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INTRODUCTION

Within the dynamic theory of martensitic transfor�
mations (MTs) based on the new paradigm of MTs
(see, e.g., [1–4], good agreement with the experimen�
tal data for titanium was obtained using the variant of
the α–ε MT in which a central role is played by the
plane deformation of the tension–compression of
{110}α planes [5, 6]. This deformation is initiated by a
pair of waves (responsible for the description of the
crystal habits) with an additional shuffling of the
deformed planes. This shuffling (inhomogeneous
shear of each second plane) does not affect the macro�
scopic morphological characteristics; therefore, we
will not focus further attention on it. In the structure
of the controlling wave process (CWP), the normal n1

(|n1| = 1) is connected with certainty that the wave that
carries the threshold tensile deformation (ε1 > 0), and
n2 (|n2| = 1) is related to the wave that initiates com�
pressive strain (ε2 < 0). The CWP starts [1–4] from the
appearance of an initial excited state (IES) in the elas�
tic field of the dislocation nucleation center (DNC).
The IES region is naturally determined by the extrema
of the elastic deformations, the angular and radial
localization of which (in the cylindrical coordinate
system) depends on the Burgers vectors and configura�
tion of the DNC. It has been shown that the deforma�

tion field of the DNC in the region of the localization
of the IES can be inherited by the CWP. In this case,
the structure of the CWP becomes completely deter�
mined. In particular, the direction of the principal
deformations ξ1w and ξ2w (|ξ1, 2w| = 1) of the tensor  of
deformations [7] carried by the CWP coincides with
the eigenvectors ξ1 and ξ2 (|ξ1, 2| = 1) of the tensor  of
deformations of the elastic field of the DNC.

In the general case, the wave normals n1, 2 do not
coincide with the symmetry axes, and the waves are
quasi�longitudinal. Then, the principal axes ξ1, 2w of
the tensor of deformation  of the transferred CWP
are oriented in the directions that are intermediate
with respect to both the wave normals and the polar�
ization vectors of the waves [7].

An important condition for transitioning from the
threshold deformations (εth) to the final deformations
(εf) is the requirement that their ratio k remains unal�
tered, i.e.,

kth = (ε1th/|ε2th|)1/2 = kf = (ε1f/|ε2f|)
1/2. (1)

The fulfillment of the requirement (1) (at the indi�
cated orientations of the deformation axes ξ1, 2) sup�
plements the condition of the connection between the
deformations ε1f and |ε2f| imposed by the condition of
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the symmetry of the atomic arrangement in the initial
and transformed planes as follows:

F(ε1f, ε2f) = 0. (2)

For example, upon the transformation {110}α → {0001}ε
and at the orientations of the axes of tension and com�
pression along the symmetry axes 〈 〉α and 〈001〉α,
respectively, condition (2) takes on the following
explicit form:

(1–|ε2|)  = (1 + ε1)  (3)

If the deformation axes ξ1, 2 deviate from the sym�
metry axes by an angle θ (but remain in the symmetry
plane), instead of (3), we can obtain [8]

(4)

–arctan  < θ < arctan  (5)

Upon the transformation {110}α → {0001}ε, it is
natural to expect the parallelism of precisely these
planes in the interphase orientation relationships
(ORs). In the case of the relationships (3) or close to
them, as follows from the dynamic theory of MTs, the
ORs are close to material ORs (MORs) as shown
below [6]:

(6)

In (6), æ =  is the ratio of the moduli of the wave
velocities, which is expressed through the elastic mod�
uli of the material of the initial phase. The transition
from the MORs�1 (6) to the Burgers ORs is only pos�

sible at a specific value æ =  when the value of
Δϕ(æ) = 0. Usually, the most close�packed directions
are selected as the corresponding directions in ORs.
However, as was shown in [8], at large θ a smaller mis�
orientation of noncorresponding directions is possi�
ble, e.g., in the case of the MORs�2

(7)

which are an analog of the Headley–Brooks ORs
[9⎯11] at |Δϕ(æ)| = 0 and pass into these ORs at the
ε⎯γ MT (if the mechanism of the ε–γ MT does not
change the morphological characteristics [12]). In
addition, it should be noted that MORs�2 have been
obtained in the case of Γξ(θ) = 2, θ ≈ 35.3° as follows:

ξ1 = [111]α, ξ2 = [11 ]α, (8)

i.e., the unit vector ξ1 is collinear to the threefold sym�
metry axis [111]α. To obtain estimates of the deforma�
tion levels, it is convenient to use the approximation of
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an elastically isotropic medium, for which, as was dis�
cussed in [8],

æ = kth = (ε1th/|ε2th|)1/2 = kf = (ε1f/|ε2f |)
1/2 = 1. (9)

Then, it follows from (4) and (9) that

ε1f = |ε2f| = (Γξ(θ) – 1)/(Γξ(θ) + 1). (10)

From (10) at Γξ(θ) = 2, we obtain ε1 = |ε2| = 1/3.
Since the MORs�2 are indeed observed, although

relatively rarely, there are grounds to assume that such
a high level of deformations is capable to cause trans�
formation of even less close�packed atomic planes.

The main purpose of this work is to study different
variants of the transformation of {112}α planes, in partic�
ular, for obtaining MORs supplementary to MORs�1 (6)
and MORs�2 (7) that were established in [9, 10]. The
existence of several different types of ORs for the
reverse (upon slow heating) MTs in the Fe–(30–33)Ni
alloys, where the ε phase was revealed [9, 10] as an
intermediate phase upon the α–γ (bcc–fcc) MT is
dictated by the different variants of the start of the
CWP in the fields of the defects of lenticular crystals of
the α phase. In particular, in [10], crystals of the ε
phase were revealed that were formed upon heating in
the partly twinned region that adjoins the single�crys�
tal midrib of the crystals of the initial α phase. Since
the twinning plane is parallel to {112}α, then, under the
conditions compatible with the existence of two vari�
ants of twinning of thin martensite plates, the forma�
tion of the ε phase can occur if the CWP initiates a ten�
sion–compression deformation of {112}α planes. The
parallelism of planes {112}α || {0001}ε discovered in [10]
indicates the need to analyze the possibility of the
{112}α → {0001}ε transformation.

