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Abstract—In the present study, the Chou’s general solution model (GSM) has been used to predict the excess
Gibbs enthalpy of the liquid Co–Sb–Sn ternary alloys with three selected sections xSb/xSn = 1/3, xCo/xSb = 1/5,
and xCo/xSn = 1/4, of Ag10–In80–Pd–Sn10, Ag20–In60–Pd–Sn20, and Ag–In40–Pd20–Sn40 quaternary alloys
and the excess Gibbs energy of Ni–Cr–Co–Al–Mo–Ti–Cu with seven component alloys with selected sec-
tions, namely, xNi = xCu, xCr = xTi, xCo = xTi, xAl = xTi, xMo = rxTi, xTi = (1 – xCu)/(r + 5), and r = 0.1 at tem-
peratures 1273, 1173, and 2000 K, respectively. However, any information in the literature regarding the appli-
cation of GSM to the alloys mentioned above could not be found, the other geometric models such as Kohler,
Muggianu, and Toop are also included in present calculations. Using standard deviation formula, it is seen that
some reasonable agreements exist between the results of the geometric models and those of related experiments.

Keywords: the excess Gibbs enthalpy of mixing, the excess Gibbs energy of mixing, multicomponent alloys,
Geometric models, Redlich–Kister parameters
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INTRODUCTION
At the first of July 2006, the European Union

Waste Electrical and Electronic Equipment (WEEE)
Directive and Restriction of Hazardous Substances
(RoHS) Directive came into effect, prohibiting the
inclusion of significant quantities of lead in most con-
sumer electronics produced in the EU. Manufacturers
may receive tax benefits reducing the use of lead-based
solder in the USA. It is expected that similar regula-
tions are active or impending in various other parts of
the world. Lead-free solders are recommended in the
drinking water—whether rain water in the soil or out-
door—applications. The most typical lead-free solder
alloys of tin-silver and tin-copper—compounds being
melted around the 523 K depending on their constitu-
ents as used to meet the requirements of specific appli-
cations,—they become more common in lead-free
solders due to environmental pollution concerns.
Lead-free solders in commercial use may contain ele-
ments such as tin, copper, silver, bismuth, indium,
zinc, antimony, and traces of other metals. Suitable
materials for low-temperature soft soldering have been
found, such as Sn–Ag–Cu and Sn–Cu–Ni, whereas

no convenient alloy has so far been found for high-
temperature soft soldering because of melting tem-
perature (higher than 503 K). Recently, several inves-
tigators have determined mixing enthalpies in the
Co‒Sn and Sb–Sn systems [1‒4]. To the best knowl-
edge of the authors, no data for the enthalpy of mixing
of liquid alloys in the Co–Sb–Sn ternary system are
available. On the other hand, Luef et al. [5] were the
first to measure it at 1173 K in the liquid ternary
Ag‒In–Sn and quaternary Ag–In–Pd–Sn alloys.
The enthalpies of mixing of the five binary subsystems
relevant to the Ag–In–Pd–Sn alloy systems, such as
Ag–Pd [6], Ag‒Sn [7], In–Pd [8], In–Sn [8], and
Pd–Sn [8] have recently been re-measured and
assessed. When the melting temperature is greater than
503 K, the alloys such as Sn–Zn, Sn–Sb, and Sn–Au
containing solders are promising candidates, while Cu
and Ni may be used as additions and as contact mate-
rials as well. The systems consisting of the type solder
and substrate are characterized general by huge differ-
ences in the melting points of the pure components.
The high melting areas cannot be investigated experi-
mentally at the temperatures relevant for soldering, i.e.
473–573 K, because diffusion is slow and thermody-
namic equilibrium will not be reached in reasonable1 The article is published in the original.
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time. Therefore, it will be significant to study multi-
component systems of four or more metals, for
instance, a Pb-free, seven-component Ni–Cr–Co–
Al–Mo–Ti–Cu alloy. The excess Gibbs energy of
mixing has been investigated in some ternary alloy sys-
tems, such as Cr—Co–Al [9], Cr–Co–Mo [9] for
some sections using GSM (it can not only generalize
various kinds of situations, break down the boundary
between symmetrical and asymmetrical models, but
can also thoroughly rule out any human interference
in the calculation process for ternary systems), Kohler
(symmetric), Toop (asymmetric) models. In another
study, thermodynamic properties of the six-compo-
nent systems Ni–Cr–Co–Al–Mo–Ti are discussed
analytically [10]. Recently, the excess Gibbs energy of
mixing has been investigated in quinary alloy system,
Ni–Cr–Co–Al–Mo [11] at a temperature of 2000 K
for some sections using GSM, Kohler, and Mugiannu
(symmetric) models. Recently, the calculation of ther-
modynamic quantities of the subsystems in the quater-
nary Ni–Cr–Co–Al [12], ternary Ni–Cr–Co [13]
and Ni–Cr–Al [14] alloys were carried out using some
traditional and GSM models.

