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Abstract⎯In this work, the magnetic contribution to the isothermal entropy change  upon switching on a
magnetic field has been investigated in correlated metallic ferromagnets within the Hubbard nondegenerate
model. The analytical expression for obtained in the mean-field approximation depends substantially on
the electronic structure (density of electron states), which presents new ways to increase the absolute value of

relative to the known result obtained within the Heisenberg model. The temperature dependence of
has been calculated at different values of the Coulomb interaction U and the number of electrons n for the

Bethe infinite-dimensional lattice and square lattice with allowance for transfer integrals in the first (t) and
the second (t') coordination shells. It has been found that the presence of Van Hove singularities in the
electronic spectrum near the Fermi level makes it possible to considerably increase  at a fixed magnetic
field. The possibility of first-order magnetic phase transitions depending on the model parameters has been
analyzed.
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1. INTRODUCTION

Warburg discovered the magnetocaloric effect
(MCE) in 1881. However, to date, no loss of scientific
interest in it has been observed. One of the most pro-
nounced practical applications of MCE is the creation
of refrigerating plants, which are more advantageous
(to 30%) in terms of energy conservation compared to
ordinary refrigerators based on the evaporation–con-
densation cycle of working substance. The prototype
of this magnetocaloric refrigerator was constructed by
Brown in 1976 with the use of metallic gadolinium as
working magnet. For the last 40 years elapsed from the
point a vast body of experimental data on the MCE in
rare-earth elements and their compounds has been
accumulated (see review [1]). The modern state of
affairs in the area of materials used for magnetic cool-
ing was described in reviews [2, 3]. A new enhanced
interest in MCE arose in 1997 after discovery of the
Gd5Si2Ge2 system with a giant value of the isothermal
entropy change, 20 J/(kg K), when a magnetic field of
5 T was switched on [4]. The giant value of the isother-
mal entropy change was obtained for FeRh alloys
undergoing a first-order transition from the ferromag-
netic into the antiferromagnetic state [5]. Since that
time the quantity of papers on this subject has

increased substantially in leading world journals (see
reviews on MCE in perovskites [6] and, in particular,
manganites [7] and other systems [8]). Nowadays, in
addition, experimental investigations of MCE in
nanomaterials, heterostructures, and thin films have
been performed [9]. Approaches to studying MCE
were described most comprehensively in review [10].

When theoretically investigating MCE the elec-
tronic contribution to the Hamiltonian is described by
the Heisenberg model for systems with rare metals or
by the Hubbard model for systems with transition
metals. As a rule, in both cases the mean-field approx-
imation for Hamiltonian terms describing interaction
is used [10]. For metallic systems, however, the effect
of Van Hove singularities of the electronic spectrum
on the quantity  was not investigated yet.

The purpose of this work is to investigate numeri-
cally and analytically the isothermal entropy change

 with switching-on of a magnetic field for metallic
correlated ferromagnets in the presence of the Van
Hove singularities in the electronic spectrum. To do
this, we obtained the following analytical expression
for the quantity  with MCE for the single-band
Hubbard model in the mean-field approximation. In
addition, for the case where the system exhibits a sec-
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ond-order phase transition, we  obtained analytically
the proportionality coefficient in explicit form for a
dependence  in low magnetic fields H at

 where  is the transition temperature (Curie
temperature). For numerical calculations, the electron
spectrum for the Bethe infinite-dimensional lattice
taking into account transfer between first and second
neighbors was chosen. This choice was due to the fact
that, in this case, the density of electron states imitates
the density of states for real three-dimensional lattices
that reproduce Van Hove singularities. In addition, for
the Bethe infinite-dimensional lattice, as distin-
guished from low-dimensional systems without
anisotropy in which long-wave f luctuations destroy
the magnetic order at finite temperatures [11], the
Stoner theory can be considered to be a good approx-
imation for studying MCE in metallic systems at
rather low values of the local Coulomb interaction.
The magnitude and position of the maximum of the
absolute value of  was analyzed at the transition
point  for a given magnetic field depending on
the all model parameters, i.e., the Coulomb interaction
U, the number of electrons n, and the ratio of transfer
integrals  Appendix 1 contains analogous results of
investigating  for the square lattice that exhibits
another type of Van Hove singularity. In Appendix 2,
the possibility of the first-order magnetic transition is
shown for the case where the Fermi level is near the Van
Hove singularity and the temperature is fairly low,
which opens the door to a fundamentally new MCE
scenario in weakly correlated metallic systems.