In reality, the situation observed in [10] is even
richer, since there is an additional important feature
(realized for a small fraction of crystals), namely, the
possibility of a parallelism of the planes of three
phases, i.e., {112}α||{0001}ε || {112}γ.

Conditions for the {112}α → {0001}ε Transformation

In the (112)α plane, a pair of orthogonal directions

[11 ]α and [1 0]α specifies a network in which the
spacings between the atoms located in neighboring

sites are aα  and aα  where аα is the lattice
parameter of the α phase. Let us consider a hexagonal
cell ABCDEF that consists of six right�angled triangles
in the (112)α plane, as is shown in Fig. 1.

The sides of the cell are equal pairwise (in the аα
units) as follows: AB =DE =  ВС = EF = 

СD = FA =  It is obvious that there is one addi�
tional mirror�symmetrical (with the reflection in the
(1 0)α plane) variant of the choice of a hexagonal cell.
It can be seen from Fig. 1 that the segment AC is not
orthogonal to ВE. The elementary trigonometry yields
for the angle ψ between AC and the normal to ВE a

1 1

3 2 2,

3 2, 2,

11 2.

1



THE PHYSICS OF METALS AND METALLOGRAPHY  Vol. 116  No. 10  2015

DYNAMIC INTERPRETATION OF THE ORIENTATION RELATIONSHIPS ARISING 969

value tanψ = 5/11, i.e., ψ ≈ 24.44°. It is possible to
transform cell АВСDEF into a cell of the ε phase that
consists of six equilateral triangles through an inter�
mediate state (IS), in which the hexagonal cell
А'В'С 'D 'E 'F ' consists of six isosceles right�angled tri�
angles. It can easily be understood that the ISα–ε is
characterized by a network of sites, in which А'С' and
В'E' are orthogonal as the diagonals of a rhombus. In
turn, the formation of the ISα–ε is possible by different
methods.

For example, it can be reached via pure shear
tanψ = 5/11 (without a change in the lengths of the
sides СD and FA and in the distance between them) in
the direction

S  || [  + 1, 1 – ]α. (11)

Note that an analogous variant of shear for the mir�
ror�symmetrical cell in the direction

S || [1 –  + 1, ]α (12)

is alternative to the initial variant of the cell, giving an
IS1α–ε (without a change in the lengths of the seg�
ments AC and FD and in the distances between them)
with the orthogonal orientations А'С ' and В 'E ' at the
same magnitude of the shear tanψ.

After the shear (11), the cell of the IS1α–ε can be
converted into a cell that consists of six equilateral tri�
angles via the deformation of tension–compression
along the orthogonal directions collinear to А'С ' and
В 'E ' as follows:

(13)

or in the normalized form

(14)

Note that, to obtain the second variant of the
choice of the hexagonal cell in the description of the
directions of the vectors of tension and compression, it
is sufficient in (14) to interchange the positions of the
first and second projections.

Upon the orientations of the deformation axes
given by (14), the deformations of tension (ε1) and
compression (ε2) satisfy the following relationship:

Γ1 = (1 + ε1)/(1 – |ε2|) = 11/(4 ). (15)

Let us now assume that the shear tanψ = 5/11 is
accompanied by an additional tension along ξ1α,
which ensures the equality of the segments А'С ' = AC.
This corresponds to the transition to an IS2α–ε with a
square network of sites. Then, the deformation of the
tension–compression along the directions (13) is
characterized by the relationship

Γ2 = (1 + ε1)/(1 – |ε2|) = (16)

2 2, 1

2, 2 1

ξ1α || 2 2 3 2 2 3 2 2–,+,–[ ]α,

ξ2α || 2 1 1 2 1,–,+[ ]α,

ξ1α 0.026474  0.899346  0.436436[ ]α,=

ξ2α 0.912487  0.156558  0.377964[ ]α.=

2

3.

We should bear in mind that, in (14) and (15), just as
in (3), the ratio of the deformations ε1/|ε2|, can in prin�
ciple have any value from the interval (0, ∞). For
example, in the case of the uniaxial compression at
ε1 = 0, from (15) we find the maximum permissible
value |ε2|m upon the transition to the ideal ε phase for
the transformation {112}α → {0001}ε as follows:

|ε2|m = 1 – (4 ) ≈ 0.48574 (17)

(similarly, it follows from (16) that |ε2|m = 1 – (1/ ) ≈
0.42265).

In the general case, the concrete ratio of deforma�
tions is assigned by the threshold regime.

The estimation in the model of an elastically iso�
tropic medium for the ISα–ε → ε�phase transition with
allowance for (10) gives for the case (15)

ε1f = |ε2f| = (11 – 4 )/(11 + 4 ) ≈ 0.32, (18)

and, for the case (16),

ε1f = |ε2f| ≈ (1 – Γ2)/(1 + Γ2) ≈ 0.27. (19)

In (18) and (19), the final deformations are
counted�off from the ISα–ε state in the assumption
that the orientation ξ2α || S during the shear remains
unaltered. It is quite probable that the shear that gives
the ISα–ε very is realized most rapidly, i.e., in the wave
regime. A change in the configuration of the network
of sites indicates that the mechanism of shear can be
caused by the propagation of the tension–compres�
sion deformation along the symmetry axes [11 ]α
and [1 0]α.