This study aims to calculate the excess Gibbs
energy and activity coefficient for multicomponent
systems, such as seven-component Ni–Cr–Co–Al–
Mo–Ti–Cu, quaternary Pb-free Ag–In–Pd–Sn, and
ternary Co–Sb–Sn alloys. In the system of seven
components, such as quaternary Ag–In–Pd–Sn and
ternary Co–Sb–Sn alloys, the excess Gibbs energy of
mixing calculation has not been reported in literature
up to now using GSM model. This study has proposed
a calculation of the thermodynamic quantities such as
the excess Gibbs energy and enthalpy of mixing to
avoid the high cost of the experiments using all the
model mentioned above.

EQUATIONS OF TRADITIONAL 
GEOMETRIC MODELS

The main equations describing models just men-
tioned above are summarized as follows. One of them
is Kohler model that uses the general expression as fol-
lows, so that i and j indices represent the first and sec-
ond components in binary alloys:

(1)

Muggianu model is predominantly used by
researchers in the optimization of ternary and higher
order systems. In this model, the excess Gibbs energy
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of a phase in n-component system is estimated by the
following equation:

(2)

Unlike the other methods, the Toop extrapolation
method is an asymmetric model and its equation is
given generally as:

(3)

The basic equation of GSM for seven-component
alloys is given as follows, so that the probability weight
Wij of the ij binary system can be expressed as Wij =
xixj/Xi(ij)Xj(ij), (i, j = 1–7, i ≠ j):

(4)

Here, Gexc is the excess Gibbs energy of mixing for
seven-component systems; and x1, x2, x3, x4, x5, x6, and
x7 are the mole fractions of the alloy systems in ques-
tion. First of all, it is necessary to calculate the similar-
ity coefficients  for twenty one binaries which are
defined by η(ij, ik) called the deviation sum of squares
when GSM is applied to the alloy system and their
definitions are given as follows, respectively:

(5)
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Equation (6) can be written analytically as

(7)

 are the parameters for binary ij systems indepen-
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We prove that this higher order model can be
reduced to a lower order model if two components in a
multicomponent system are identical. The expression
for the excess Gibbs energy of mixing for a six-compo-
nent system—which is another form of Eq. (4)—is as
follows:

(9)

One may obtain the following, when the fourth
component is identical to the third one and using defi-
nition of deviation sum of squares:

(10)

(11)

(12)
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(14)
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Substituting Eq. from (11) to (18) into Eq. (5), we
have the following:
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( ) ( )η = η16,12 15,12 ,

( ) ( )η = η61,62 51,52 ,

( ) ( )η = η16,14 15,14 ,

( ) ( )η = η61,64 51,54 ,

( )η =16,15 0,
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(23)

Taking into account the Eqs. (19)–(23), arranging
the coefficients of terms having  and  in
Eq. (9), the terms in question are written as:

(24)

For expressions of η(ij, ik) in X2(26) one can obtain:
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Substituting Eq. from (25) to (31) into Eq. (5), we
have the following:
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(43)

(44)
Substituting Eqs. from (38) to (44) into Eq. (5), we

have the following:
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According to these equations, it is:
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Taking into account the Eqs. (45)–(49), arranging
the coefficients of terms having  and  in
Eq. (9), the terms in question are written as:
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can obtain:
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Substituting Eq. from (51) to (57) into Eq. (5), we
have the following:
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Taking into account the Eqs. (58)–(62), arranging
the coefficients of terms having  and  in
Eq. (9), the terms in question are written as:

(63)

So, substituting Eqs. (24), (37), (50), and (63) into
Eq. (9) and considering G15 = G16, G25 = G26, G35 = G36,
G45 = G46, thus, Eq. (9) becomes

(64)

where  We also prove that this higher
order model can be reduced to a lower order model if
two components for example x5 and x6 in a multicom-
ponent system are identical [10].

