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INTRODUCTION

One way to change graphene properties in order to
apply them in nanoelectronics and spintronics is to
introduce impurities of foreign elements into graphene.
The presence of impurities can lead to changes in the
symmetry of crystal lattice and the appearance of addi�
tional energy gaps, the width of which depends on the
types of impurities and their concentrations [1–7].

The authors of [1, 2] have used a simple single�
band Lifshitz model of a disordered alloy to analyti�
cally investigate the opening of the gap in the energy
spectrum of electrons near the Dirac point, which
takes place following an increase in the impurity con�
centration.

The authors of [3] used the pseudopotential
method in terms of the density�functional theory to
study the electronic structure of isolated monolayer,
bilayer, and trilayer graphene and graphene grown on
ultrathin layers of hexagonal boron nitride (h�BN). It
has been shown that, in the case of a single layer of
graphene on a monolayer of h�BN, a 57�meV�wide
energy gap appears.

In [4], the same method was used to study
graphene with impurities of aluminum, silicon, phos�
phorus, and sulfur. It has been shown that graphene
with an impurity of 3% P has a gap 0.67 eV wide.

In [5], the electronic structure of graphene was stud�
ied in terms of the density�functional theory using the
generalized gradient approximation for the exchange�
correlation potential. Using the QUANTUM�
ESPRESSO program package, the authors of [5] have
demonstrated the possibility of opening a gap in the
energy spectrum of graphene upon the introduction of
atoms of boron and nitrogen (bandwidth 0.49 eV), as
well as upon the introduction of boron atoms and lith�
ium atoms adsorbed on the surface (bandwidth
0.166 eV).

In [6, 7], methods of making direct measurements of
the energies of the Dirac point and Fermi energy of
graphene in different heterostructures have been sug�
gested. For graphene in a multilayered Al2O3/graphene/
SiO2/Si structure, the energy of the Dirac point is
equal to 3.58 eV and the Fermi energy is 3.25 eV [6].

However, the effect of impurities on the electronic
structure and related properties of graphene have been
studied insufficiently. In this work, we have investi�
gated the influence of nitrogen on the electronic struc�
ture and electrical conductivity of graphene based on
the multiband tight�binding model.

RESULTS AND DISCUSSION

The investigations of the energy spectrum and con�
ductivity were carried out based on the method of
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cluster expansion in some small parameter for the
two�time Green’s functions of the electron system of a
disordered crystal. As the zeroth�order single�site
approximation in this method of cluster expansion, we
selected the coherent�potential approach. It has been
shown that the contributions of the electron scattering
on clusters decrease with an increasing number of sites
in the cluster [8]. In the above works, the description
of the electron–electron and electron–phonon inter�
action is based on the Feynman diagram technique for
the temperature Green’s functions, which is a gener�
alization of the well�known technique for the homo�
geneous electron gas [14], by applying well�known
relations between the spectral representations for the
temperature and two�time Green’s functions.

In the calculations of the energy spectrum and
electrical conductivity of nitrogen�doped graphene,
real wave functions of the 2s and 2p states of neutral
noninteracting carbon atoms have been chosen. The
wave functions of the neutral noninteracting atoms
were found from the Kohn–Sham equation in terms
of the density�functional theory. The exchange�corre�
lation potential was calculated in the meta�general�
ized�gradient approximation [15]. The matrix ele�
ments of the Hamiltonian were calculated by the
Slater–Koster method [16] taking into account the
first three coordination shells.

By neglecting the contributions from the processes
of electron scattering on clusters consisting of three
and greater number of atoms, which are small in the
expansion in the above�mentioned parameter [8], we
obtain the following relation for the density of electron
states:

(1)

where i is the order number of a sublattice, ν is the
number of sublattices, γ is the order number of the
energy band, and σ is the quantum number of the elec�
tron�spin projection onto the z axis.

In Eq. (1), 

 is the operator of scattering on a single site, which
is determined as follows:

(2)

In the formula (1),  and  are the probabilities
and conditional probabilities of the placement of
atoms of the λ type, respectively.
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The quantity  in Eqs. (1) and (2) is the
retarded Green’s function of the effective medium,

which is described by the coherent potential 

The expression for the conductivity of the system of
electrons in a disordered crystal was obtained in
[9⎯12] using the Kubo formula. Neglecting the con�
tributions from the processes of scattering on clusters
consisting of three and greater number of sites, the static
conductivity can be presented as follows [11–13]:

(3)

where  = 

 =   =  = 

 is the Fermi function,  is the volume of a primi�
tive cell, e is the electron charge, and  is Planck’s
constant.