Indeed, when the MT occurs under constrained
conditions (in the transformation channel surrounded
by a metastable initial phase), the lattice rotates as a
whole, which is accompanied by a macroshear with
the basic component Sτ in the habit plane. According
to [7], Sτ is collinear to the vector sum v = v1 + v2 of the
orthogonal velocities v1, 2 of the pair of controlling
waves. The orientation of Sτ can coincide with S (11).
Indeed, in the approximation of the elastically isotro�

2 11
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2 2

1

1
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[110]α
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F E
ξ2α
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Fig. 1. Choice of a hexagonal cell in the plane (112)α.
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pic medium, the velocity v is collinear to the bisectrix
of the angle between the vectors v1 and v2, i.e., makes
angles equal to ±45° with them. The angle between
S || ξ2α and [11 ]α is equal to ≈49.1° (correspondingly,

the angle between S and [1 0]α is equal to ≈40.9°). It
is clear that with allowance for the anisotropy of elastic
properties (velocity vΛ along 11 ]α is greater than the

velocity vΣ along [1 0]α), in principle, there is a ratio
of the moduli of the velocities vΛ/vΣ (let us designate
it æ*) at which the relation (11) is fulfilled precisely.
The relation (11) can also be fulfilled upon the devia�
tion of the velocities v1 and v2 from the symmetry axes.
It is clear that in the approximation of an elastically
isotropic medium the deviation is about 4°. In the real
anisotropic medium, the deviation can be connected
with the orientation of the Burgers vector of the DNC,
the elastic field of which specifies the region favorable
for the appearance of an IES.

It is expedient to recall that the planes {110}α,
{112}α, and {123}α in the α phase have close densities
of atomic packing. Therefore, in the regions where the
channel of the plane deformation of the most close�
packed planes of the α phase, i.e., {110}α, is not acti�
vated, there is possible a rapid transformation of the
plane {112}α, although at greater values of deforma�
tions compared with the case of the deformation of
planes {110}α. One should bear in mind that, with the
rejection of the requirement of the ideality of the lat�
tice of the ε phase, the value of the shear can be less
than 5/11. In fact, the sequence of the two above�
described deformation stages may also be the opposite.
In this case, much depends on which of the dynamic
variants of the appearance of an IES is the first to be
achieved.

Conditions for the Deformation�Induced 
{112}α → {112}γ Transition

The parallelism of the planes {112}α || {0001}ε || {112}γ
established in [10] indicates the opportunity of the
direct transformation {112}α → {112}γ. The network of
atomic sites in the plane (112)γ is characterized by
analogous symmetry axes; however, closely packed
atomic rows are associated with the [1 0]γ axis with

spacings аγ/  between the nearest sites (аγ is the lat�

tice parameter of the γ phase). Along the [11 ]γ axis,

spacing between the sites is equal to аγ  Assume that
the transition from one atomic network to another
occurs by the shortest path according to the tension–
compression scheme along the axes [1 0]α and [11 ]α
, respectively. In this case, we obtain the following
connection between the deformations:

Γ3 = (1 + ε1)/(1 – |ε2|) = 3/2. (20)

1

1

1

1

1

2

1

3.

1 1

In the model of the elastically isotropic medium,
we have

ε1f = |ε2f| = (Г3 – 1)/(1 + Г3) = 0.2. (21)

Then, the lattice parameter

 = (1 – |ε2|α–γ)аα ≈ 0.979796аα ~ аα (22)

turns out to be anomalously small compared with the
typical values of аγ, which exceed аα by ~0.25аα.

We should emphasize that the expected relation is
аγ ≈ 1.26аα, which follows from the requirement of the
equality of the volumes per atom:

 =  = (4π/3)(r0)
3, (23)

where r0 is the effective atomic radius. According to
[13], the value r0 is bounded from below by a value
r0min, which assigns the minimum atomic volume in
the absence of significant external pressures at a con�
stant electron configuration of the atom (for exam�
ple, for the iron atom with the assumed configuration
3d74s1, we have (r0min)Fe ≈ 1.41 Å). It follows
from (23) that

аγ = (2)1/3аα ≈ 1.26аα, (24)

and the minimum values of the parameters of the
cubic lattices permitted for Fe are

(25)

Since the effective atomic radius of Ni is (r0min)Ni ≈
1.38 Å, i.e., less than that of Fe, the minimum average
lattice parameters of concentrated Fe–Ni alloys will
be less than the values given in (25). It is pertinent to
recall that precisely such an approach makes it possi�
ble to connect the observed [14] value of the Мs tem�
perature upon the rapid cooling with the lower bound�
ary of the start of the MT, at which аγ reaches the value
(аγ)min [15]. It is clear that under the assumption about
the retention of the electron configuration of atoms
upon the deformation of planes (112)α, the formally

obtained anomalously low estimations (22) for  can�

not be realized. Even in the case of |ε2|α–γ = 0,  =

( )max = , and аα ≈ 1.224745аα. Note also that, in

the case of the formation (in the course of slow heating
that does not suppress the diffusion of the components
of the Fe–32Ni alloy) of local regions with the order�
ing of the α phase according to the В2 type, the value of
the parameter аα can decrease only to  ≈ 2.833221 Å,

so that ( )max will become equal to ≈ 1.237914
This means that, with the requirement of the transfor�
mation of the [11 ]α axis into the [1 0]γ axis, not the
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compressive strain ε2, but rather tensile deformation

 > 0 is required, which satisfies the condition

аγ = (2)1/3аα = (1 + |α–γ)аα. (26)

From (26), we find that  ≈ 0.028721. In the
approximation of the isotropic medium,  =  This
means that the final (≈0.03) tensile deformations in
the orthogonal [11 ]α and [1 0]α directions can be
initiated by the CWP and rapidly develop, forming a
band of an intermediate state IS1α–γ. For the transition
from the IS1α–γ to the atomic configuration character�
istic of the plane (112)γ, there is required a tension

(ε1 – )1 in the direction [1 0]α, which can easily be

estimated by substituting (1 + |ε2|) in (20) for (1 – ):

(27)

Thus, the unstable IS1α–γ state can initiate com�

pressive deformation in the [1 0]α direction in the
regions of the (112)

α
 plane that adjoin the IS1α–γ band.