RESULTS AND DISCUSSION
In order to discuss the application of GSM and

practical applicability, experimental results of the
excess Gibbs enthalpy of mixing associated with liquid
Cox–Sby–Snz ternary alloys are compared with GSM
model, Muggianu, Kohler, and Toop models. The
investigated cross-sections of ternary Cox–Sby–Snz
alloys (three sections are selected Sby/Snz = 1/3,
Cox/Sby = 1/5, and Cox/Snz = 1/4 , see Fig. 1) used in
this work are shown in Figs. 2–4. For this purpose,
using the Eq. (6) via Eq. (7), similarity coefficients
were calculated according to the procedure of the
GSM and their values and deviation sum of squares
were tabulated in Tables 1, 2. It is seen from Fig. 2 that
the values quickly become more negative by adding Co
as it was expected regarding the constituent binary Co-
systems and are good in agreement the values obtained
from all model treated in the present study. The mea-
sured excess Gibbs enthalpy of mixing becomes
slightly more exothermic starting from the binary Co–
Sn and passes a minimum of approx. –4500 J/mol at
nearly 40 at % Sb and is good in agreement the values
obtained from all model treated in the present study
(Fig. 3). Comparing these experimental values [15]
with those of the excess Gibbs enthalpy of mixing
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Fig. 1. Measured sections (A, B, C, D, E) and alloy com-
positions in the ternary Co–Sb–Sn system, the liquidus
limit is marked by the dashed line. The investigated cross-
sections for C, D and E are taken from [15].
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obtained by the geometric models in Co–Sb–Sn sys-
tem at 1273 K, the best agreement was found for the
data calculated by Kohler and GSM for section
xSb/xSn = 1 : 3, while the higher differences were
obtained in the case of the other two models. Whereas,
Muggianu, Kohler and Toop, Kohler models were the
most appropriate ones among the geometric models
applied for sections xCo/xSn = 1 : 4 and xCo/xSb = 1 : 5,
respectively (Table 3). The values of Redlich–Kister
parameters are not calculated from the experimental
binary excess energy functions, instead of this, the
parameters are collected from the reliable studies on
this topic in literature.

The similarity coefficients are given in Tables 2, 5
and 6 for the alloys Co–Sb–Sn, Ag–In–Pd–Sn and
Ni–Cr–Co–Al–Mo–Ti–Cu, respectively. The simi-
larity coefficients have been proposed in order to
determine the asymmetric component in the multi
component alloys. A thermodynamic criterion for
identifying the symmetry of ternary systems from
asymmetry can be explicitly proposed as follows. If the
excess thermodynamic properties of the three sub
binary systems are similar to each other, the ternary
system is symmetric. Otherwise, if the deviations of
the binary systems A–B and A–C from the ideal solu-
PHYSICS OF METAL

Table 2. Deviation sum of squares η(ij, ik) and similarity coe

Deviation sum of s

η1 = 0.03007716541 × 109 η2 = 0.0696

Co–Sb Co–Sn Sb–Co 

Similarity c

ξCo–Sb = 0.30156 ξSb–Sn = 

η > η2

Table 1. Redlich–Kister coefficients associated with the
liquid phase of Co–Sb–Sn alloy used for the calculation of
the excess Gibbs enthalpy of mixing at 1273 K

System Redlich–Kister parameters, J/mol Ref

Co–Sb  –50706

 –13831

 [15]

Co–Sn  –20746

 –8087

 [15]

Sb–Sn  –5269.4

 –507.4

 [15]

Co–Sb–Sn  –293415

 –3213

 –63791

 [12]

=0
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=1
12А

=0
13А

=1
13А

=0
23А

=1
23А

=0
123А

=2
123А

=3
123А
tion are similar but differ markedly from that of the
binary system B–C, the A–B–C ternary system is an
asymmetric one. In the asymmetric system, the com-
mon component A in two sub binary systems with ther-
modynamic similarity should be chosen as the thermo-
dynamic asymmetric component. Therefore, the GSM
including the similarity coefficients to the calculations
gets rid of this problem. The GSM had no errors arising
from symmetry and asymmetry properties.

The values of calculated similarity coefficients of
the three binary systems Co–Sb, Co‒Sn, and Sb–Sn
mentioned in the GSM are found as 0.30156,
0.893313, and 0.21701, respectively (Table 2). For the
asymmetric model, i.e., Toop model, it is of vital
importance to determine the asymmetric component i.
However, none of the three similarity coefficients
mentioned above is approximately equivalent to one.
This case means that the asymmetric component in
the ternary alloys is not easy to find. Here, = 0.893313,
means that Co is relatively similar to Sb, indicating
that we have no alternative option but to select Sn as
S AND METALLOGRAPHY  Vol. 119  No. 10  2018

fficients ξ associated with Co–Sb–Sn system at 1273 K

quares η (J2 mol–2)

61479 × 109 η3 = 0.008335904 × 109

Sb–Sn Sn–Co Sb–Pd

oefficients

0.893126 ξSn–Co = 0.217007

η1 3@
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Fig. 2. The excess Gibbs enthalpy Hexc of mixing of liquid
Co–Sb–Sn alloys for all models along the section
xSb/xSn = 1 : 3 at 1273 K. The experimental values are
taken from [15].
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Table 3. Comparison among the calculated results of root
mean square deviation corresponding to each geometric model
for the selected ternary Co–Sb–Sn liquid alloy systems

Co–Sb–Sn-

systems
GSM Kohler Muggianu Toop

xSb/xSn = 3 : 1 81.496 81.226 83.504 94.468

xCo/xSn = 1 : 4 109.3786 88.604 42.710 151.521

xCo/xSb = 1 : 5 173.766 122.321 337.487 118.581

Fig. 4. The excess Gibbs enthalpy Hexc of mixing of liquid
Co–Sb–Sn alloys for all models along the section
xCo/xSb = 1 : 5 at 1273 K. The experimental values are
taken from [15]. 
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the asymmetric component. According to the above
mentioned analysis, an important conclusion can be
made that the Co–Sb–Sn ternary alloy system is not
exactly the symmetric system such as Muggianu,
Kohler models or asymmetric such as Toop model.
Therefore, is obvious that both the symmetric and
asymmetric systems used in the present models cannot
help obtain the accurate predicted values. So, in this
work, the GSM should be included to the excess Gibbs
energy calculations.

