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Abstract—The lattice parameters of the matrix of the modulated martensite crystal of the Ni47Mn42In11 alloy
have been determined. Based on the phenomenological crystallographic theory of martensitic transforma-
tions, orientational relationships between the crystal lattices of the martensite matrix and the initial phase
have been calculated, and the magnitude and the direction of the macroscopic shear, the habit plane, and the
angle and the axis of rotation of the martensite plate have been determined. The mechanism of deformation
upon the martensitic transformation has been established.
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INTRODUCTION
Studies of ferromagnetic alloys have attracted the

attention of researchers due to the specific features of
their phase transformations, structure formation, and
new approaches in studies to such materials. The Ni–
Mn–In-based alloys can be separated into a specific
group of the so-called Heusler alloys due to the
sequence of structural phase transformations occur-
ring in them [1–6] and their potential use in various
technological devices. Great attention has been paid in
recent years to researching Ni–Mn–In Heusler alloys
of nonstoichiometric compositions, in which mag-
netic-field-controlled shape-memory effects [4, 7] are
realized. The investigation of structural and crystallo-
graphic peculiarities of martensitic transformations is
of interest for determining the influence of structural
and magnetic ordering on the functional characteris-
tics of Ni–Mn–In Heusler alloys.

The phenomenological theory of martensitic
transformations (PTMTs) describes the formation of a
martensite crystal in terms of the product of three
matrices: matrix of a Bain deformation (B); deforma-
tion (by twinning or slip) with an invariant lattice (P);
and rotation (R) [8, 9]. The Bain deformation, which
is a pure deformation, transforms the crystal lattice of
austenite into the lattice of martensite and is therefore
called the lattice deformation. The deformation with
an invariant lattice is necessary to obtain the habit

plane of the martensite crystal. The matrix of rotation
of the martensite plate describes the rotation that
mainly occurs when the austenite lattice is trans-
formed into the martensite lattice. If we consider the
real mechanism of deformation of the lattice of the
initial phase to the lattice parameters of the marten-
site, which occurs mainly via shear, then the R matrix
will describe only a small rotation that occurs when
the martensite is deformed upon an invariant lattice.
This was shown in [10–13].

To calculate crystallographic characteristics using
the PTMTs it is necessary to know the parameters of
the unit cells of the austenite and of the matrix of the
martensite. Figure 1a shows a schematic representa-
tion of a martensite plate of an iron–nickel alloy with
a twinned martensite. Figure 1b shows the unit cell of
the modulated structure of 6M martensite of the
Ni47Mn42In11 alloy [14] (as we see, the six-layer struc-
ture consists of four layers of the matrix and of two lay-
ers in the twinned position). If we make a schematic
image of the martensite plate of this alloy, we obtain
the same image as in Fig. 1a. However, the thickness
of the portions of the matrix and of the twins in the
twinned martensite of the iron–nickel alloy is approx-
imately 100–1000 times greater than in the modulated
martensite. In the twinned martensite, the twins and
the regions of the martensite matrix located between
the twins scatter X-rays independently of each other,
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Fig. 1. (a) A schematic representation of a martensite plate
of an Fe–Ni alloy and (b) the unit cell of the 6M marten-
site lattice of the alloy Ni47Mn42In11. AB2F2D is the unit
cell of the martensite matrix; AB1F1D is the unit cell of the
averaged martensite structure (basic cell); B1, the point of
intersection of lines AB and B2F2; F1, the point of intersec-
tion of lines DF and of the straight line B2F2; ABFD, the
unit cell of the modulated structure of the 6M martensite.
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and the experimentally determined unit cell of the
martensite lattice is the unit cell of the martensite
matrix. In the case of the modulated martensite, the
volume of a coherent-scattering region (CSR) involves
a large number of alternating regions of the matrix and
twins. The diffraction pattern obtained from such a
CSR corresponds to a crystal lattice with a new unit
cell (the unit cell of the modulated structure of mar-
tensite), including at least one region of the matrix and
one twin. If we exclude the satellites present in the
XRD patterns, we obtain a diffraction pattern corre-
sponding to an “averaged” structure. The unit cell of
such an averaged structure (basic unit cell) differs sig-
nificantly from the unit cell of the matrix of the mar-
tensite, as can be seen in Fig. 1b. Based on the known
parameters of the unit cell of the modulated structure
PHYSICS OF METAL
of martensite, or on the parameters of the basic unit
cell, it is possible to find the crystallographic charac-
teristics of martensite using the PTMTs, as was done
in [15] for the modulated 63.0 Ni–37.0 Al (at %) alloy,
but the mechanism of deformation of the lattice upon
the martensitic transformation cannot be determined.
To determine this mechanism using the PTMTs, it is
necessary to know the parameters of the unit cell of the
martensite matrix, which cannot be obtained directly
from XRD measurements, but can be calculated based
on the known parameters of the unit cell of the modu-
lated structure.

