing phase transformations. A good agreement
between the calculation and the experiment was
demonstrated by simulating the austenite decomposi-
tion in low-alloy steel [123], including that after defor-
mation [124]. The authors found the kinetics of ferrite
formation and its average grain size at cooling rates in
the range 1-58°C/s, using thermodynamic data on
carbon distribution between ferrite and austenite in
the equation to determine the mobility of ferrite grain

ε�
PHYSICS OF METALS AND METALLOGRAPHY  Vol. 1
boundaries. However, the calculation showed an equi-
axed grain shape, whereas the true grain shape was
elongated [125]. Yang et al. [126] simulated the auste-
nization in steel 1070 at heating rates of 0.5–5°C/s,
and suggested a method to eliminate the artificial
anisotropy of grains that arises in the calculation. A
significant influence of the annealing temperature and
grain size on the chromium-containing carbide pre-
cipitation during the annealing of austenitic AISI 304
and 316 steels was shown by the cellular automaton
method [127]. In addition, this method allows the cal-
culation of the volume fraction, shape, and size of the
bainite and martensite phases depending on the cool-
ing rate of recrystallized or deformed austenite [95].

Monte Carlo Method

Similar to the cellular automaton method, the
Monte Carlo method involves breaking a structure
into separate elements forming a network. These ele-
ments are specified in the initial configuration accord-
ing to the problem to be solved. The main principle of
the Monte Carlo method is to minimize the total
energy of the system by searching the local states of
separate elements. The total energy of the system is
described by Hamiltonian [128]:

(74)

where  is the constant that scales grain boundary

(interphase) energy,   are the numbers that deter-

mine orientation (belonging to a certain phase) of the
current element and its neighboring cell (Fig. 7), and

 is the Kronecker coefficient:

(75)

N is the total number of elements in the system, m is

the number of neighboring elements, and  is the

internal energy of each element. When simulating the
recrystallization process, the internal energy is pri-
marily related to the dislocation density and is deter-
mined by the formula [129]:

(76)

First of all, the energy of the system is calculated
for the initial state. After that, the state of one of the
elements is changed to the state of its neighbor and the
corresponding energy of the system is calculated. The
difference in energy is used to identify the probable
change in the state of the chosen element:

(77)
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Fig. 7. Schematic orientation distribution of hexagonal elements by Monte Carlo method.
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If the transition is possible, i.e.  is at least a ran-
dom number from 0 to 1, the element changes its ori-
entation (Fig. 7).

Even though the Monte Carlo method is a proba-

bility-based one, it gives good results for the structural

simulation in most of the published works. This is

explained by the fact that the initial stage and the

kinetics of transformations depend on the energy of

the system, which is governed by the structural param-

eters (e.g., dislocation density). The parameters can be

found if we know some physical laws, such as the

Kocks–Mecking–Estrin equation (1)–(4). The

authors [128] have shown that the microstructure

parameters for hot rolling of molybdenum-containing

steel, which were calculated using this method, are

comparable with the results simulated by the JMAK

equation and are comparable with experimental data.

The simulation of the static recrystallization process for

this steel [99] showed that the change in the number of

elements in the network from 40000 to 160000 does not

affect the values of the calculated structural parame-

ters significantly, changing only the visual representa-

tion of the calculation results. There is a good correla-

tion with the experimental data in both cases. The

Monte Carlo method was used to calculate the param-

eters of the texture formed during static recrystalliza-

tion in α uranium [100], and also to predict the kinet-

ics of copper particle precipitation in α iron during

P
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annealing in the temperature range 250–500°C [101].

However, the main drawback of this method is the

absence, in contrast to the cellular automaton

method, of physical limitations to the movement of

grain boundaries. This can lead to a dendritic shape of

recrystallized grains, which is unusual for real pro-

cesses [107].

4.3. Multiphase-Field Method

One more discrete method simulating the struc-
tural formation is the multiphase-field one. However,
unlike the two approaches considered earlier, space
and time discretization is made not at the stage when
initial states are specified, but at the stage of solving
differential equations describing the process of the
structural evolution. The system state is described by

the superposition of phase fields  that correspond to
individual structural elements [130]. In the case of a

polycrystal containing N grains, phase field  corre-
sponds to each ith grain. The value of the field is 1 inside

grain i, 0 outside grain boundaries, and 0 <  < 1 at grain
boundaries (Fig. 8).

Function  is not independent and is limited to the
following expression:

(78)
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Fig. 8. Phase-field function change when moving from one
grain to other.