Moreover, in this study, the excess Gibbs enthalpy
of mixing in the liquid Ag–In–Pd–Sn quaternary
alloys have been estimated at 1173 K along three com-
positions Ag10–In80–Pd–Sn10, Ag20–In60–Pd–Sn20

and Ag–In40–Pd20–Sn40 with taking into account the

consideration of the experimental data by dropping
mole of Pd and Ag. Considering descriptions of the
three binary subsystems (Tables 4), the excess Gibbs
enthalpy of liquid Ag–In–Pd–Sn systems have been
calculated at T = 1173 K by GSM model as well as by
PHYSICS OF METALS AND METALLOGRAPHY  Vol. 1
the three geometric models using Tables 5 and 6. The
results of the calculations together with the experi-
mental values [5] are given in Figs. 5–7. In order to
analyze the model results, for the sake of simplicity,
the root mean square deviation corresponding to
experimental results are carried out, since a large
number of points on the Figs. 5–7 result in overlap-
ping of these points. Glancing at Table 7, it is seen that
the results obtained by the Muggianu model show the
best agreement with the experimental results.

It is impossible now for multi-component alloys
(of more than four components) to carry out experi-
mental measurements due to not only technological
difficulties but also the expenses and time consume.
The method including the semi-empirical model that
predicts ternary and multicomponent thermodynamic
properties based on the binary ones is the most attrac-
tive approach with respect to their simple, effective,
and employing more reliable binary sources experi-
mentally and theoretically. All of these are basic
requirements for a good model. Therefore, trying a
calculation of Gibbs free energy associated with Ni–
19  No. 10  2018
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Fig. 5. The excess Gibbs enthalpies Hexc of liquid Ag10–
In80–Pd–Sn10 alloys for all models at 1173 K. The experi-
mental values are taken from [5].
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Cr–Co–Al–Mo–Ti–Cu seven-component alloys

with some selected sections (any information con-

cerning this has been reported in literature up to now

using GSM model) is another goal in the present
PHYSICS OF METAL

Table 4. Binary interaction parameters dealing with the exce
alloy system

Interaction parameters Temperature, °C

(k) AAg–In 1007

(k) AAg–Pd 1400

(k) AAg–Sn 900

(k) AIn– Pd 900

(k) AIn–Sn 900

(k) APd–Sn 900

(k) AAg–In–Pd 938

(k) AAg–In–Sn 727–980

(k) AAg–Pd–Sn 900

(k) AIn–Pd–Sn 900
study. The indices of concentration 1, 2, 3, 4, 5, 6, and
7 have been used to denote Ni, Cr, Co, Al, Mo, Ti and
Cu, respectively. Binary interaction parameters con-
cerning the alloys Ni–Cr–Co–Al–Mo–Ti–Cu are
given in Table 8. The similarity coefficients were cal-
culated according to the procedure of the GSM and
their values and deviation sum of squares were tabu-
lated in Table 9 using total twenty-one Redlich–Kister
parameters associated with binary systems given in
Table 8. The correctness of these calculated similarity
coefficients can be checked using the Eq. (65).

(65)

The values of similarity coefficients listed in Table 9,
the simple relation between the selected binary com-
positions and the composition of the multicomponent
system are calculated. A new model is established

( )
( )( ) ( )

( )( ) ( )
( )( )

( )
( )

( )
( )

( )
( )

( )
( )( ) ( )

( )( ) ( )
( )( )

( )
( )

( )
( )

( )
( )

− ξ − ξ − ξ

= = ξ ξ ξ

− ξ − ξ − ξ

= = ξ ξ ξ

6 1 7

7 71 6 67 1 16

6 1 7

7 71 6 67 1 16

1 2 4

2 24 4 41 1 12

1 2 4

2 24 4 41 1 12

1 1 1

0.020007 ,

1 1 1

0.085199 .
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ss Gibbs enthalpy of mixing associated with Ag–In–Pd–Sn

k J/mol Refs

0

1

2

–15443

–12728

3844

[5]

0

1

–19141

–15925
[6]

0

1

2

–3831

–15575

–10888

[7]

0

12

–202640

85610
[8]

0

1

–1481

–499
[8]

0

1

–215814

–126046
[8]

0

1

2

–275878

66245

–653632

[5]

0

1

2

32696

44749

10393

[5]

0

1

2

–313084

–422417

2113838

[6]

0

1

2

0156065

1253787

2211126

[8]
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Table 5. Deviation sum of squares associated with Ag–In–Pd–Sn system at 1173 K