The aim of this work is to determine the unit cell of
the martensite matrix and the mechanism of lattice
deformation upon the martensitic transformation in
the Ni47Mn42In11 alloy, as well as to determine the
crystallographic characteristics of the martensite using
the PTMTs.

DETERMINATION 
OF PARAMETERS OF THE UNIT CELL 

OF MARTENSITE MATRIX

We determined in [14] the parameters of the unit
cell of the modulated monoclinic structure of the
Ni47Mn42In11 alloy as a = 0.4406 nm, b = 0.5601 nm,
c = 1.3024 nm, and β = 93.51°. As can be seen from
Fig. 1b, the cell contains six layers, with four layers of
atoms belonging to the matrix and two layers belong-
ing to the twin. Figure 2 provides an auxiliary drawing
for determining the parameters of the unit cell of the
martensite matrix. The rectangular OLK and OAB tri-
angles can be used to do this. From the OLK triangle,
we find OK = c cos δ, LK = c sin δ. Taking into account
that AB = LK and OB = OK/3, we find c1 and δ1:

 and . As
a result of calculations, we obtain: a1 = a = 0.44053 nm,
b1 = b = 0.56013 nm, c1 = 0.44064 nm, β1 = 90° + δ1 =
100.43°. Thus, we find the parameters of the mono-
clinic cell of the martensite matrix: a1 = c1 = 0.4406 ±
0.0001 nm, b1 = 0.5601 ± 0.0001 nm, β1 = 100.43° ±
0.01°. As can be seen, a1 = c1. This indicates that the
lattice of the martensite matrix is orthorhombic.
Therefore, we pass to the orthorhombic axes, as shown
in Fig. 2, and find the unit cell of the martensite
matrix: a2 = 0.5601 ± 0.0001 nm, b2 = 0.5639 ±
0.0001 nm, c2 = 0.6771 ± 0.0001 nm. It could be
expected that the unit cell of the martensite matrix
should be more symmetrical than the unit cell of the
modulated martensite structure, since the latter
includes a structural defect in the form of a twin.
Indeed, we obtained a more symmetrical (orthorhom-
bic) cell close to a tetragonal cell.

= δ + δ2 2
1 sin (cos ) 9с с ( )δ = δ1 arctan 3 tan
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Fig. 2. Scheme for the determination of the lattice param-
eters of the martensite matrix. The scheme is given in a
plane perpendicular to the unit vector ; , , , and β =
90° + δ are the parameters of the unit cell of the modulated
structure of martensite; , , , β1 = 90° + δ1, the
parameters of the monoclinic unit cell of the martensite
matrix; , , , the parameters of the orthorhombic
unit cell of the martensite matrix; , .
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CALCULATION 
OF CRYSTALLOGRAPHIC PARAMETERS 

OF MARTENSITE USING THE PTMTs
For calculations, we take the lattice parameter of

the initial cubic phase a0 = 0.5998 nm, and the param-
eters of the lattice of the final orthorhombic phase a =
0.5601 nm, b = 0.5639 nm, and c = 0.6771 nm. The
pure deformation of the cubic lattice to obtain this ort-
horhombic lattice is chosen from the equivalent vari-
ants as follows:

(1)

This pure deformation of the lattice can be
obtained by shear along the plane (112) in the direc-
tion [ 1] by 0.18503 and then by stretching along the
direction [ 1] by 0.5%, compression along [1 0] by
6.4%, and stretching along [112] by 5.3%. The matrix
that describes the shear Γ in this case is as follows:

