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Abstract—Metastable equilibrium of the α- and α'-phases comprising solid solutions of carbon in iron with
cubic and tetragonal lattices, respectively, has been analyzed using the Zener–Khachaturyan theory of tetrag-
onality of martensite of Fe–C alloys. The condition of the absence of carbide precipitates was imposed, as in
the case of very low tempering or the formation of non-carbide bainite. A phase equilibrium diagram has been
plotted in the region of low temperatures between 300–600 K. The violation of the linear dependence of the
degree of tetragonality c/a on the carbon concentration in the concentration range 0.17–0.61 wt % C, estab-
lished by Academician G.V. Kurdyumov for higher carbon concentrations, is explained.
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INTRODUCTION
In [1], we analyzed the equilibrium of a conven-

tional α-ferrite with a bcc lattice or tetragonal bainitic
ferrite (α') with austenite under the conditions in
which the precipitation of ε-carbide or cementite can-
not take place. It is assumed that the phases under
consideration can rapidly exchange diffusing carbon
atoms. Such a situation can be seen in the formation of
carbide-free bainite or in the tempering of martensite
near room temperature [2], for example. It was some-
what surprising that the limiting carbon concentration
in the α'-phase is hundreds of times higher than that in
cubic ferrite. The first region in the diagram of the
phase metastable equilibrium of Fe–C plotted at low
temperatures in [1] on the basis on our calculations
was the region of α'-solutions. However, since iron
itself has a bcc lattice, the first single-phase region in
this diagram must reflect the solid solution of carbon
in α-iron. According to Gibbs [3], the number of
degrees of freedom in the Fe–C system at a constant
pressure is

(1)
where k is the number of components in Fe–C (k = 2)
and Ф is the number of phases in equilibrium. For the
first region of the diagram, Φ = 1; then, f = 2; i.e., at a
fixed temperature, there is a range of carbon concen-
trations in which the solution of carbon in α-iron
exists. Further on, an equilibrium of the α- and

α'-phases with a mutual exchange of components is
possible. Since Φ = 2, at a constant temperature, f = 0;
i.e., both phases have fixed compositions. An interval
of the biphase equilibrium α = α' therefore appears.
Then a concentration region of the existence of the
α'-phase, which comprises a solid solution of carbon
in tetragonal iron, and, finally, a region of two-phase
equilibrium α' = γ, which we previously studied in [1],
must appear.

The aim of this work is a thermodynamic analysis
of the α = α' equilibrium of solid solutions of carbon
in iron with bcc and bct lattices, the determination of
the boundary carbon concentrations for both phases,
and plotting a metastable phase equilibrium diagram
for temperatures at which redistribution of carbon in
martensite or bainite steels between the phases without
carbide precipitation is possible.

1. THERMODYNAMIC ANALYSIS

For the thermodynamic description of the disor-
dered carbon solution in α-iron, we used the results of
[4–6] obtained in the Hillert–Staffanson model [7],
which underlies the thermodynamic analysis of equi-
librium using the “CALPHAD” method. This model
and the method of description are detailed in the
works [4, 8] by famous Russian scientist V.V. Popov
and others. In [4, 6, 8], the following expressions for

= + −1 Ф,f k
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METASTABLE EQUILIBRIUM BETWEEN CUBIC AND TETRAGONAL FERRITES 1149
the chemical potentials of the components of the
α-Fe–C system are given:

(2a)

(2b)

where  is the free energy of α-iron with a bcc lat-
tice; the superscript h denotes the nonmagnetic com-

ponent; and  is the fraction of inter-

stices occupied by carbon atoms in the interstitial sub-
lattice, where  is the atomic fraction of carbon in the
α-phase. In this model, the excess mixing energy of
components, including carbon and vacancies, is cal-
culated using the Redlich–Kister polynomial model
and  is the coefficient of the ith degree term.
According to Gustafson [5], who found the numerical
values of many quantities in expressions (2a) and (2b),
only the zeroth term of the polynomial is nonzero, for
which Gustafson adopted the value