663347.2 3248491 6 414385 1.2E + 09 6843339 1.38E + 09

1.17E + 09 1.39E + 09 13571191 1698253 1.53E + 09 1.61E + 09

( )η 12, 13 ( )η 12, 14 ( )η 13, 14 ( )η 21, 23 ( )η 21, 24 ( )η 23, 24

( )η 31, 32 ( )η 31, 34 ( )η 32, 34 ( )η 41, 42 ( )η 41, 43 ( )η 42, 43
more realistic in computerization for estimating the

excess Gibbs energies of liquid Ni–Cr–Co–Al–Mo–

Ti–Cu alloys. Using these coefficients, it is possible to

determine the phase diagrams of a multicomponent

alloy system in question.
PHYSICS OF METALS AND METALLOGRAPHY  Vol. 1

Fig. 6. The excess Gibbs enthalpies Hexc of liquid Ag20–
In60–Pd–Sn20 alloys for all models. The experimental val-
ues are taken from [5] at 1173 K. 
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Fig. 7. The excess Gibbs enthalpies Hexc of liquid Ag–

In40–Pd20–Sn40 alloys for all models at 1173 K. The

experimental values are taken from [5].
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The excess Gibbs energy of mixing in the liquid
phase is shown in Fig. 8. It is seen from Fig. 8 that val-
ues of the excess Gibbs energy of mixing of GSM
model are in agreement with those of the Muggianu
and Kohler which are symmetrical models.

Recently, some papers related to GSM model,
which are utilized at calculation stage of the excess
Gibbs enthalpy of mixing via GSM, can be found in
[16–18] and particularly some of studies dealing with
the thermodynamic properties of the steel multi-com-
ponent systems are appeared in literature [19–24].

CONCLUSIONS

GSM has been used for assessing the excess Gibbs
enthalpy of mixing with three selected sections
xSb/xSn = 1/3, xCo/xSb = 1/5, and xCo/xSn = 1/4, Ag10–

In80–Pd–Sn10, Ag20–In60–Pd–Sn20, and Ag–In40–

Pd20–Sn40 quaternary alloys and the excess Gibbs

energy of Ni–Cr–Co–Al–Mo–Ti–Cu with seven-
component alloys with selected sections, xNi = xCu,

xCr = xTi, xCo = xTi, xAl = xTi, xMo = r xTi, xTi = (1 –

xCu)/(r + 5), and r = 0.1 at temperatures 1273, 1173,

and 2000 K, respectively. Three traditional geometric
19  No. 10  2018

Fig. 8. The excess Gibbs energies Hexc of liquid Ni–Cr–

Co–Al–Mo–Ti–Cu alloys for all models along the section
xNi = xCu, xCr = xTi, xCo = xTi, xAl = xTi, xMo = rxTi, xTi =

(1 – xCu)/(r + 5), and r = 0.1 at 2000 K as a function of Cu

composition.
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Table 7. Comparison among the calculated results of root mean square deviation corresponding to each geometric model
for the selected quaternary Ag–In–Pd–Sn liquid alloy systems

Ag–In–Pd–Sn- systems GSM Kohler Muggianu Toop

Ag10–In80–Pd–Sn10 658.710 672.400 604.364 668.080

Ag20–In60–Pd–Sn20 1456.602 508.8043 269.051 563.584

Ag–In40–Pd20–Sn40 555.583 282.4164 57.344 427.271

Table 8. Binary interaction parameters dealing with the excess Gibbs energy of mixing associated with Ni–Cr–Co–Al–
Mo–Ti–Cu alloy system at 2000 K

Alloy systems Refs

Ni–Cr(1–2) –8368 0 0 [25]

Ni–Co(1–3) 3347 0 0 [25]

Ni–Al(1–4) –77628.5 –63 591.5 0 [26, 27]

Ni–Mo(1–5) 10041 0 0 [28]

Ni–Ti(1–6) –83988.2 –30205 –20155.96 [29–31]

Ni–Cu(1–7) 14646.47 –22.41 0 [32–34]

Cr–Co(2–3) –8368 0 0 [25]

Cr–Al(2–4) –46 442 0 0 [27]

Cr–Mo(2–5) 1877 1045 0 [28]

Cr–Ti(2–6) 5250 1500 0 [31]

Cr–Cu(2–7) 24893.75 1183.91 0 [35]

Co–Al(3–4) –45341 189470 0 [25]

Co–Mo(3–5) 2510 0 0 [25]

Co–Ti(3–6) –72830 –5513.8 13624 [36]

Co–Cu(3–7) 25310 –834 0 [35]

Al–Mo(4–5) –46024 0 0 [28]

Al–Ti(4–6) –32250 4000 15000 [31]

Al–Cu(4–7) –68334 39088 0 [34]

Mo–Ti(5–6) –5000 0 0 [30]

Mo–Cu(5–7) 61285.4 1200 0 [37]