(2)

where

is the matrix of rotation of the coordinate axes, and
 is the inverse matrix.
The matrix of the additional strain B1 has the fol-

lowing form:

Thus, the deformation of the lattice can be calcu-
lated as follows:

(3)

Here,  is a cor-

rection related to the orthorhombic distortions of the
lattice.
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To obtain the habit plane, we introduce into the
calculations the invariant-lattice deformation P by
twinning of the martensite, as is done in the FTPMs.
A system should be chosen from the twinning systems
that results in a minimum deformation of the shape
(P1) of the martensite plate. Figure 3 shows that for the
chosen deformation of the lattice upon the martensite
transformation by shear along the plane (112)L21 in
the direction [ 1]L21 there are two equivalent twin-
ning systems: (101)[10 ] and (011)[01 ]. Thus, for each
of the 12 variants of the lattice deformation, we have
two variants of invariant-lattice deformation of mar-
tensite; as a result, we have 24 martensite orientations,
as shown in Table 1.

The crystallographic analysis is carried out for the
case of the orientation no. 5, since the calculations for
this orientation are simpler. The matrix P of the mar-
tensite deformation is as follows:

(4)

11
1 1

−
 
 = ⋅ ⋅
  
 

1
1 0
0 1 0 .
0 0 1

g
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20  No. 11  2019



1100 GUNDYREV, KALETINA

Fig. 3. Stereographic projection of the twinning systems in
the orthorhombic lattice of the martensite matrix for the
shear variant, in which the orientation relationships
[111]L21 || [111]R and ( 2) L21 || ( 2)R are fulfilled.
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Choose the twinning in the system (011)[01 ]; in
this case,

is the matrix of rotation of the coordinate axes from
the initial coordinates of the austenite lattice to the
orthogonal coordinates chosen in the orthorhombic
lattice of martensite in such a way that the X axis be
coincident with the shear direction [01  ]R, the Z axis
be coincident with the normal to the plane (011)R, and
the Y axis be perpendicular to them.

As was mentioned above, the XRD structural stud-
ies allow one to directly find the basic cell in the mod-
ulated martensite crystal. Figure 2 shows that the basic
cell does not coincide with the unit cell of the marten-
site matrix. This gives two orientation relationships
relative to the initial phase: one for the lattice of the
martensite matrix, and the second one for the lattice of
the averaged structure of the modulated martensite
crystal. The first matrix (θ1) to determine the indices
of the direction [uvw] in the L21 lattice, which is par-
allel to the direction [UVW] in the orthorhombic lat-
tice of the martensite matrix, is calculated as follows:
θ1 = RB. The second matrix (θ2) for the determination
of the indices of the direction [uvw] in the L21 lattice

1

0.04761 0.68754 0.72458
0.99797 0.00203 0.06365
0.04229 0.72614 0.68624

S
− 

 = − −
  − 

1
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that is parallel to the direction [UVW] in the averaged
martensite lattice is calculated as θ2 = RDB, where

The value of g1 is determined from Fig. 2:

(5)

The matrix D describes the invariant-lattice defor-
mation of martensite within a CSR. Further calcula-
tions of the crystallographic characteristics of the mar-
tensite were made in full agreement with the PTMTs
[1, 2].

The results for the three variants of calculations of
the crystallographic characteristics of martensite
transformation are presented in Table 2.

ANALYSIS OF THE RESULTS
The PTMTs makes it possible to find various crys-

tallographic parameters of the transformation, e.g.,
the habit plane, orientation relationships, shape defor-
mation, etc. To do this, it is sufficient to know the
parameters of the unit cell of the initial phase, the lat-
tice parameters of the final phase, and the mechanism
of invariant-lattice deformation of the martensite. In
the first and second variants of the calculation, the
unit cell of the martensite matrix is selected as the unit
cell of the final phase. In the third variant, the unit cell
of the modulated structure of martensite is chosen as
such a cell, which, in addition to the matrix, includes a
twin. Such a choice of the unit cell of the final phase was
used in [15] for the crystallographic analysis of the mar-
tensitic transformation B2 → 7R in the Ni–37.0 at % Al.