2. METHOD
Entropy of metal depends on the magnetic field H

and temperature T and consists of two contributions,
i.e., the lattice  and electron  (by creating a mag-
netic order, the conduction electrons contribute to the
magnetic part of entropy)

(1)
As is shown in [12], the electronic contribution to

the entropy change is dominant upon switching on the
magnetic field and, as an approximation, we take

(2)

Let us consider the description of MCE for a ferro-
magnetic metallic correlated system within the single-
band Hubbard model

(3)

Here, it is assumed that tij is nonzero for first and
second neighbors i, j and is equal to t and t', respec-
tively. In addition, it is assumed that 
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 are the operators of creation and annihila-
tion of electron with the spin projection σ at site i;

 is the operator of the number of electrons
with the spin projection  at site i; U is the matrix
element of the screened Coulomb interaction at the
site; and  is the magnetic-field value in
energy units. The first term in Eq. (3) describes the
kinetic energy of electrons in the lattice field (electron
transfer); the second term, the local Coulomb interac-
tion; the third term, the Zeeman energy of electrons in
magnetic field.

To obtain an analytical expression for  let us
consider the mean-field approximation for Hamilto-
nian (3). This approximation corresponds to the fol-
lowing substitution of the term describing the interac-
tion:

(4)
It is assumed that the average number of electrons

at site i  is independent of the site number
(ferromagnetic ordering). The total number of elec-
trons and the magnetic moment (in units
of ) equal to  (these are per site)
are determined by the equations

(5)

(6)

where  is the Fermi function
taken at the given chemical potential μ,  is the elec-
tronic spectrum,  is the spin splitting of the
electronic spectrum, and  is the total number of
sites. Then, Hamiltonian (3) in the mean-field
approximation has the form

(7)

where   +
 is the effective electronic spectrum, and

is the radius vector of lattice site i.
As is known, the entropy of noninteracting electron

gas with the spectrum  per site takes on the form [10]

(8)

Here and below, the temperature is measured in
energy units:  where  is the Boltzmann
constant.

It is convenient to represent sums over k in the
right-hand side of Eqs. (5), (6), and (8) through the
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density of non-interacting electron states per site  by
the following expression

(9)

using the formula

(10)

It should be noted that, for metallic systems, as dis-
tinguished from the results for  which were
obtained for localized electron systems (see, e.g.,
[14]), the growth of  in the general case can be
reached not only by a decrease in the Curie tempera-
ture  or an increase in the spin value but also by fit-
ting of the electronic spectrum.

Below, we calculate the quantity  which was
determined by Eqs. (2) and (8) from the self-consis-
tent solution of Eqs. (5) and (6) depending on the
model parameters U and n.

3. ISOTHERMAL ENTROPY CHANGE 
OF A METALLIC SYSTEM IN LOW FIELDS

The magnetic-field strength attainable in experi-
ments is rather small compared to the other energy
parameters that characterize the system. Let us calcu-
late the entropy change ΔS caused by switching on
magnetic field h in the limit of low magnetic fields

 Here and below, we assume that the magnetic
phase transition is a second-order transition. The
determination of the domain of parameters for which
this assumption holds is discussed in Appendix 2 (see
also [15]). For all the results presented below, this
assumption was satisfied.

In the paramagnetic phase, the parameter Δ (see
Eq. (6)) becomes nonzero when a magnetic field is
switched on, while in the ferromagnetic phase, this is
the case at h = 0. When a magnetic field is switched on,
the chemical potential changes as follows: 
to satisfy the requirement n = const. In the lowest
order in h, from Eq. (5), we have

(11)

where the notations for magnetic susceptibility of the
non-interacting electron gas with the spectrum  are
introduced as follows:
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where, at ,  is independent of σ and we sup-
pose that  In Eqs. (12) and (13), we used des-
ignations  and  Expand-
ing the right-hand side of Eq. (8) into a series in pow-
ers of Δ and  up to the lowest order, we obtain

(14)

where

(15)

(16)

To determine the behavior of Δ depending on the mag-
netic field h at  let us expand the right-hand
side of Eq. (6) in powers of Δ to the third order inclu-
sive, assuming Δ to be small as follows:

(17)

where  It can be seen from
Eq. (17) that, in the lowest order in h, when 
(and, hence, ),

(18)

which results in a dependence  At ,

(19)
and, in the lowest order in h, we have

(20)

where  Substituting expression (20)
into Eq. (14), we obtain

(21)
where the dependence of the coefficient

(22)

on n is determined through the solution of Eq. (5) at
 which specifies the Fermi level 

in the paramagnetic phase as a function of n. Note that
the dependence  at  follows from the
Landau theory of second-order phase transitions [13],
whereas the expression (22) for coefficient α obtained
through parameters of the model of weakly correlated
metal is the original result. Formula (21) means that in
a fixed magnetic field the greatest value of  is
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absolute value. Within the mean-field approximation,
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at  whereas experimentally, the point of the
maximum of  is located near TC and does not coin-
cide exactly with it.