As was discussed above, the ISα–ε → ε�phase transition
for the planes (112)α can occur via pure compression
along the direction ξ2α at deformations of ≈0.48574 (17)
(or ≈0.42265). Therefore, the scenario of the appear�
ance of the ε phase in the bands of the ISα–ε in the
course of the expansion of the IS1α–γ bands seems to
be quite real. It is obvious that the smaller the angle
between  (in the process of shear, there occurs a
change in the orientation: ξ2α → ) and the direction
of compression, the greater the efficiency of the com�
pression process.

For comparison, let us now examine the variant of
the deformation�induced transition to IS2α–γ that pre�
serves the correspondence of the symmetry axes

[1 0]α||[1 0]γ, [11 ]α || [11 ]γ

due to the expansion along [11 ]α and compression

along [1 0]α.
In this case, we obtain the relationships

(1 + ε1)аα = аγ; (28)

(1 – |ε2|)аα = аγ; (29)

Γ4 = (1 + ε1)/(1 – |ε2|) = 4. (30)

With the fulfillment of condition (24), we find from
(29) that |ε2| = 1 – 2–2/3 ≈ 0.370039. In the approxima�
tion of the isotropic medium, there corresponds a

relation  = |ε2| and IS2α–γ to this value of |ε2|. It is nat�
ural to consider this value of |ε2| to be a threshold value.

2'ε

3
2

2'ε

2'ε

2'ε 1' .ε

1 1

1'ε 1

2'ε

ε1 3/2( ) 1 ε2'+( ) 1,–=

ε ε1'–( )1 1/2( ) 1 ε2'+( ) 0.514360.≈=

1

2' αξ

2' αξ

1 1 1 1

1

1

3
2

3

2 2
2

1'ε

According to (30), the IS2α–γ → γ transition will be

accompanied by the additional expansion (ε1 – )2 as
follows:

(ε1 – )2 = 4(1 – |ε2|) – 1 –  = 3–5|ε2| ≈ 1.149803. (31)

Taking into account these estimates, we can assume
that the magnitudes of the threshold deformations for
the IS1α–γ are less by an order of magnitude than those
for the IS2α–γ. From the point of view of this factor, the
IS1α–γ state is more advantageous. However, from the
point of view of the magnitude of the angle between

 and the direction of compression, the IS2α–γ vari�
ant may prove to be more efficient, despite that the ini�

tial orientation of ξ2α makes an angle with the[11 ]α
axis that is 8.2° greater than that with [1 0]α. Indeed,
in view of the equal tensile deformations in the orthog�
onal directions, the transition to IS1α–γ is not accom�
panied by the rotation of the lattice inside the IS1α–γ

band and, consequently, does not change the orienta�

tion of [1 0]α. On the contrary, the transition to IS2α–γ is
accompanied by significant shear and by the rotation
of the lattice inside the IS2α–γ band and changes the

orientation [11 ]α into  As a result, the angle

between  and  will be equal to ≈4.35°,

whereas the angle between [1 0]α and  will be
≈16.46°. Of course, these estimations were carried out
under the assumption that the CWP initiates deforma�
tion strictly along the symmetry axes. However,
depending on the IES, the directions of deformations
can deviate noticeably from the symmetry axes.

Note that the formation of ISs in the form of pairs
of conjugate bands (plates) of ISα–γ and ISα–ε can
occur in a synchronized regime upon the formation of
a pair of IESs, as is schematically shown in Fig. 2.

It is clear from the configuration of displacements
shown in Fig. 2 that it is a variant that corresponds to
the appearance of a tandem of bands of the IS2α–γ and
IS2α–ε states. Note that the scheme bears a simplified
nature (is given only for the illustration); in the more
realistic variant, the appearing bands will be separated
by an interlayer of an untransformed (but strongly dis�
torted) α phase.

Estimations for Morphologic Characteristics
in the Approximation of Elastically Isotropic Medium

For certainty, let us assume that the first stage of an
MT is connected with the formation of a distorted ε
phase obtained via the tension–compression along the
axes given by (14).

1'ε

1'ε 1'ε

2' αξ

1

1

1

1 '[11 1] .
α

'[11 1]
α 2' αξ

1 2' αξ
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Then, based on [6–8], for the α–ε MT, we can
expect the formation of MORs�3 as follows:

(32)

(33)

When writing the expression for ϕ03, it was taken
into account that, according to the scheme given in
[7], the sides of the rectangular cell prior to deforma�
tion are collinear to the directions (14), and one of the

diagonals is collinear to 〈11 〉α. It follows from (15),
(32), and (33) at æ = 1 that ϕ03 is ≈14°, ϕ(æ) is ≈17.8°
and, consequently, Δϕ3(æ) ≈ –3.8°. Thus, in the case
of the α–ε MT for the crystals of the γ phase with
MORs�3 (32), there are expected misorientations

Δϕ3(æ) between the corresponding directions 〈11 〉α

and 〈01 〉γ that are significant compared to Δϕ1 in the
MORs�1 (6).

The other morphological characteristics from the
standard list also differ noticeably., According to [1–4],
the normals to the habit planes at æ = 1 are reduced to
the sums and differences in the unit wave normals n1, 2.
This means that, at n1 = ξ1α and n2 = ξ2α, where ξ1, 2α

are taken from (14), the expected orientations of the
normals to the habits are

N1, 2 || n2 ± æn1 || n2 ± n1. (34)

112{ }
α

 || 0001{ }
ε
,

111〈 〉α 0112〈 〉 ε∧ Δϕ3 æ( ) ϕ03 ϕ æ( ),–= =

ϕ03 3/ 2 2( )[ ]arctan 3/ 2 2Γ1( )[ ],arctan–=

ϕ æ( ) æ( )arctan æ/Γ1( ).arctan–=

1

1

1

From (34) and (14), we obtain the following expres�
sions for the normalized vectors:

N1/|N1| = [0.626506 0.525230 ]α, (35)

N2/|N2| = [0.663946 0.0413459]α, (36)

or, in the approximation of small integer indices,

N1 || [14 12 ]α ~ [11 ]α and N2 |[16  1]α ~ [1 0]α;
moreover, the plane {112}α that enters into the MORs�3
is orthogonal to the habit planes. For the untwinned
crystals, the macroshear in the dynamic theory [7] is
written as

(37)

Then, from (37), at ε1 = |ε2| = 0.32, we obtain
tanϕ' = 0.32.