In the first variant, the uniform deformation of the
lattice is described by Eq. (3). In the second variant, as
the mechanism of a homogeneous deformation of the
lattice, the Bain deformation is used, containing only
a pure lattice deformation without rotation elements.
This makes it possible to obtain crystallographic char-
acteristics of the martensitic transformation, but does
not allow us to find the real mechanism of martensitic
transformation, unlike the first variant. When choos-
ing a realistic mechanism of martensitic transforma-
tion, the angle ϕ should be small. In the first variant,
the angle ϕ is only 0.36°. In the second and third vari-
ants, unrealistic large values of the angle ϕ are
obtained. Therefore, only the first variant corresponds
to a real mechanism of the lattice deformation. This
mechanism, as can be seen from calculations, consists
in a shear in the plane (112) in the direction [ 1] by
0.185 and in an additional pure deformation, which
consists in a stretching by 5.3% in the direction of the
normal to the shear plane, stretching by 0.5% in the
shear direction, and compression by 6.4% in the third
direction [01 ] perpendicular to the first two. As is

1
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0 1 0
0 0 1

g
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Table 1. Orientations and corresponding shear systems in the initial phase and the twinning systems in martensite

Order number of orientation

Initial phase Martensite

(hkl)
L21

[uvw]
L21

(HKL)
R

[UVW]
R

1 211 1 101 01

2 1 1 01 101

3 12 11 01 0

4 1 1 0 01

5 112 1 011 01

6 2 111 10 0

7 1 1 01 011

8 1 1 0 10

9 121 1 110 1 0

10 2 111 0 1 0

11 1 1 0 0 1

12 1 1 1 0 110

13 21 1 1 110 10

14 12 1 1 01 0

15 11 10 110

16 11 0 01

17 2 1 11 1 0 0

18 1 2 11 101 10

19 11 0 1 0

20 11 10 101

21 1 1 0 10

22 2 111 10 0

23 21 11 011 0 1

24 1 1 0 1 011

11 1

21 1 1 1

1 1 1 11

121 1 11 1

11 1

1 1 1 11

1 2 11 1

12 11 11 1

1 1 1

11 1 11

12 1 1 11 1

21 11 1

1 1 1

1 1 1 1 1

2 111 1

112 1 1 1 1

1 1 1 11

1 1 1

211 1 11 1

2 111 1

2 1 11 1 1 1

11 1 1 1

1 1 1

2 111 1
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Table 2. Calculated crystallographic parameters of the martensitic transformation

1 The calculation is made relative to the unit cell of the martensite matrix.
2 The calculation is made relative to the basic unit cell of the martensite; u is the direction of the axis of rotation of the martensite plate
by an angle ϕ in the coordinate system of the L21 lattice.

Parameters  Shear mechanism1 Bain mechanism1 Bain mechanism2

B

P

R

g 0.12642 0.00374

P1

Habit plane (0.7093; –0.0897; 0.6992)

Shear direction [–0.7527; –0.0837; 0.6529]

Shear magnitude 0.12743

θ1

θ2

u [–0.179; 0.073; –0.981] [0.699; –0.711; –0.069] [–0.409; –0.904; –0.129]

ϕ, degrees 0.36 5.11 4.00

− − 
 − −
  
 

0.93197 0.00191 0.07186
0.0019 0.93821 0.07185

0.05944 0.05984 1.12431

 
 
  
 

0.93386 0 0
0 0.94011 0
0 0 1.12889

 
 −
  
 

0.93386 0 0
0 0.99889 0.03991
0 0.02276 1.06156

 
 −
  − 

0.99975 0.00437 0.00413
0.00366 1.0631 0.05965

0.00387 0.0665 0.93714

 
 
  − 

1 0 0
0 1.06217 0.05177
0 0.07465 0.93783

 
 
  − 

1 0 0
0 1.00187 0.00187
0 0.00187 0.99813

 
 −
  − − 

0.99998 0.00616 0.00046
0.00616 0.99998 0.00113
0.00044 0.00113 1

− 
 − −
  
 