Grain 

boundary Grain jGrain i

φi = 1

φj = 0

φj = 1

φi = 0
The general state of the system is described by the
following functional:

(79)

where  is the energy gradient at grain boundaries:

(80)

where  are the width and the energy of grain

boundaries, respectively.

 is the energy barrier height

(81)

 is the density of the free energy inside grains.

The number of grains N in Eq. (79) can be replaced

by  where  if 0 <  ≤ 1 and 

otherwise.

The phase field as a function of time looks like
[131]

(82)

where  is the rate of phase boundary change, which

depends on the grain boundary mobility ( ), is

determined by the following expression:

(83)

Derivative of functional (79) for individual phase
field functions takes the form:

(84)

Taking into account that a difference is the driving
force, we obtain:

(85)

where  is the difference of accumulated energy in

ith and jth grains, determined, for example, from
Eq. (76). The final equation of the phase field vs. time
has the following form:
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The multiphase-field method was used to simulate
dynamic recrystallization according to the following
algorithm [104].

(i) The initial polycrystalline structure was simu-
lated according to [130].

(ii) The initial dislocation density was selected.

(iii) The dislocation density was found using the
compression curve according to the Kocks–Meck-
ing–Estrin model after increasing the strain rate by
value Δε.

(iv) If the dislocation density exceeded the critical
one, a recrystallization nucleus was created at the
grain boundary.

(v) The grain growth process was calculated by
solving the system of Eqs. (86).

Steps 3–5 were repeated until a required strain
degree was reached. As a result, the authors deter-
mined the optimum parameters for Eqs. (86) and
showed rather good agreement with the results calcu-
lated by the cellular automaton method [132]. This
approach has demonstrated high efficiency in simula-
tion of bainite and martensite formation during cool-
ing of the two-phase DP600 austenite steel. It is shown
that there is no need to specify the places of phase
nucleation when taking into account elastic compo-
nents in the calculation. The preferred planes for
nucleation were the planes perpendicular to the mar-
tensite habitus. This method made it possible to simu-
late the formation of austenite, including its morphol-
ogy and distribution of alloying elements, with high
accuracy in martensitic Fe–9.6Ni–7.1Mn steel during
its isothermal holding in the temperature range 510–
600°C [133]. Kinoshita et al. applied this method to
describe abnormal grain growth in a carburized layer
of niobium-containing steel [134]. This method
together with thermodynamical and diffusive calcula-
tions was also used to explain the abnormal plate
divergence in pearlitic colonies during the austenite
decomposition in the Fe–C–Mn steel [135].

Despite the rather complicated mathematical
apparatus of the multiphase-field method implemen-
tation, it is quite promising for structural formation
simulation due to the high diversity of factors affecting
the phase field function.
21  No. 11  2020
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CONCLUSIONS

(1) Physico-mathematical models based on the
Johnson–Mehl–Avrami–Kolmogorov and Kocks–
Mecking–Estrin equations and developed so far to
describe structural evolution during hot plastic defor-
mation allow one to predict structural parameters of
metal materials with a high level of accuracy. The sim-
ple analytical regularities implemented by these mod-
els can be successfully integrated into modern com-
puting systems for calculating industrial metal pro-
cessing processes under pressure. However, a large
number of unknown constants require a large number
of mechanical tests and structural studies to build a
comprehensive model that can take dynamic harden-
ing, recovery, and recrystallization into consideration.
As a result, the development of in-situ methods to
determine microstructural parameters during hot
plastic deformation and heat treatment is a promising
trend in the research area.

(2) A significant theoretical foundation for calcu-
lating the kinetics of structural transformations during
heating and cooling of steel, as well as during the
decomposition of supersaturated solid solution, has
been created. The models developed based on the the-
ory of nucleation and growth demonstrate both high
levels of accuracy in determining the volume fraction
and size of phase transformation products, and the
possibility of applying these models to determine
mechanical properties.

(3) Numerical methods for calculating the struc-
tural evolution regularities are currently the most
promising. Despite the minimum set of necessary
experimental data, the cellular automaton, Monte
Carlo, and multiphase-field methods demonstrate
high accuracy in calculating recrystallization pro-
cesses and phase transformations.

Thus, there is a comprehensive basis for the devel-
opment of integrated adjustable models. These models
offer end-to-end calculation of the complete heat and
deformation treatment cycle of metal materials. There
is a possibility of recursive optimization of technolog-
ical parameters to achieve a desired structure. The key
role in such models should be played by numerical cal-
culation methods, which are the most universal and
can be adjusted for use together with finite element
simulation techniques.
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