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Abstract—The extraordinary phase transition in antiferromagnetic thin films has been analyzed by computer
simulation. The simulation has been performed using the Ising model and the Metropolis algorithm. Epitax-
ial films with a cubic lattice containing several monoatomic layers have been considered. The condition for
the occurrence of surface and extraordinary phase transitions is the difference between the exchange integrals
in the bulk of the film and on its surface. It is shown that the surface and extraordinary phase transitions occur
in antiferromagnetic thin films containing no less than eight monoatomic layers. The extraordinary phase
transition has been investigated for different film thicknesses. It is shown that the magnetic susceptibility near
the phase transition line has a logarithmic dependence on the phase-transition temperature. The dependence
of the critical indices of the logarithmic phase on the film thickness is obtained.
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1. INTRODUCTION
Non-conventional phase transitions make an

urgent problem of the condensed-state theory and sta-
tistical physics. Such phase transitions can be observed
in systems composed of two independent but interact-
ing parts. These systems include materials exhibiting
surface magnetism. The phenomenon of surface mag-
netism consists in the fact that the atomic spin order-
ing temperature on the surface may differ from the
corresponding temperature in the bulk of the system
[1–3]. In this case, two phase transitions occur with a
decrease in temperature. First, a thin surface layer is
ordered, and then (at a lower temperature) the bulk of
the system passes to the ordered phase. Surface phase
transitions can be observed in both semi-infinite sys-
tems with a f lat free surface and thin films. Surface
phase transitions were experimentally observed in fer-
romagnetic [1] and antiferromagnetic materials [2, 3].

The phase diagram of a system contains a surface
phase transition if the surface magnetic energy exceeds
some value [4, 5]. For antiferromagnetic semibounded
systems, the surface phase transition occurs when the
exchange integral on the surface of a system exceeds
the bulk value by a factor of more than 1.55 [6]. For
antiferromagnetic thin films, this value depends on the
film thickness. At lower ratios of the exchange inte-
grals, a system undergoes a conventional phase transi-
tion from the paramagnetic to antiferromagnetic state.
The characteristics of a surface phase transition corre-
spond to those of a phase transition in a two-dimen-

sional system. A conventional phase transition belongs
to the same universality class as a phase transition in a
three-dimensional unbounded system [4, 5]. A transi-
tion from a surface-ordered bulk-disordered phase to
a completely ordered phase is of great interest. This
phase transition is referred to as extraordinary one.
The influence of the ordered surface layer results
in exotic properties of the extraordinary phase transi-
tion [6].

The concept of logarithmic extraordinary phase
was proposed for these phase transitions [7, 8]. In this
phase, the correlation functions near the Néel point
have a logarithmic dependence on the temperature
difference rather than a power-law one. The classical
O(2) and O(3) models were considered based on this
concept [9, 10]. The logarithmic phase was also theo-
retically predicted for the quantum Heisenberg model
with dangling spins [9, 11]. The question of existence
of the logarithmic phase was intensely investigated for
the classical Heisenberg model [12, 13] and the
XY model [14]. The logarithmic phase was revealed in
the antiferromagnetic Potts model with three states by
computer simulation [15].

In this paper, we report the results of studying the
extraordinary phase transition in antiferromagnetic
thin films described by the Ising model. The main goal
is to determine the possibility of existence of the loga-
rithmic phase in these systems at different values of the
surface exchange integral.
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2. MODEL

An antiferromagnetic thin film is modeled as a set
of monolayers with a cubic lattice. Each atom with the
number i corresponds to spin Si. Thin films are char-
acterized by the shape anisotropy, which is reduced to
the presence of the easy-magnetization axis oriented
perpendicular to the film plane. Therefore, these films
can be described by the Ising model. Each spin Si can
take one of the two values (+1/2 or −1/2). The near-
est-neighbor interaction is antiferromagnetic. Surface
antiferromagnetism manifests itself when the spin
interaction energy on the film surface differs from that
in the bulk. The exchange interaction constant in the
bulk of the system is denoted as J0. The exchange
interaction constant on the surface of the system is Js.
The surface phase transition is possible when Js > J0. It
is convenient to perform computer simulation with
relative quantities. Therefore, all energy parameters of
the system will be calculated in terms of J0. Let us
introduce the ratio of the exchange interaction con-
stants:

(1)

For this parameter, the inequality R ≥ 1 is satisfied.
The computer simulation was performed for different
R values. The exchange integral ratio has a critical
value Rc, above which (R > Rc) the surface antiferro-
magnetism is observed. Below this value (R < Rc),
there is a conventional phase transition from the para-
magnetic to antiferromagnetic phase. At the exchange
integral ratio equal to the critical value (R = Rc), the
phase diagram contains a tricritical point of a special
phase transition. If R > Rc, surface monolayers of the
film are first to be ordered with a decrease in tempera-
ture. This phase transition occurs at a temperature Ts.
The bulk of the film remains in the paramagnetic
phase. At a lower temperature Te (Te < Ts), the entire
volume of the film passes to the antiferromagnetic
phase. This transition is referred to as extraordinary
one.