0.99797 0.00415 0.06358
0.00811 0.99803 0.06214

0.06319 0.06253 0.99604

− 
 −
  − 

0.99797 0.0099 0.06294
0.0081 0.99955 0.0288

0.0632 0.02824 0.9976

− 
 − −
  − 

0.93196 0.00860 0.06707
0.00757 1.00096 0.00746

0.05902 0.00746 1.05818

− 
 − −
  
 

0.93196 0.00390 0.07178
0.00757 0.93827 0.07015

0.05902 0.05878 1.12443

− 
 − −
  − 

0.93196 0.00846 0.06721
0.00757 0.99910 0.00932

0.05902 0.00550 1.06014
known, the shear systems of the {112} 1 family are
typical of bcc crystals. There are 12 such equivalent
shear systems.

Taking into account Eq. (5), we find for the first
variant g2 = g – g1 = 0.00374. Since g1 is the invariant-
lattice shear deformation of the martensite matrix
within a CSR, the g2 is a displacement of the CSRs rel-
ative to each other. For the third variant, we obtain g =
g2, which is equal to only 3% of the magnitude of g for
the first variant.

11
PHYSICS OF METAL
In [14], we experimentally determined the orienta-
tion relationships for the basic lattice of the martensite
relative to the initial phase: (110)L21 || (12 )6M and
[ 10]L21 || [ 11]6M (with an error of 0.5°). These ori-
entation relationships refer to orientation no. 2 in
Table 1. For this orientation, the calculated plane
(12 )6M deviates from the plane (110)L21 by 0.13° and
the calculated direction [ 11]6M deviates from the
direction [ 10]L21 by 0.08°. Thus, the calculated ori-

1
1 1

1
1

1
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Fig. 4. (a) Fragment of the stereographic projection show-
ing the poles of the crystallographic planes of martensite
that originate from the plane (110)L21 upon the martensi-
tic transformation; and (b) the XRD pattern of texture
maxima obtained in the vicinity of the pole (110)L21. The
numbers 1 to 24 correspond to the order numbers of orien-
tations.
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entation relationships of the basic lattice completely
correspond to those found experimentally. A similar
conclusion can also be drawn from the comparison of
the calculated and experimental pictures in Fig. 4.

CONCLUSIONS

(1) The parameters of the unit cell of the matrix of
the modulated martensite crystal in the Heusler alloy
Ni47Mn42In11 have been determined to be a = 0.5601 nm,
b = 0.5639 nm, c = 0.6771 nm, α = 90°, β = 90°, and
γ = 90°.

(2) Based on the phenomenological crystallo-
graphic theory of martensitic transformations, the ori-
entation relationships between the crystal lattices of
the martensite matrix and the initial phase L21, as well
as between the lattice of the averaged martensite struc-
ture and that of the initial phase, have been calculated.
The magnitude and the direction of the macroscopic
shear, the habit plane, the angle and the axis of rota-
tion of the martensite plate have been determined.
PHYSICS OF METALS AND METALLOGRAPHY  Vol. 1
(3) The mechanism of deformation upon marten-
sitic transformation has been established to be as fol-
lows: a shear in the plane (112) in the direction [ 1] by
0.185% in the initial L21 phase and an additional
stretching by 5.3% in the direction of the normal to the
shear plane, stretching by 0.5% in the shear direction,
and a compression by 6.4% in the transverse direction.

Thus, the shear mechanism we used, just as the
Bain deformation, make it possible to obtain the lat-
tice of the martensite. The advantage of the shear
mechanism is that it not only deforms the lattice, but
also rotates it by an angle that corresponds to the angle
of the lattice rotation upon the martensitic transfor-
mation.

ACKNOWLEDGMENTS

The authors are grateful to Dr. V.I. Zeldovich for a useful
discussion of the results and for providing valuable advice.

FUNDING

The work was carried out within the framework of the
State task according to the themes “Struktura” No. AAAA-
A18-118020190116-6 and “Davlenie” No. AAAA-A18-
118020 190104-3.