(3a)

The quantity  in the Hillert–Staffonson
model [7] is equivalent to the mixing energy of carbon
atoms and octahedral pores,  =

, in the theory of regular

interstitial solutions [9], where the interaction energy
of octahedral interstices, , is zero and the car-
bon–pore interaction is either weak or absent. In fact,
the term  reflects the interaction of pairs of car-
bon atoms. It enters into the equation of the chemical
potential of carbon [9] in an α-solid solution as the

term  In formula (2b), the quantity

 has the same concentration-dependent factor

but the numerical coefficient  differs in the absolute

value and sign. Hence,

(3b)

In expression (2b),  is the standard value of
the Gibbs energy of a hypothetical alloy in which the
iron atoms are surrounded only by carbon atoms. In
contrast,  is the energy of an alloy in which the
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iron atoms are surrounded by unoccupied interstices.
It therefore comprises the free energy of pure nonmag-
netic bcc iron. The complementary quantity  is the
magnetic component of the free energy of α-Fe.
Below, we will use the equality [4]

and transform formula (2b) to

(4a)

Henceforth, the quantity in the parentheses will be
denoted by 

(4b)
It represents the free energy of the standard state of

carbon in a solution with bcc iron. Its value is close to
the result obtained by Agren [10]:  + 108299 –
39.603T, J/mol, but, according to Agren, 
Expression (2a) for the chemical potential of the sec-
ond component, iron, after obvious transformations
takes the form:

(4c)

The tetragonality of martensite and likely bainite is
caused by two circumstances. Firstly, an octahedron
of 6 iron atoms forming at the center of a pore possibly
containing a carbon atom is irregular. Of the three
diagonals along the axes ox, oy, or oz, one is always

times shorter than the other two. The pores and,
accordingly, the sublattices in which they are found,
are denoted according to the orientation of the short
diagonal: a z-pore or the z-sublattice of pores, an
x-pore, etc. A carbon atom placed in a z-pore will
move apart iron atoms along the axis oz. Secondly,
carbon atoms initially found, e.g., in the z-sublattice
create a collective deformation field along the axis oz,
which forces other carbon atoms to fill z-pores. This
leads to the preferential arrangement of the carbon
atoms in the z-sublattice and to the tetragonality. The
theory of this phenomenon was developed by K. Zener
[11] and A. G. Khachaturyan [12]. Khachaturyan
obtained the following expression for the variation in
the molar free energy in the course of such ordering:

(5)
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where

(6)

is an order parameter reflecting the excess of carbon
atoms in z-octahedral pores as compared to the variant
of the uniform occupation of all pores by carbon atoms

 Here,  and  are the num-

bers of iron and carbon atoms, respectively;  is
the parameter of deformation interaction; c =

 where  is the fraction of carbon atoms

in the solution;  is the absolute temperature;  is the
Boltzmann constant; and  is the free energy
of the solution at  i.e., in the disordered state. We
should note that the energy of the deformation inter-
action is negative; therefore, we assume that  is a
positive quantity and place the minus sign before the
second term in (5). In the equilibrium state,

 Solving this equation, we determine

the temperature and concentration dependence of the
order parameter:

(7)

A detailed analysis of the stability of the ordering
process [12] has shown that this dependence holds in
the interval  The value of  is criti-
cal. At a temperature  corresponding to this value,

(8)

the parameter  decreases abruptly to zero. We calcu-
lated the chemical potentials of the components of the
tetragonal α'-solution in [1]. For clear distinction, the
index α' was replaced by “T”:

(9a)
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Since the molar free energy of the alloy and the
chemical potentials of the components are related by a
simple formula  [9], for ,
we have

(10a)

In a similar manner, we obtain for  the expression

(10b)

The diffusionless equilibrium of the cubic and
tetragonal phases must be seen at a temperature  at
which the free energies of these phases of the same
composition are equal. Obviously, in this case, the
concentrations of each element in both phases will be
the same:  Then:

(11)