The quantity  in Eq. (3) is a composite
two�particle Green’s function, which is expressed
through a vertex function of the mass operator of the
electron–electron interaction [11]. As follows from
numerical calculations, the contribution from the last
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term to (3) does not exceed a few percent; therefore,
we neglected this contribution in our calculations.

The operator of the α projection of the electron
velocity ν

α
 in (3) is written as follows:

The calculations of the energy spectrum and conduc�
tivity of graphene have been performed for the tem�
perature Т = 0 K.

Figure 1 displays the dependence of the electron
energy ε in pure graphene on the wave vector k, which
was obtained from the condition for the poles of the
Green’s function. The vector k is directed from the
center of the Brillouin zone (point Γ) to the Dirac
point (point K).
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In Fig. 1, , where a0 = 0.142 nm is the
shortest spacing between carbon atoms.

Figures 2 and 3 display the energy dependences of
the electron states g(ε) (1) of graphene with an nitro�
gen impurity atoms. The solid vertical lines in these
figures show the positions of the Fermi level. Figure 3
shows part of the energy spectrum in the vicinity of the
Fermi level.

As can be seen from Figs. 1–3, the hybridization
leads to the appearance of an energy gap in the band,
which is caused by the (ppπ) bond [16]. The electron
states in this band are described by atomic wave func�
tions of z symmetry. The Fermi level is located in the
middle of the gap; its magnitude corresponds to the
position of the Dirac point. The width of the band is
equal to 0.08 Ry, i.e., about 1 eV. The position of the
Fermi level corresponds to the energy  = –0.23 Ry ≈
–3.13 eV. Due to the overlap of the bands, the gap
behaves as a quasi�gap in the energy spectrum of elec�
trons. The density of electron states in the region of
this gap is significantly less than the density of states in
neighboring regions of the spectrum (Fig. 2). The
position of the Fermi level depends on the nitrogen
concentration and is located in the range of –0.36 Ry ≤

 ≤ –0.23 Ry. The quasi�band width decreases with
increasing nitrogen concentration and the Fermi level is
shifted toward the left�hand edge of the spectrum. The
theoretical values of the Fermi level for pure graphene are
in agreement with the experimental values for graphene
in a multilayered Al2O3/graphene/SiO2/Si structure [6].

Figure 4 shows the concentration dependence of the
components of the tensor of static conductivity  of
graphene calculated via (2) at T = 0 K. The x axis is
directed toward the nearest�neighbor atom. As can be
seen from the figure, the conductivity of graphene
decreases with increasing nitrogen concentration.
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For comparison, we give the experimental value of
the conductivity of graphite; at 300 K, it is equal to
9.82 ×105 Ω–1 m–1 [17].

Figure 5 demonstrates the concentration depen�
dence of the 2s and 2p partial components of the σxx
component of the tensor of static conductivity. It can
be seen that the main contribution to the conductivity
comes from the electron states that are described by
the atomic wave functions 2pz [16].

In order to investigate the nature of the concentra�
tion dependence of the conductivity, let us consider a
limiting expression for the case of weak scattering,
which follows from the general Eq. (3) in the single�
band approximation shown below [12]:
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Here,  =  is the imaginary part of the
mass operator of the Green’s function, v(εF) is the
electron velocity at the Fermi level, and  is the vol�
ume per atom. The relaxation time of electron states

 is determined by the relation 

Figure 6 displays the concentration dependence of
the total and 2s and 2p partial components of the
imaginary part of the mass operator of the Green’s
function.

Figure 7 shows the concentration dependence of
the total and 2s and 2p partial components of the den�
sity of electron states at the Fermi level.

As can be seen from Figs. 6 and 7, the main contri�
bution to the conductivity comes from the 2pz partial
component.
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Since the density of electron states at the Fermi
level increases with increasing nitrogen concentration
(Fig. 7), the decrease in the conductivity observed in
Figs. 4 and 5 is explained by a sharper decrease in the
relaxation time of the electron states (Fig. 6).
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