The Hamiltonian of the Ising model is calculated
as the sum of the energies of spin pairing interactions:

(2)

In the Hamiltonian, the summation is only over the
pairs  of the nearest neighbors. The second term
includes only the pairs of spins on the surface. In the
first term, at least one spin should be not on the
surface. In relative units, the Hamiltonian can be
written as

(3)
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The temperature t of the system will also be used in
the relative form:

(4)

where kB is the Boltzmann constant.
In the computer simulation, the thin film was ori-

ented parallel to the OXY plane. The film surfaces were
described by the equations z = 0 and z = D – 1, where
D is the film thickness determined by the number of
monolayers (ML). The system under study had the
sizes of , where L is the number of atoms
along the OX and OY axes. Periodic boundary condi-
tions were imposed on the system along the OX and
OY axes to analyze the properties of an infinite film.

To study the extraordinary and surface antiferro-
magnetic phase transition, one should analyze the
processes of spin ordering on the surface of the system
and in its bulk. Therefore, thin films were considered
as three interacting subsystems. Two subsystems were
free surfaces (i.e., monolayers bounding the film).
The third subsystem was a set of spins in the film bulk
without two extreme layers. The first and second sub-
systems were arranged symmetrically and behaved
similarly with a change in the temperature of the sys-
tem. Therefore, only spin ordering on the surface z = 0
was considered in the computer experiment. Control
experiments showed that the thermodynamic func-
tions have the same values for both planes bounding
the film.

To describe the processes of spin ordering in the
bulk of the system, the antiferromagnetic order
parameter ma was introduced; it was calculated as the
difference between magnetizations of two sublattices
shifted relative to each other by the lattice constant
along the OX, OY, and OZ axes. The first and second
sublattices will be referred to as even and odd ones,
respectively. Then the antiferromagnetic order param-
eter is calculated as the difference between two sums
normalized to the total number of spins in the system:

(5)

To characterize the surface spin ordering, we intro-
duce a similar antiferromagnetic surface order param-
eter ms, which is also equal to the difference between
magnetizations of two two-dimensional sublattices:

(6)

where even_S is the even sublattice on the film surface
and odd_S is the odd sublattice on the film surface.

Both order parameters are zero at random spin
directions and unity at antiferromagnetic ordering.
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The two systems under study undergo a phase transi-
tion from the paramagnetic to antiferromagnetic
phase with a decrease in temperature. To construct the
phase diagram of a thin film, the phase-transition
temperatures were investigated separately for the film
surface and the bulk at different ratios R of the
exchange interaction constants.

The system was studied using the Metropolis algo-
rithm and the finite-size scaling theory [16]. Systems
with different linear sizes L were considered within
these approaches. The Metropolis algorithm forms
different thermodynamic states of the spin system cor-
responding to a specified temperature. The thermody-
namic functions of the system are calculated based on
averaging of the system parameters over different ther-
modynamic configurations. Below, angle brackets 
are used to denote a certain parameter averaged over
the thermodynamic states.

Several parameters were used to describe in detail
the phase transitions in thin films.

The magnetic susceptibilities of the sublattices of
the system for the bulk ( ) and surface ( ) can be
written as

(7)

(8)

where h is the magnetic field strength.
The fourth-order Binder cumulants for the both

order parameters are

(9)

(10)

The fourth-order Binder cumulants for the system
energy have the form

(11)

(12)

All these three types of thermodynamic parameters
can be used to determine the phase-transition tem-
perature. The most accurate value can be obtained
using the Binder cumulants Ua and Us for the order
parameters. To this end, one should perform simula-
tion for systems with different linear sizes. The main
property of these cumulants is that their values are
independent of the size of the system at the phase-
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transition temperature. Thus, the temperature depen-
dences of the Binder cumulants for systems with dif-
ferent sizes intersect at the same point. This point cor-
responds to the critical temperature. This property
makes it possible to determine the phase-transition
temperature with an error less than the temperature
step of the algorithm. In addition, the Binder cumu-
lants for the order parameters are sensitive to a change
in the phase-transition order. The intersection point
of the plots is clearly localized only for second-order
phase transitions [16]. For first-order phase transi-
tions, there is no single intersection point.

The method for determining the critical tempera-
ture proceeding from the magnetic susceptibility is
based on the fact that the susceptibility of the system
has a jump at the phase-transition point. This jump
manifests itself as a peak in the temperature depen-
dence of the susceptibility.