If the first stage is connected with the transition to
IS1α–γ, then, without taking into account the devia�
tions of n1, 2 from the symmetry axes, we have, accord�
ing to (34), the following estimates for the normals to
the habit planes:

N1/|N1| = [0.908248 ]α, (38)

N2/|N2| = [ 0.908248, ]α, (39)

or, in the approximation of integer indices, N1 || [20  ]α ~

[2 0 ]α and N2 || [  20 ]α ~ [0 2 ]α. The habits (38)
and (39) differ significantly from (35) and (36); there�
fore, reliable experimental information about the hab�
its of the crystals of the ε phase with the MORs�3 will
make it possible in each concrete case to establish the
sequence of deformation stages.

Note that MORs�3 (32) require the formation of
the ε phase due to tension–compression along the
axes given in (14). Furthermore, the calculation of the
elastic field of the DNC makes it possible to select one
variant from the pairs of potentially possible habits,
which satisfies the requirement of the maximum shear
[4]. Naturally, upon comparison with the experiment,
the allowance for the elastic anisotropy, just as for pos�
sible deviations of n1, 2 from the symmetry axes, is
important. Therefore, the above estimates are only
approximate guides for conducting further calcula�
tions and analyzing morphological characteristics.

Since the interplanar spacing is proportional to the
lattice parameter, the α–γ MT with the (112)α → (112)γ
transformation should be accompanied by the expan�
sion in the [112]α direction. This expansion is in the
equal measure necessary both upon the selection of
the mirror�symmetrical variant of the hexagonal cell
and upon the tensile deformation along the orthogo�

nal [1 0]α (or [11 ]α) direction. The most optimum
variant is that of the formation of layered structures
(LSs) (similar to transformation twins [7, 16–18]) that
arise due to the concerted action of relatively long�

0.575868

0.746637

13 1 18 1

ϕ = ε = ε ε = εtan 2 1 2 1' æ æ.

0.0917517 0.408248

0.0917517 0.408248

2 9

1 2 9 1

1 1

[110]α

[111]α

α

v

N

O

ISα−γ

α

α

α

v

ISα−ε

Fig. 2. Scheme illustrating the appearance of an IS upon
the synchronous starting of the formation of IS1α–γ and
ISα–ε bands.
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wavelength displacements (l waves) with the wave nor�

mal along [112]α and [1 0]α (or [112]α and [11 ]α)
with relatively short�wavelength displacements
(s waves) that initiate the α → ISα–γ transition. More�
over, the role of the main component of the twin struc�
ture is played by the plate of the γ phase, and the role
of the additional component, by the ε phase. Since the
MT occurs at elevated temperatures, the realization of
these LSs is prevented by the significant damping of
the s waves. Nevertheless, this coordination is quite
possible; therefore, the detection of the corresponding
nanocrystalline fragments of the ε phase is of great
interest. If the phase of the l wave, which propagates
along the symmetry axis, corresponds to compression,
then the role of the main component of the LS will be
played by the ε phase, and the role of the additional
component is played by the γ phase. Recall that the
habit of plates with a layered structure is determined by
the l waves. Consequently, based on (34), at æ = 1,

n1 || [112]α and n2 || [1 0]α , we have a pair of habits with
the following normals:

N1/|N1| = [0.788675, 0.577350]α; (40)

N2/|N2| = [0.211325, , ]α, (41)

or N1/|N1| ~ [4 3]α and N2/|N2| ~ [1 ]α; whereas at

æ = 1 and n1 || [112]α and n2 || [11 ]α we also have

N1/|N1| = [0.696923, 0.696923  0.169102]α, (42)

N2/|N2| = [0.119573, 0.119573, ]α, (43)

or N1/|N1| ~ [441]α and N2/|N2|| ~ [11 ]α.

If an LS is realized, then the habits (38) or (39)
become the orientations of internal boundaries in the
crystals with habits (40)–(43).

ALLOWANCE 
FOR THE ELASTIC ANISOTROPY

Since the elastic moduli for the α phase of the
Fe⎯32Ni alloy are not known exactly for the tempera�
ture range of the reverse MT, we will illustrate the
changes in the calculations on a concrete example
using the elastic moduli of α�Fe at room temperature
as follows (J/kg):

(44)

As an example, we examine the change in the ori�
entation of the habits (38) and (39) at n1 || [11 ]α,

n2 || [1 0]α, and

æ = v2/v1 = [(C11+ 2C12 + 4C44)/3CL]–1/2. (45)

1 1

1

0.211325

0.788675 0.577350

1 4 3

1

0.985599

8

C11 23.01 CL 29.895 C44 11.66≈,≈,≈

C ' = 4.775 C12 13.46≈,( ).

1

1

From (45) and (44), we obtain æ = 0.963689. Then,
from (34), we obtain

N1/|N1| = [0.909789 ]α, (46)

N2/|N2| = [0.108528 0.400631]α. (47)

Since the magnitude of æ deviates from 1 only slightly,
the deviation of the orientations (46), (47) from (38),
(39) is ≈1.06°, i.e., is insignificant.

More substantial changes can be connected with
the deviations of the wave normals from the symmetry
axes caused by the appearance of IESs in the elastic
fields of the DNCs. However, this relates to the case of
the independent formation of separate crystals with
such habits. However, if these boundaries relate to the
internal boundaries of the LSs, then their formation is
governed by the s waves, which appear via a fluctuation
mechanism. Therefore, the phasings of the deforma�
tions in the s waves by no means necessarily will be
strictly coordinated with the phasings of the l waves.
However, the directions of the propagation of s waves
can correspond to the symmetry axes, since at other
orientations, the level of deformations required for the
initiation of MTs must be higher. Therefore, in the
case of LSs, we may expect the appearance of precisely
above�indicated or close to (38), (39) orientations of
internal boundaries.