Ti–Cu(6–7) –4599.8 0 –1514 [38]

0
(0)ijА 1

(0)ijА 2
(0)ijА

Table 6. Similarity coefficients associated with Ag–In–Pd–Sn system at 1173 K

0.000552364 0.321893175 0.00056592 0.00460890 0.65669283 0.004163488

0.506065807 0.99029041 0.80117843 0.46284793 0.47450090 0.00837771

ξ(3)
1(12) ξ(4)

1(12) ξ(2)
1(13) ξ(4)

1(13) ξ(2)
1(14) ξ(3)

1(14)

ξ(1)
2(23) ξ(4)

2(23) ξ(1)
2(24) ξ(3)

2(24) ξ(1)
3(34) ξ(2)

3(34)
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Table 9. Deviation sum of squares η(ij, ik) and similarity coefficients ξ associated with Ni–Cr–Co–Al–Mo–Ti–Cu system
at 2000 K

η (71,72) 3507154.5 0.834276

η (17,12) 17655530

η (71,73) 3793499 0.528725

η (17,13) 4255936.5

η (71,74) 236809205 0.561363

η (17,14) 303065332

η (71,75) 72513442 0.009656

η (17,15) 707014.19

η (71,76) 12628451 0.963064

η (17,16) 329276174

η (72,71) 3507154.5 0.913172

η (27,21) 36884808

η (72,73) 25165.758 0.999318

η (27,23) 36884808

η (72,74) 296555303 0.363872

η (27,24) 169632982

η (72,75) 44145074 0.285727

η (27,25) 17659118

η (72,76) 29 431232 0.304132

η (27,26) 12863040

η (73,71) 3793499 0.809141

η (37,31) 16082424

η (73,72) 25165.758 0.999335

η (37,32) 37810235

η (73,74) 299895987 0.530486

η (37,34) 338840757

η (73,75) 43160 681 0.286506

η (37,35) 17331312

η (73,76) 30258093 0.910736

η (37,36) 308713667

η (74,71) 236809205 0.02366

η (47,41) 5738741.1

η (74,72) 296555303 0.072703

η (47,42) 23250 902

η (74,73) 299895987 0.470405

( )
( )ξ 2

1 17

( )
( )ξ 3

1 17

( )
( )ξ 4

1 17

( )
( )ξ 5

1 17

( )
( )ξ 6

1 17

( )
( )ξ 1

2 27

( )
( )ξ 3

2 27

( )
( )ξ 4

2 27

( )
( )ξ 5

2 27

( )
( )ξ 6

2 27

( )
( )ξ 1

3 37

( )
( )ξ 2

3 37

( )
( )ξ 4

3 37

( )
( )ξ 5

3 37

( )
( )ξ 6

3 37

( )
( )ξ 1

4 47

( )
( )ξ 2

4 47

( )
( )ξ 3

4 47
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η (47,43) 266378599

η (74,75) 566875345 0.040401

η (47,45) 23866783

η (74,76) 141761840 0.278707

η (47,46) 54776539

η (75,71) 72513442 0.546942

η (57,51) 87539808

η (75,72) 44145074 0.727187

η (57,52) 117669266

η (75,73) 43147837 0.727441

η (57,53) 115158445

η (75,74) 566875345 0.403745

η (57,54) 383850 435

η (75,76) 145655817 0.501386

η (57,56) 146 465332

η (76,71) 12628451 0.947752

η (67,61) 229 074857

η (76,72) 1144538.4 0.747614

η (67,62) 3390329.4

η (76,73) 30258093 0.828185

η (67,63) 145850344

η (76,74) 141761840 0.13246

η (67,64) 21644801

η (76,75) 145655817 2.2E-05

η (67,65) 3206.5715

η (21.27) 36884808 0.323715

η (12.17) 17655530

η (31.37) 16082424 0.209257

η (13.17) 4255936.5

η (41.47) 5738741.1 0.981416

η (14.17) 303065332

η (51.57) 87539808 0.008012

η (15.17) 707014.19

η (61.67) 229 074857 0.603186

η (16.17) 348210236

η (32.37) 37810235 0.49376

η (23.27) 36878134

η (42.47) 23250 902 0.879452

( )
( )ξ 5

4 47

( )
( )ξ 6

4 47

( )
( )ξ 1

5 57

( )
( )ξ 2

5 57

( )
( )ξ 3

5 57

( )
( )ξ 4

5 57

( )
( )ξ 6

5 57

( )
( )ξ 1

6 67

( )
( )ξ 2

6 67

( )
( )ξ 3

6 67

( )
( )ξ 4

6 67

( )
( )ξ 5

6 67

( )
( )ξ 7

1 12

( )
( )ξ 7

1 13

( )
( )ξ 7

1 14

( )
( )ξ 7

1 15

( )
( )ξ 7

1 16

( )
( )ξ 7

2 23

( )
( )ξ 7

2 24

Table 9. (Contd.)
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η (24.27) 169626308