Hence, at a fixed temperature, the carbon concen-
tration  for an equilibrium point is given by the
equation

Let us take into account that, according to the
Zener–Khachaturyan theory, the loss of tetragonality
and the transition to a cubic structure occur spasmod-
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METASTABLE EQUILIBRIUM BETWEEN CUBIC AND TETRAGONAL FERRITES 1151
ically on reaching η = 0.5. To estimate x0, we take
 and λ0 = 5.5 eV/atom. Then,

Therefore, at 300 K, the diffusionless bct → bcc tran-
sition must occur in steel containing 0.013 atomic frac-
tions, or 0.28 wt %, of carbon. Now, let us consider a
situation in which the phases can exchange carbon
atoms. The boundary concentrations of the cubic and
tetragonal phases that appeared under the conditions
of diffusion equilibrium can be determined graphically
by drawing a common tangent to the graphs of the
molar free energies [9]. In this case, the concentration

 must lie within the biphase α + α'-region. In the
analytical calculation of these concentrations, we use
the phase equilibrium equations

(12)

After substituting expressions (4a) and (4c) and
also (9a) and (9b) into Eqs. (12), we obtain a system of
equations for the chemical equilibrium of the tetrago-
nal and cubic phases:
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The dependence of the order parameter  on the
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for calculations, is determined by Eq. (7). It should be
noted that the sought-for solution for the concentra-
tions—besides the temperature  and composition of
the steel—is determined by two energy parameters: the
interaction energy of carbon atoms in ferrite 
and the deformation interaction parameter of carbon
in the tetragonal martensite, λ0. If  then
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the system of equations (13a) and (13b) has no roots;
for , the roots are also absent but are ready

to appear. For negative values of , as in (3a), the
roots exist. We solved the systems of equations (13a) and
(13b) using the MathCad software package. However,
there is some doubt about the accuracy of formula (3a),
which, according to Agren [14], was proposed by Gus-
tafson to eliminate the emergence of another zone of
stability of the bcc phase in the liquid state region. It
would be reasonable to calculate the interaction
energy of the carbon atoms in α-iron,  directly,
on the basis of the data on the activity of carbon, ,
and thermodynamic relations, as it was made by
McLellan and Dunn [15] for austenite. Shiflet et al.
[16] derived similar equations  but, when using the
numerical coefficients from [15], did not take into
account the change in the coordination number from
8 for fcc to 4 for bcc in the intersticial sublattices and
obtained an incorrect result with  The
same mistake was made in [17], which was first
pointed out by McLellan [18]. In both cases, the
energy of the C–C bonds turned out to be negative.
Rigorous calculations were later made by Bhadeshia
[19, 20]. His first result was +(105.4–112.1) kJ/mol,
and, after refining the quasi-chemical theory of activ-
ity, he found  = 150 kJ/mol, or 1.54 eV per pair
of nearest neighbors of С–С. There is a confirmation
of these results by Bhadeshia [21, 22]. First-principle
calculations of the energy of pair interaction of neigh-
boring carbon atoms in the α-phase gave 1.8 eV/atom
in the first work and 2.0 eV/atom in the second. The
authors of both studies emphasize the existence of an
exceptionally strong repulsion of the nearest carbon
atoms. Since the cell volume in [22] was significantly
higher than in [21], the results of [22] are more accu-
rate. Taking into account that the coordination num-
ber of the interstitial lattice is  we find that

 = 430 kJ/mol and  = –1300 kJ/mol.
The further calculations of the boundary concentra-
tions were carried out with this value.

3. RESULTS AND DISCUSSION
The calculated temperature dependences of the car-

bon boundary concentrations in α- and α'-solid solu-
tions in a biphase equilibrium for λ0 = 5.5 eV/atom,

established in [1], and  = –1300 kJ/mol are
shown in Fig. 1a. With an increasing temperature,
both concentrations sharply increase, as a result of
which the region of the biphase equilibrium of α + α'
also expands and shifts to the right.