Results of Calculating the Elastic Field 
of Possible DNCs

It is useful to examine which of the DNCs corre�
spond to the above schemes of the transformation of
{112}α planes and in what measure they correspond to
them. The main segment of the dislocation loop of the
DNC is chosen with the orientation of Λ1 along
the normal to the transformed plane Λ1 || 〈112〉α. As the
Burgers vectors b, it is natural to primarily examine
the edge (with respect to Λ1) orientations that coincide
with the directions of the symmetry axes as follows: b1

|| 〈110〉α, b2 || 〈11 〉α. If we consider dislocation loops,
rather than separate segments of dislocation lines Λ1 as
the DNCs, the minimum distortions of the fields of
the segments with the lines Λ1 || [112]α should be
expected for the rectilinear loops with purely screw
orientations of b relative to the second segment of the
loop Λ2, i.e., at Λ2 || b. For certainty, let us assume that

Λ1 || [112]α and that b1 ||  [1 0]α and b2 || [11 ]α. In the
calculations of the elastic fields of the DNCs, the elas�
tic moduli (44) will be used, as before.

The spatial arrangement of the cylindrical frame of
reference relative to the rectangular dislocation loop
with the orientations of the sides specified by the unit
vectors τ1 and τ2 is given in Fig. 3.

It can be seen from Fig. 3 that the origin is placed
in the center of the segment Λ1, and the angle θ is

0.108528 0.400631

0.909789

1

1 1
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counted off from the plane of the loop. The positive
values of θ correspond to the counterclockwise rotation
(upon the observation from the end of the vector τ1). The
distance to the observation point R is assigned in the
units of the lattice parameter а.

Since the plane (112)α is not a symmetry plane of
the cubic lattice, for the case we are interested in (for
the axes of compression and tension to be in the plane
(112)α), we should find a local region of the elastic field
of the DNC in which the third axis ξ3 of the tensor of
deformation of the elastic field of the DNC is collinear
to Λ1.

The above�said is illustrated by the results of calcu�
lations for a loop with the lengths of the sides (in units
of а) L1 = 7000 and L2 = 5000 at b1 || [1 0]α given in
Fig. 4.

Figure 4 displays the angular dependences of the
shear S, eigenvalues ε1, 2 of the tensor of deformations,
and relative change δ in the volume of the elastic field
of the DNC at R = 1200. The vertical lines in Fig. 4
separate the regions, in which the sign in the inequality
S1 > S2 changes for the shear moduli of the N1, 2 to be
compared.

The values of ε3 are small compared with ε1 and |ε2|,
and the corresponding curve ε3(θ) is not given in the
graph. Since it is the angular localizations of the
extrema of S and ε1, 2 (and the corresponding orienta�
tions of the eigenvectors) that are mainly important,
the absolute values of ε1, 2 are not given; instead, a scale
is used that is convenient for the perception. For the
loop selected for an analysis, the condition ξ3 || Λ1 is
fulfilled at θ = ±180°, i.e., for the points that lie in the
plane of the loop. The same points are selected based
on the condition of the maximum of the shear S. The
maximum of the shear at θ = 0 is associated with a
small deviation of ξ3 from Λ1.

1

The purposes of this work do not require analyzing
all specific features of the given dependences. We indi�
cate only that the maximum of the shear modulus S at
θ1 ≈ ±180° (and also the region that includes the
extrema of ε1, 2) corresponds to the orientation of the
normal N1 to the habit plane || ξ2α + ξ1α close to [111]α,
upon the orientations of the eigenvectors ξ1α and ξ2α
close to the orientations (14), namely,

(48)

(49)

A comparison of (48), (49) with (35), (36) and (14)
shows a satisfactory correspondence for the model set
of elastic moduli (44).

In the case of b2 || [11 ]α and orientation Λ2 || b2,
there is no θ for which the orientation of the ξ3α axis be
collinear to [112]α. Consequently, strictly speaking,
such a DNC cannot initiate only the plane deforma�
tion of the plane (112)α. Nevertheless, for the case of
minimum deviations of the vector ξ3α from [112]α
(at θ ≈ ±20°, the deviation is ≈±3.4°), the eigenvectors
ξ1α(θ) and ξ2α(θ) are relatively close to the orientations
obtained from (14) by the transposition of the first and
third components, i.e., close to the vectors that deter�
mine the deformation axis of the mirror�symmetrical
hexagonal cell. This result indicates that it is expedient
to examine the intermediate (between b1 and b2) ori�
entations of the Burgers vector b, which can easily be
enumerated systematically, taking linear combinations
of b1 and b2. Then, for example, at b3 || [ 21]α, Λ2 || b3,
and θ ≈ 19.59°, the vector ξ3α = [0.407221 0.407298

L1 7000 L2, 5000 b1 || 110[ ]α,,= =

θ1 180° Z,± 0,= =

N1 θ1( ) || 0.576233 0.576157 0.579654[ ]α,

ξ1α θ1( ) 0.0925686 0.907431 0.409877[ ]α,=

ξ2α θ1( ) 0.907431 0.0925686 0.409877[ ]α.=

1

4

R

Z

θ = 0

τ1

Λ1

Λ2

τ2

θ

Fig. 3. Cylindrical coordinate system used in the calcula�
tions of the elastic fields of dislocation loops.