η (52.57) 117669266 0.130491

η (25.27) 17659118

η (62.67) 56605152 0.350114

η (26.27) 30 494940

η (43.47) 266378599 0.559864

η (34.37) 338840757

η (53.57) 115158445 0.130812

η (35.37) 17331312

η (63.67) 145850344 0.679142

η (36.37) 308713667

η (54.57) 383850 435 0.058538

η (45.47) 23866783

η (64.67) 21644801 0.71677

η (η46.47) 54776539

η (65.67) 146 465332 0.5

η (56.57) 146 465332

η (42,46) 9174524 0.906624

η (24,26) 89079476

η (52,56) 1581637.8 0.193808

η (25,26) 380223.47

η (62,61) 288010 407 0.021048

η (26,21) 6192378.4

η (21,26) 6192378.4 0.971373

η (12,16) 210119338

η (31,36) 183986 426 0.60002

η (13,16) 276002251

η (41,46) 92390284 0.084447

η (14,16) 8521769

η (51,56) 7541056 0.976818

η (15,16) 317755684

η (61,62) 288010 407 0.421816

η (16,12) 210119338

η (61,63) 12454297 0.956824

η (16,13) 276002251

η (61,64) 114084115 0.069505

η (16,14) 8521769

η (61,65) 228123234 0.582099

( )
( )ξ 7

2 25

( )
( )ξ 7

2 26

( )
( )ξ 7

3 34

( )
( )ξ 7

3 35

( )
( )ξ 7

3 36

( )
( )ξ 7

4 45

( )
( )ξ 7

4 46

( )
( )ξ 7

5 56

( )
( )ξ 6

2 24

( )
( )ξ 6

2 25

( )
( )ξ 1

2 26

( )
( )ξ 6

1 12

( )
( )ξ 6

1 13

( )
( )ξ 6

1 14

( )
( )ξ 6

1 15

( )
( )ξ 2

1 16

( )
( )ξ 3

1 16

( )
( )ξ 4

1 16

( )
( )ξ 5

1 16

Table 9. (Contd.)
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η (16,15) 317755684

η (32,36) 130586946 0.045273

η (23,26) 6192378.4

η (62,63) 193614026 0.030992

η (26,23) 6192378.4

η (62,64) 41904762 0.680078

η (26,24) 89079476

η (62,65) 3512797.6 0.097668

η (26,25) 380223.47

η (43,46) 186180 909 0.521556

η (34,36) 202957 376

η (53,56) 2174627.7 0.988054

η (35,36) 179867705

η (63,61) 12454297 0.9366

η (36,31) 183986 426

η (54,56) 56098953 0.134597

η (45,46) 8725150.2

η (64,61) 114084115 0.447466

η (46,41) 92390284

η (64,62) 41904762 0.179613

η (46,42) 9174524

η (64,63) 55857021 0.769222

η (46,43) 186180 909

η (64,65) 21292560 0.290667

η (46,45) 8725150.2

η (65,61) 228123234 0 0.031999

η (56,51) 7541056

η (63,62) 193614026 0.402796

η (36,32) 130586946

η (63,64) 55857021 0.766206

η (36,34) 183058334

η (63,65) 145001922 0.553661

η (36,35) 179867705

η (65,62) 3512797.6 0.310464

η (56,52) 1581637.8

η (65,63) 145001922 0.012799

η (56,53) 1880003.3

( )
( )ξ 6

2 23

( )
( )ξ 3

2 26

( )
( )ξ 4

2 26

( )
( )ξ 5

2 26

( )
( )ξ 6

3 34

( )
( )ξ 6

3 35

( )
( )ξ 1

3 36

( )
( )ξ 6

4 45

( )
( )ξ 1

4 46

( )
( )ξ 2

4 46

( )
( )ξ 3

4 46

( )
( )ξ 5

4 46

( )
( )ξ 1

5 56

( )
( )ξ 2

3 36

( )
( )ξ 4

3 36

( )
( )ξ 5

3 36

( )
( )ξ 2

5 56

( )
( )ξ 3

5 56
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η (65,64) 21292560 0.724872