Figure 1b presents the results of calculations in
which  have the same value as in the calcula-
tions for Fig. 1a and the value of λ0 is reduced to
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Fig. 1. Calculated equilibrium carbon concentrations in
cubic (α) and tetragonal (α') martensite or bainitic ferrite

for (a)  and λ0 = 5.5 eV/atom;

(b)  and λ0 = 2.73 eV/atom;

and (c)  and λ0 = 5.5 eV/atom.
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Fig. 2. Low-temperature metastable phase equilibrium
diagram of Fe–C (calculated under the assumption of sup-
pressed carbide precipitates).
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2.73 eV, which was recommended by Khachaturyan
[12], but they did not confirm the results of our simu-
lation [13]. The reduction in λ0 led to a strong increase
in both boundary concentrations. In the calculations
of  and  the results of which are shown in Fig. 1c,
it was found that the reduction in  has almost
no effect on the position of the boundary line

α
Cx T

C,x
0 bcc

Fe:Va,CL
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α/α' but, in comparison with Fig. 1a, causes a shift to
lower concentrations of the line 

Our calculations show that, at relatively low carbon
concentrations, there is a diffusion-controlled equilib-
rium between martensite or bainitic ferrite with the
α'-phase and an α-solution of carbon in iron. Ther-
modynamically, it is due to the possibility of drawing a
common tangent to the curves of the molar free energy
of the α- and α'-phases. The nature of this equilibrium
is somewhat different than in the spinodal decomposi-
tion of martensite. Let us consider a metastable equi-
librium diagram of the Fe–C phases (Fig. 2) more
detailed than the diagram we presented in [1]. In this
diagram, a single-phase region of α-solid solutions
appears again. It is much wider than for the classical
equilibrium diagram, since its boundary is determined
by the equilibrium of the cubic ferrite with tetragonal
ferrite rather than with cementite. As already noted,
the α + α' biphase region then follows. According to
our calculations, at room temperature, for  =
5.5 eV/atom, it extends from 0.24 to 0.57 wt % C. This
is exactly the range of concentrations in which,
according to [22], the linear dependence (Fig. 3) of the
degree of tetragonality с/a of the martensite lattice on
the carbon content, established by G.V. Kurdyumov
[23], is interrupted. The X-ray diffraction analysis of
quenched steels of this composition does not reveal a
distinct martensitic doublet. There is an asymmetri-
cally broadened maximum. This fact was explained by
M.A. Shtremel’ and L.M. Kaputkina [24] by diffrac-
tion on a mixture of cubic and tetragonal martensites in
accordance with our theory and diagram. Single-phase
tetragonal martensite emerges for a substantially nar-
rower range of concentrations from 0.57 to 1.58 wt % C.
Then the α' + γ region appears. The field of single-

αT
C C .x x

λ0
S AND METALLOGRAPHY  Vol. 119  No. 12  2018
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Fig. 3. Lattice parameter ratio c/a of carbon martensite vs.
carbon content [23, 24].
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phase stable austenite must be observed at concentra-
tions exceeding 7.8 wt % C. In this form, the metasta-
ble equilibrium diagram seems to be rather realistic.

CONCLUSIONS
(1) The chemical potentials of carbon and iron cal-

culated in [1] for Fe–C alloys with a bct lattice allowed
us to consider metastable equilibrium of α- and
α'-solutions with cubic and tetragonal lattices.

(2) The existence of a α ↔ α' biphase equilibrium
region between 0.24 and 0.57 wt % C (according to our
calculations) was established. The reaction of marten-
site decomposition during tempering or self-temper-
ing likely causes the violation in this area of the equa-
tion of Kurdyumov’s linearity of the ratio с/a as a
function of the carbon content [23]. Here, α' is mar-
tensite enriched with carbon.

(3) A complete diagram of the metastable equilib-
rium of the α-, α'-, and γ-phases of the Fe–C system
at low temperatures, valid in the absence of carbide
precipitation, as, e.g., in the formation of carbideless
bainite is obtained.
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