Note that expression (21) can be obtained directly
via the differentiation of the known expansion of the
free energy F in powers of the order parameter m in the
Stoner theory (see [16], formula (2.22)). This formula
actually yields explicit expressions through the elec-
tronic spectrum for the coefficients of the expansion
of the free energy that are used within the phenome-
nological approach.

Note that the analogous dependence of  on h
was obtained for the Heisenberg model in the mean-
field approximation (see, e.g., [14]) and for a given
magnetic field H, the maximum value of  is
entirely determined by the spin value and the Curie
temperature.

It is shown below that, when Van Hove singularities
determine the physical features of the system,  is
great (see also Appendix 1) and  is small; therefore, it
is reasonable to consider an estimate of expression (21)
within the low-temperature expansion (Sommerfeld
expansion). At low temperatures  (where

 is the typical energy scale of
changes in  near the Fermi level ), we have
the following main contributions:

(23)

(24)

(25)

(26)
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From Eqs. (21) and (22), we obtain the following
estimate of  at :

(28)

where notations  = 

and  are used [16], and the density
of electron states ρ and all its derivatives are taken at

 It is seen that the quantity  is determined
by the density of states and its derivatives and the
dependence of the parameter U enters implicitly
through  which in the used approximation has
the form

(29)

Let us generalize definition of  for finite
temperatures T:

(30)

The sign of this expression coincides with the sign
of the fourth-order coefficient in the Landau expan-
sion in powers of the order parameter (magnetization)
and determines the phase-transition order. The condi-
tion  directly indicates the necessity of
considering first-order magnetic transitions (see
details in Appendix 2), which opens up the possibility
of a new MCE scenario, since inhomogeneous states
participate in the magnetic transition (phase separa-
tion exists). This is a difference between the MCE sce-
nario for metallic systems exhibiting first-order transi-
tions and the scenario for systems with local moments.
For these latter, no abrupt change in the concentration
of carriers takes place at the point of the first-order
magnetic transition (review of thermodynamics for
such systems in the MCE context is given in [17]). This
fact can be used as the basis for fundamentally new
technical applications of MCE.

4. RESULTS

Figure 1 displays plots of  for the Bethe
infinite-dimensional lattice at different  [18]; the
bottom of the band is chosen as the origin of energy. It
can be seen that, with growth in the ratio , the den-
sity of states becomes an appreciably asymmetric
function of ε relative to the center of the band as fol-
lows: at  on the low-energy edge of the
band, a Van Hove singularity arises in the form of
divergence  and, inside the band, Van
Hove singularities, appear in the form of kinks. The
band width remains constant or increases with growth
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Fig. 1. Density of electron states  in units of  (see
definition (9)) for the Bethe infinite-dimensional lattice at
different values of  Vertical dash lines show the posi-
tion of Van Hove singularities.
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of  and equals  at  and
 at ]

As was discussed in Section 3,  for fixed param-
eters , and h is the greatest in temperature at

 When the h value is fixed, the quantity  is
completely determined by a function  (see
Eq. (22)). Let us maximize  in parameters U
and n on a rather fine-mesh grid when solving Eqs. (5)
and (19) for each pair  in the paramagnetic phase.
When numerically solving systems of equations at low
temperatures the range  limits the
change in T because of problems with accuracy.

Figure 2 depicts constructed maps of  =
 in variables  and n (  is shown by the

degree of gray) for different values of  from 0 to 1

(from top to bottom) and  Note that, in the
presented diagrams, fairly small values of U were cho-
sen compared to the band width W. The dynamic
mean-field theory offers a reasonable estimate of the
critical  for the metal–dielectric transition
in the Hubbard model [19]. Accordingly, we limit the
change in parameter U by 

Let us denote the values of U and n yielding the
maximum of  at a given  as  and

 With increasing , the value of
 and  become small in this range of

parameters and the proximity of the Fermi level  to
the position of the Van Hove singularity located in the
paramagnetic phase on the bottom of the band is of
great importance. Let us denote the value of  which
corresponds to the parameters  and

, as . With growth of , the tem-
perature  decreases markedly at  and
reaches near-zero values at .