η (56,54) 56098953

η (21,23) 0 1

η (12,13) 4574707.5

η (21, 24) 48320 983 0.78758

η (12,14) 179157128

η (21,25) 3503867.6 0.763256

η (12,15) 11296376

η (43,45) 170 962602 0.591227

η (34,35) 247270 992

η (31,32) 4574707.5 0.5

η (13,12) 4574707.5

η (31,34) 249964 430 0.487556

η (13,14) 237824286

η (31,35) 23352.3 0.984606

η (13,15) 1493654.5

η (41,42) 51676 492 0.776131

η (14,12) 179157128

η (41,43) 339702388 0.411798

η (14,13) 237824286

η (41,45) 52551380 0.839785

η (14,15) 275454607

η (52,51) 2226896.7 0.611414

η (25,21) 3503867.6

η (52,53) 18556.419 0.994732

η (25,23) 3503867.6

η (52,54) 76 488727 0.504344

η (25,24) 77829392

η (43,41) 339702388 0.423908

η (34,31) 249964 430

η (43,42) 170 987459 0.558743

η (34,32) 216513810

η (43,45) 170 962602 0.591227

η (34,35) 247270 992

η (51,52) 2226896.7 0.835329

η (15,12) 11296376

η (51,53) 1890532 0.441363

( )
( )ξ 4

5 56

( )
( )ξ 3

1 12

( )
( )ξ 4

1 12

( )
( )ξ 5

1 12

( )
( )ξ 5

3 34

( )
( )ξ 2

1 13

( )
( )ξ 4

1 13

( )
( )ξ 5

1 13

( )
( )ξ 2

1 14

( )
( )ξ 3

1 14

( )
( )ξ 5

1 14

( )
( )ξ 1

2 25

( )
( )ξ 3

2 25

( )
( )ξ 4

2 25

( )
( )ξ 1

3 34

( )
( )ξ 2

3 34

( )
( )ξ 5

3 34

( )
( )ξ 2

1 15

( )
( )ξ 3

1 15
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η (15,13) 1493654.5

η (51,54) 104776141 0.724441

η (15,14) 275454607

η (31,34) 273185916 0.502068

η (13,14) 275454607

η (31,35) 1890532 0.441363

η (13,15) 1493654.5

η (32,31) 4574707.5 0

η (23,21) 0

η (32,34) 216513810 0.182457

η (23,24) 48320 983

η (32,35) 3944362.8 0.47043

η (23,25) 3503867.6

η (42,41) 51676 492 0.483222

η (24,21) 48320 983

η (42,43) 170 987459 0.220333

η (24,23) 48320 983

η (42,45) 5824.1333 0.999925

η (24,25) 77829392

η (53,51) 1890532 0.012202

η (35,31) 23352.3

η (53,52) 18556.419 0.995317

η (35,32) 3944362.8

η (53,54) 78518305 0.758991

η (35,34) 247270 992

η (54,51) 104776141 0.334025

η (45,41) 52551380

η (54,52) 76 488727 0

η (45,42) 5824.1333

η (54,53) 78518305 0.685273

η (45,43) 170 962602

( )
( )ξ 4

1 15

( )
( )ξ 4

1 13

( )
( )ξ 5

1 13

( )
( )ξ 1

2 23

( )
( )ξ 4

2 23

( )
( )ξ 5

2 23

( )
( )ξ 1

2 24

( )
( )ξ 3

2 24

( )
( )ξ 5

2 24

( )
( )ξ 1

3 35

( )
( )ξ 2

3 35

( )
( )ξ 4

3 35

( )
( )ξ 1

4 45

( )
( )ξ 2

4 45

( )
( )ξ 3

4 45

Table 9. (Contd.)
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models (Muggianu, Kohler, and Toop) are also
included in calculations for comparison. Some
important results are given as follows:

(1) The excess Gibbs enthalpy of liquid Co–Sb–Sn
alloys for all models along the section xSb/xSn = 1 : 3 at

1273 K were decreasing as the compositions Co and Sb
were increasing in the experimental interval. Whereas
the calculated excess Gibbs enthalpy of mixing were
also increasing as the composition Sn was increasing
in the experimental interval. The best agreement was
found for the data calculated by Kohler and GSM for
section xSb/xSn = 1 : 3, while the higher differences

were obtained in the case of the other two models.
Whereas Muggianu, Kohler and Toop, and Kohler
models were the most appropriate ones among the
geometric models applied for sections xCo/xSn = 1 : 4

and xCo/xSb = 1 : 5, respectively.

(2) The excess Gibbs enthalpies of liquid Ag10–

In80–Pd–Sn10, Ag20–In60–Pd–Sn20, and Ag–In40–

Pd20–Sn40 systems for all models at 1173 K were

decreasing as the composition Pd was increasing in the
experimental interval. Whereas the calculated excess
Gibbs enthalpy of mixing is also increasing as the con-
tent of Ag increases in the experimental interval.
Moreover, it is found from an assessment of the root
mean square deviation that the results obtained by the
Muggianu model show the best agreement with the
experimental results.

(3) It is determined that the excess Gibbs energy
values obtained from GSM model related with liquid
Ni–Cr–Co–Al–Mo–Ti–Cu alloys for all model
along the section xNi = xCu, xCr = xTi, xCo = xTi, xAl = xTi,

xMo = r xTi, xTi = (1 – xCu)/(r + 5), and r = 0.1 at 2000 K

were in agreement with those of the Muggianu and
Kohler which were symmetrical models. Moreover, it
was proved successfully in the present study that the
higher order model can be reduced to a lower order
model if two components for example x5 and x6 in a

multicomponent system are identical.
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