180900 45 135–45–135–180 –90 δ
ε2

S1, 2

ε1

θ

S1, 2, ε1, 2, δ

Fig. 4. Angular dependences of the magnitudes of the
shears S1, 2, eigenvalues ε1, 2 of the tensor of deformations,
and change in the relative volume δ of the elastic field of
the DNC at b1 || [1 0]α for R = 1200.1
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0.817484]α makes an angle ≈0.1° with [112]α, and the
orientations (51) of the vectors ξ1α and ξ2α are notice�
ably nearer to the orientations (14) in comparison with
(49) as follows:

(50)

(51)

It is important that the above angle θ belongs to the
vicinity of the angles for which there are extrema of the
shear and deformations, as can be seen from Fig. 5.

At b4 || [ 14]α, Λ2 || b4, and θ ≈ 41.85°, the vector ξ3α =
[0.417948 0.417786 0.806706]α makes an angle of ≈1°
with [112]α, and the orientations of the vectors ξ1α and
ξ2α are nearer to the orientations (14) than (49), but
farther from them than (51) as follows:

(52)

(53)

Furthermore, the orientation of ξ3α is close to
[112]α also at θ ≈ –137°, but in this case, the devia�
tions of the vectors ξ1α(θ) and ξ2α(θ) from the axes (14)
are noticeably greater than at θ = 41.85°.

Let us now discuss the possibility of the formation
of IESs in the elastic field of a DNC that initiates the

L1 7000 L2, 5000 b3 || 421[ ]α,,= =

θ 19.59° Z, 0,= =

N1 θ( ) || 0.668048 0.477514 0.570695[ ]α,

ξ1α θ( ) 0.049953 0.903651 0.425346[ ]α,=

ξ2α θ( ) 0.911963 0.132374 0.388331[ ]α.=

9

L1 7000 L2, 5000 b4 || 914[ ]α,,= =

θ 41.85° Z, 0 k, 0.683 æ, 0.995,= = = =

N1 θ( ) || 0.750340 0.341861 0.565792[ ]α,

ξ1α θ( ) 0.000085 0.88800 0.459843[ ]α,=

ξ2α θ( ) 0.908471 0.192122 0.371173[ ]α.=

α → ISα–ε transition. First, note that the DNC that
leads to the data given in (52) and (53) is completely
acceptable for this aim. Indeed, at θ = 161.43°, the ori�
entation of the axis ξ3α = [0.410230 0.410206 0.81452]α
makes an angle of 0.19° with [112]α. The data con�
cerning the expected habit and the directions of the
axes of deformations and macroshear are given in
(54)–(56). 

The vectors ξ1α and ξ2α (55) make an angle of
≈12.36° with the axes of symmetry. The angle θ =
161.43° belongs to the region of high values of shear
S2α, which exceed the level of S1α at θ = 41.85° (see
Fig. 6). Therefore, the first to occur is most likely the
transition to ISα–ε as follows:

(54)

(55)

(56)

Note that, at b4 || [ 14]α and θ = 161.43°, the mis�
orientation between ξ3α and [112]α is by no means
large. The orientation of b4 is close to that of the bisec�
trix between b1 and b2. The deviation from b4 increases
the misorientation between ξ3α and [112]α for the
angular localization of the vectors ξiα capable to ini�
tiate the α → ISα–ε transition. Thus, for example, at
b3 || [ 21]α, the deviation of the orientation of ξ3α that
is nearest to [112]α at θ ≈ 141°, which is favorable for
the α → ISα–ε transition, increases to ≈ 4.5°.

L1 7000 L2, 5000 b4 || 914[ ]α,,= =

θ 161.43° Z, 0, k 1.088 æ, 0.968;= = = =

N2 θ( ) || 0.321321 0.900871 0.291862[ ]α,

ξ1α θ( ) 0.411257 0.713955 0.566688[ ]α,=

ξ2α θ( ) 0.813989 0.567450 0.124185[ ]α,=

S2α θ( ) 0.874727 0.0620628 0.480626[ ]α.=

9

4

180900 45 135–45–135–180 –90
δ

ε2

S1, 2

ε1

θ

S1, 2, ε1, 2, δ

20

Fig. 5. Angular dependences of the magnitudes of the
shears S1, 2, eigenvalues ε1, 2 of the tensor of deformations,
and change in the relative volume δ of the elastic field of
the DNC at b3 || [ 21]α for R = 1200.4

180900 45 135–45–135–180 –90
δ

ε2

S1, 2

ε1

θ

S1, 2, ε1, 2, δ

42

–137
162

Fig. 6. Angular dependences of the magnitudes of the
shears S1, 2, eigenvalues ε1, 2 of the tensor of deformations,
and change in the relative volume δ of the elastic field of
the DNC at b4 || [ 14]α for R = 1200.9
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Note that, in equal measure, this DNC will favor
the initiation of the α→ ISα–γ transition. After the anal�
ysis of DNCs in the form of rectangular glissile loops, let
us examine a prismatic loop with segments Λ1 || [112]α
and Λ2 || [11 ]α of the same dimensions as before, i.e., L1

and L2, for the Burgers vector b = b1 || [1 0]α. The angu�
lar dependences of the characteristics of the elastic
field of the DNC are given in Fig. 7.

The large values of the shear, as can be seen from
Fig. 7, correspond to the vicinity of the angles θ =
±90°. The maximum proximity of the vector ξ3α to
[112]α is reached at θ ≈ 90.84°: ξ3α =
[0.417948 0.417786 0.806706]α makes an angle of
≈2.1° with [112]α. The orientations of the vectors ξ1α
and ξ2α (58) are close to the orientations (14) as
follows:

(57)

(58)

(59)

Thus, in the case of the edge orientation of the Burg�
ers vectors with respect to Λ1 || [112]α, the DNCs both in
the form of glissile and sessile (prismatic) loops are
capable of initiating the formation of IESs with accept�
able characteristics for comparison with the initial ide�
alized scheme of deformation of the plane (112)α.