To illustrate the temperature dependence of ,
Fig. 3 displays graphs of  as functions of T at

 and  for different  (see
Fig. 2). It can be seen that  is negative and
exhibits a sharp maximum related to the transition
through the Curie temperature  The calculation
was performed for a magnetic field  which
corresponds (if the characteristic value of t for metals
is estimated as 1 eV) to a magnetic field of about 5 Т,
i.e., the strength that currently is experimentally
attainable [10]. With growth in , the maximum of

 shifts toward the low-temperature range
because of a significant increase of  near the bot-
tom of the band (see Fig. 1). In our calculations,

 reaches an absolute maximum at the least
considered value of Coulomb interaction  and
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values of ΔS compared to results, e.g., for gadolinium.
When  increases further,  begins to
decrease insignificantly. Note that, at the considered
values of , the maxima of  are much
the same in magnitude, four times smaller than at

 and are obtained at appreciably higher values
 and 

For comparison, Appendix 1 contains the results of
calculating  for square lattice. It is shown that the
magnitude of  markedly affects the maximum value
of  in parameters U and n. For a square lat-
tice, the temperature  reaches a minimum in
the low-temperature range at  For the Bethe
lattice, the tendency of the maximum of  to shift
toward smaller values of U and n with growing  from
0 to 1 is clearly seen. For a square lattice, as distin-
guished from the Bethe lattice, this dependence is
nearly symmetric about  It can be seen that the
presence of the Van Hove root singularity  in
the vicinity of the Fermi level substantially enhances the
maximum value of  in parameters U and n.

These results for a square lattice should be used
with greater caution than the results for the Bethe
infinite-dimensional lattice, which corresponds to
higher dimensionality, since the mean-field approxi-
mation disregards magnetic f luctuations. At any finite
temperature, these long-wave f luctuations in low-
dimensional systems are so strong that they destroy the
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long-range magnetic order [11]. In real experiments,
the layered compounds in which the presence of weak
interplanar transfer results in some smearing of singu-
larities of the density of states, which leads to its
boundedness, as a function of energy, correspond to a
square lattice. For these compounds, the critical tem-
perature of the transition is low and, above it, the tran-
sition occurs into the state without long-range order
and with strong f luctuations of short-range order with
exponentially high correlation length in the reciprocal
temperature, in which the strong and finite response
to a magnetic field can be retained [20]. If the mag-
netic field strength in experiments with layered com-
pounds is rather high, the obtained results should be
consistent with experimental data on the isothermal
change in  However, for low magnetic fields, it is
impossible to rely even on a qualitative agreement rel-
ative to  between the experimental data and the
theoretical results obtained.

Note that, in [10], for the model that, in addition to
the interactions we accounted for also contains the lat-
tice contribution to the entropy and magnitoelastic
interaction,  was calculated in the same approxi-
mation. In doing so, the electron density of states was
modeled with the simplest dependences (rectangular,
triangular), whereas no parametric dependences of

 were studied in detail. The results presented com-
plement the results of [10] with the comprehensive
investigation of the role of Van Hove singularities and
theoretical study of the maximality conditions of 
depending on the system parameters.
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5. CONCLUSIONS

In this work, for ferromagnetic metallic correlated
systems in the presence of Van Hove singularities in
the electronic spectrum, the magnetic-field contribu-
tion to the isothermal entropy change  was investi-
gated when switching on a magnetic field. The maxi-
mality conditions for this quantity in parameters T, U,
and n were determined. The analytical expressions for

 at the transition point  which yield an
explicit relation to the electronic structure of the sys-
tem, were obtained. It is shown that the absolute value
of  exhibits the maximum at the Curie tem-
perature , when the Fermi level in the paramagnetic
phase is located in the proximity of the position of the
Van Hove singularity near the bottom of the band. We
obtained estimates of the maximum of  for the
considered lattices, and their values were compared
with typical experimental data for gadolinium. The
presence of the Van Hove root singularity (  for
the Bethe infinite-dimensional lattice and  for
a square lattice) in the vicinity of the Fermi level
enhances appreciably the maximum value of  for a
given magnetic field.

In this work, the possibility of first-order magnetic
transitions was analyzed. It has been shown that, for a
square lattice, the logarithmic Van Hove singularity
( ) enables the first-order transition, when the
Fermi level lies in the vicinity of width on the order of
t near the given Van Hove singularity. At the same
time, for the Bethe infinite-dimensional lattice, the
first-order transition is only possible at  close to
0.25t, when the position of the Fermi level is near the
bottom of the band. It has also been demonstrated
that, for both lattices, the first-order transition is only
possible at fairly low temperatures . A detailed
investigation of MCE in metallic systems undergoing

first-order transitions will be presented in subsequent
works.