REFERENCES
1. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma,

K. Ishida, and K. Oikawa, “Magnetic and martensitic
transformations of NiMnX (X = In, Sn, Sb) ferromag-
netic shape memory alloys,” Appl. Phys. Lett. 85,
No. 19, 4358–4360 (2004).

2. T. Krenke, M. Acet, E. Wassermann, L. Manosa, and
A. Planes, “Ferromagnetism in the austenitic and mar-
tensitic states of Ni–Mn–In alloys,” Phys. Rev. B 73,
174413 (2006).

3. T. Krenke, E. Duman, M. Acet, E. F. Wassermann,
L. Manosa, and A. Planes, “Magnetic superelasticity
and inverse magnetocaloric effect in Ni–Mn–In,”
Phys. Rev. B 74, 104414 (2007).

4. V. D. Buchelnikov and V. V. Sokolovskiy, “Magnetoca-
loric effect in Ni–Mn–X (X = Ga, In, Sn, Sb) Heusler
alloys,” Phys. Met. Metallogr. 112, No. 7, 633–665
(2011).

5. V. M. Schastlivtsev, Yu. V. Kaletina, and E. A. Fokina,
Martensitic Transformation in Magnetic Field (UrO
RAN, Yekaterinburg, 2007) [in Russian].

6. V. M. Schastlivtsev, Yu. V. Kaletina, E. A. Fokina, and
V. A. Kazantsev, “Martensitic and magnetic transfor-
mations in Ni-Mn-In alloys,” Phys. Met. Metallogr.
112, No. 1, 61–71 (2011).

7. Yu. V. Kaletina and E. G. Gerasimov, “Martensitic
transformations and magnetic properties of nonstoi-
chiometric alloys of the Ni–Mn–In system,” Phys.
Solid State 56, No. 8, 1634–1638 (2014).

11
20  No. 11  2019



1104 GUNDYREV, KALETINA
8. M. S. Wechsler, D. S. Lieberman, and T. A. Read, “On
the theory of the formation of martensite,” Trans.
AIME 197, 1503 (1953).

9. C. M. Wayman, Introduction to the Crystallography of
Martensitic Transformations (New York, 1964).

10. V. M. Gundyrev and V. I. Zel’dovich, “Crystallograph-
ic analysis of the B2 → B19' martensite transformation
in titanium nickelide,” Bull. Russ. Acad. Sci.: Phys. 76,
No. 1, 18–22 (2012).

11. V. M. Gundyrev and V. I. Zeldovich, “Crystallographic
analysis of martensitic transformation in an iron-nickel
alloy with twinned martensite,” Bull. Russ. Acad. Sci.:
Phys. 77, No. 11, 1367–1372 (2013).

12. V. M. Gundyrev and V. I. Zel’dovich, “Crystallograph-
ic analysis of the FCC → BCC martensitic transforma-
tion in high-carbon steel,” Phys. Met. Metallogr. 115,
No. 10, 973–980 (2014).

13. V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastliv-
tsev, “Crystallographic analysis of the martensitic
transformation in medium-carbon steel with packet
martensite,” Phys. Met. Metallogr. 117, No. 10, 1017–
1027 (2016).

14. V. M. Gundyrev and Yu. V. Kaletina, “X-Ray diffrac-
tion study of the martensite structure of the
Ni47Mn42In11 alloy” Phys. Met. Metallogr. 119, No. 10,
962–968 (2018).

15. Y. Murakami, K. Otsuka, S. Hanada, and S. Watanabe,
“Crystallography of stress-induced B2–7R martensitic
transformation in a Ni–37.0 at % Al alloy,” Mater.
Trans., JIM 33, 282–288 (1992).

Translated by S. Gorin
PHYSICS OF METALS AND METALLOGRAPHY  Vol. 120  No. 11  2019


	INTRODUCTION
	DETERMINATION OF PARAMETERS OF THE UNIT CELL OF MARTENSITE MATRIX
	CALCULATION OF CRYSTALLOGRAPHIC PARAMETERS OF MARTENSITE USING THE PTMTs
	ANALYSIS OF THE RESULTS
	CONCLUSIONS
	REFERENCES

		2019-12-02T15:59:06+0300
	Preflight Ticket Signature