1

1

L1 7000 L2, 5000 b1 || 110[ ]α,,= =

θ 90.84° Z, 0,= =  k 0.897 æ, 0.997,= =

N1 θ( ) || 0.663534 0.514289 0.543350[ ]α,

ξ1α θ( ) 0.034051 0.913373 0.405697[ ]α,=

ξ2α θ( ) 0.921733 0.128214 0.366019[ ]α,=

S1α θ( ) 0.713069 0.701057 0.007232[ ]α.=

DISCUSSION OF THE RESULTS

The standard description of the deformation of the
(112)α plane for its transformation into plane (0001)ε
with the use of homogeneous deformations requires
the examination of two stages. In this case, the result�
ing deformations are large compared with the case of
the deformation of the (110)α plane. If the directions
of the Burgers vectors are close to that of the bisectrix
between the symmetry axes, for the DNCs in the form
of glissile dislocation loops we can expect the sequence
of the reconstruction of the type α → IS → ε. In this
case, according to (54), the orientations of the habits
can be close to {131}α, which differs significantly from
the estimations (38) and (39) for the habits close to
~{021}α obtained in the approximation of an elasti�
cally isotropic medium. Note that the difference indi�
cated is caused mainly by deviations of the axes of
deformation from the axes of symmetry rather than by
the allowance for anisotropy.

Since the {112}α planes are not symmetry planes, as
a rule, their plane deformation of the tension–com�
pression type cannot be initiated by the elastic field of
a DNC in the anisotropic medium. Therefore, there
are grounds to assume that the degree of deviation
from the parallelism of planes in MORs (32) must
exceed similar misorientations in the MORs (6), (7).
Moreover, since {110}α are the symmetry planes, a
strict parallelism of planes in the MORs (6), (7) can be
expected.

If the orientations of the Burgers vectors of the
DNC are close to 〈1 0〉α, then the α → ε' → ε transi�
tion is preferable, where the designation ε' refers to the
distorted ε phase. In this case, according to (48), (49),
the habits {hkl}α close to {111}α are expected, which
agrees satisfactorily with the orientations (35) found
based on the approximation of the elastically isotropic
medium.

The problem of the magnitude of the lattice param�
eter аε upon the {112}α → {0001}ε transformation is of
great interest. As was shown above, here the common
value аε < аα can be realized due to the compressive
deformation caused by the expansion of the unstable
state IS1α–γ. However, under the conditions of the for�
mation of the ε phase independent of the γ phase, in
accordance with the requirement of the minimum
time necessary for the formation of crystals of the ε
phase, we can expect the formation of the variant
where аε > аα. Indeed, for the ideal lattice of the ε
phase that arise from the IS1α–ε, the parameter аε is
written as follows:

аε = аα(1 – |ε2|2) (60)

In the approximation of an isotropic medium, accord�
ing to (18), |ε2|2 = |ε2f| ≈ 0.32; then, from (60) we find

аε = аε2 ≈1.128 аα > аα. (61)

1

11 2.

180900 45 135–45–135–180 –90
δ ε2

S1, 2

ε1

θ

S1, 2, ε1, 2, δ

Fig. 7. Angular dependences of the magnitudes of the
shears S1, 2, eigenvalues ε1, 2 of the tensor of deformations,
and change in the relative volume δ of the elastic field of
the DNC at b1 || [1 0]α for R = 1200 in the case of a pris�
matic dislocation loop.

1
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Recall [5, 6] that, upon the transformation {110}α →
{0001}ε, we have

аε = аε1 = аα (1 – |ε2|1) < аα. (62)

It follows from (61) and (62), that there is an
opportunity for fragments of the ε phase with different
values of the lattice parameter to exist in different
regions of the material. If this opportunity is realized,
two different parameters of the γ phase can also
appear, since the ε–γ MT, just as the γ–ε MT [12] can
be realized via the shuffling of the close�packed planes
without a change in the macroscopic morphological
characteristics, leading to the following relation:

аγ = аε. (63)

It is worth of noting that a similar conclusion also
follows for the anisotropic medium in the approxima�
tion of longitudinal waves with the wave normals along
the directions (14), since the wave velocities in these
directions, which substantially deviate from the sym�
metry axes, are close to each other; this means that we
should expect the proximity of the magnitudes of
deformations of tension and compression as well.

If the opportunity of the formation of the ε phase
with the lattice parameter аε2 > аε1 is not realized, this
means that, in the nanocrystalline state under the con�
ditions of slow heating at comparatively high temper�
atures, a minimum, almost equilibrium value of the
parameter аε ≈ аε1 ≈ аε2 is established.

CONCLUSIONS

A condition has been found concerning the con�
nection between the tension and compression defor�
mations in orthogonal directions ξ1, 2 that lie in the
{112}α planes upon the transformation of planes {112}α
into the basal planes {0001}ε.

Since the {112}α planes, in contrast to {110}α, are
not the symmetry planes, in the MORs�3 (32), a mis�
orientation is expected between the {112}α and {0001}ε
planes, which depends on the type of DNCs that ini�
tiate the process of the appearance of IESs.

From the viewpoint of the experimental verifica�
tion, a conclusion on the opportunity of the existence
of two values of the lattice parameter аε of the ε phase
in the same alloy is of great interest.

The estimates performed make it possible to pro�
pose an explanation for one of important features [10]
of the reverse α–ε–γ MTs, which consists in the prox�
imity of the orientations of the planes of three phases:
{112}α||{0001}ε||{112}γ. The explanation reduces to the
assumption on the formation of a specific intermedi�
ate state, whose instability leads to the concerted for�
mation of the γ and ε phases in the conjugated regions.

Thus, the allowance for the opportunity of the
occurrence of the α–ε MT via the transformation of
{112}α planes into the basal planes {0001}ε substan�
tially supplements the results of the dynamic theory

2

[8] that relate to the mechanism of the α–ε–γ MTs in
the Fe–32Ni alloy.

Concerning the prospects for the nearest studies,
note that the scenarios with an increase in the values of
the lattice parameter upon the α–ε–γ MTs can be
implemented under the conditions of an excess free
volume, which appears upon the irradiation of the
α phase of iron alloys both with the transformation of
(110)α and (112)α planes.
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