APPENDIX 1:  FOR SQUARE LATTICE
In this appendix, we consider the quantity  for

the case of square lattice. This case is treated sepa-
rately, since the mean-field approximation is not well
justified for low-dimensional systems at finite tem-
peratures because of disregarding long-wave collective
magnetic excitations that destroy the long-range mag-
netic order. Let us consider the density of electron
states for square lattice with the electronic spectrum in
the nearest- and next-nearest-neighbor approxima-
tion as follows:

(31)
where the lattice parameter is taken to be equal to
unity and the constant  displaces the origin of
energy and brings the position of a Van Hove singular-
ity into coincidence with the zero of energy when

 Note that, in this case, the Van Hove singular-
ity arises from points  and  At

, the density of states per spin projection has
the form

(32)

where  is the complete

elliptic integral of the first kind,  =
 and  =

 At   = 

and at   =  where  are
the constants.

When , we have

(33)

In this case, the Van Hove singularity is available at
 and corresponds to four hot points
 which are determined by the condition

 The abrupt change in the density of
states at  is connected with the presence of
a local maximum  at  The plots of the den-
sity of states for different  are shown in Fig. 4.

In Fig. 5, for a square lattice, analogously to the
results for the Bethe infinite-dimensional lattice pre-
sented in the main text in Fig. 2, maps of  =

 in variables  and n (the  value is
shown by the degree of gray) were constructed for dif-
ferent values of  from 0 to 1 (from top to bottom)

and .
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The  reaches the absolute maximum at
Coulomb interaction  occupancy ,
and  At these model parameters,  is low
because of a stronger Van Hove singularity in the den-
sity of electron states as follows: at , the root
singularity (which singles out this case) and, at

, the logarithmic singularity that is suppressed
much more strongly by temperature f luctuations. At
all other values of , the maximum values of

 are much the same in magnitude and are
observed at large parameters U and n. The maximum
value of  (at  eV) is estimated as
0.015 J/(mol K), which corresponds to not high values
of  and remains nearly unaltered with changing 

APPENDIX 2:
ON THE POSSIBILITY OF FIRST-ORDER 

MAGNETIC PHASE TRANSITIONS
FOR THE BETHE AND SQUARE LATTICES

In this appendix, the sign of the parameter 
(see Eq. (30)) is considered for the Bethe infinity-
dimensional lattice and square lattice depending on
the temperature T and Fermi level ε. (In the main text,
instead of ε, we use .) When , the the-
ory of second-order phase transitions ceases to be
applicable. Figure 7 displays the dependence

 on ε at different  for the Bethe infinity-
dimensional lattice; Fig. 8 displays the dependence for
a square lattice. In the first case,  is posi-
tive definite, except for the value  when

 at  i.e., near the point of
divergence  on the bottom of the band. In the sec-
ond case,  in the interval of width on
the order of t in the proximity of the position of a
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Van Hove singularity and likewise tends to  at
 for all values of exclusive of 0.5.

Let us consider how stable this result is relative to a
rise in temperature. As an example, Figs. 7 and 8 show
a dependence  on ε at different temperatures
with  for the Bethe infinity-dimensional lat-
tice and square lattice, respectively. It can be seen that,

−∞
0ε → ' ,t t

1( , )F Tε
' 0.25t t=

Fig. 4. Density of electron states  in units of  (see
definition (9)) for square lattice at different values of 
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Fig. 6. Same as in Fig. 3, only for square lattice. Chosen values of the parameters are  and  (shown

in the figure); see Fig. 5. 
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in both cases, with growth in the temperature, the
coefficient  becomes positive because the sin-
gular contributions to  which are caused by
Van Hove features, are smeared by the temperature.

When the position of ε is near the Van Hove singu-
larity at low temperatures,  which leads to
the inapplicability of the theory of second-order phase
transitions. The temperature rise  results in
the positive definiteness of 

Thus,  can change the sign depending on
both the ratio  and the temperature for the Bethe
and square lattices. The role of Van Hove singularities
manifests itself not only in the fact that the density of
states  is not bounded as a function of  (this is
rapidly destroyed by temperature f luctuations), but
also in that the coefficient  can change the sign.
The behavior of the coefficient  substantially
distinguishes the Bethe infinity-dimensional lattice
and square lattice.
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