The temperature dependences of the Binder cumu-
lants Va and Vs for the energy also contain a peak at the
phase-transition point. Note that this peak corre-
sponds to the minimum of the function rather than the
maximum (as for the magnetic susceptibility).

3. RESULTS

The computer experiment was carried out for anti-
ferromagnetic films with a thickness from D = 4 ML to
D = 16 ML with step ΔD = 2 ML. The linear sizes of
the system were varied from L = 16 to L = 64 with step
ΔL = 16. The ratio of the exchange interaction con-
stants was varied from R = 1.0 to R = 3.0 with step
ΔR = 0.1. The Néel temperature TN of the antiferro-
magnetic phase transition in the bulk of the system
and the surface phase transition temperature Ts were
calculated for all values of the parameters. Afterwards,
the phase diagrams of the films with different thick-
nesses D were constructed at different R values. The
phase diagrams depend significantly on the film thick-
ness. This dependence is related to the relative size of
the film bulk and the surface layer. Spin ordering in
the surface layer affects the spin orientation in the
bulk. If the number of spins in the film bulk is larger
than that in the surface layer, this effect can be
neglected. If the number of spins in the film bulk is
comparable with that in the surface layer, this influ-
ence becomes significant and may determine the
behavior of the system.

For the films with thicknesses D = 4 ML and D =
6 ML, the sizes of the bulk coincide with those of the
surface layer (D = 4 ML) or twice as large as the latter
(D = 6 ML). As a result, the surface phase transition
temperature Ts coincides with the Néel temperature
TN in the bulk (Ts = TN). These two temperatures are
localized quite clearly from the Binder cumulants for
the order parameters. For these films, the surface and
extraordinary phase transitions are not implemented.
3
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Fig. 1. Phase diagram for the antiferromagnetic film with
thickness D = 8 ML.
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Fig. 2. Dependences of the surface (ms) and bulk (m) order
parameters on temperature T at R = 2.5 and D = 16 ML.
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Fig. 3. Dependences of the bulk magnetic susceptibility 
on temperature T at R = 2.5 and D = 14 ML.
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Only a conventional phase transition occurs in the sys-
tem.

For the films with a thickness D ≥ 8, the number of
spins in the bulk of the system exceeds significantly
that on the surface; therefore, the surface and extraor-
dinary phase transitions are implemented in the sys-
tem. Note that there is a critical value Rc of the ratio of
the exchange interaction constants, below which
(R < Rc) only a conventional phase transition is imple-
mented; above this value (R > Rc), the phase transition
is divided into the surface and extraordinary transi-
tions. The phase diagram for the film with thickness
D = 8 ML is shown in Fig. 1. The phase diagrams for
the thicker films have a similar form.

Upon cooling, the systems with R > Rc first
undergo a phase transition in the surface monolayer at
the temperature Ts (surface phase transition) and then
a phase transition in the film bulk (extraordinary
phase transition) at the lower temperature TN (TN <
Ts). The difference in the phase-transition tempera-
tures can clearly be seen from the dependences of the
surface and bulk antiferromagnetic order parameters.
Figure 2 shows the temperature dependences of the
surface (ms) and bulk (m) order parameters for the film
with thickness D = 16 ML and the exchange interac-
tion constant ratio R = 2.5.

This sequence of spin ordering in the system affects
the behavior of the thermodynamic functions near the
extraordinary phase transition. Ordered surface spins
affect positively the ordering processes in the bulk of
the system. The two free surfaces act as an external
field (related to the order parameter) for spins in the
bulk of the system. As is well known, an external field
leads to phase-transition diffusion. This diffusion
makes it difficult to accurately determine the tempera-
OPT
ture of the extraordinary phase transition. It can be
seen in Fig. 3 that the maxima of the magnetic suscep-
tibility are smoothed, with no pronounced sharp
peaks.

The absence of a pronounced second-order phase
transition affects the behavior of the Binder cumulants
for the order parameter. There is no clearly localized
point of intersection of their temperature dependences
(Fig. 4).

The same behavior of the Binder cumulants is
observed for first-order phase transitions. The phase-
ICS AND SPECTROSCOPY  Vol. 131  No. 11  2023
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Fig. 4. Dependences of the bulk Binder cumulants U on
temperature T at R = 2.5 and D = 16 ML.
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Fig. 5. Dependences of the energy cumulants V on tem-
perature T for the film with thickness D = 16 ML at
R = 1.8.
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Fig. 6. Dependence of the logarithm of the magnetic sus-
ceptibility  on  for the extraordinary phase
transition in the film with thickness D = 16 ML at R = 2.5.
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transition temperature can be determined from the
energy cumulants V. These cumulants have a mini-
mum at the phase transition point (Fig. 5).

Let us analyze the dependence of the magnetic sus-
ceptibility on the temperature of the system. For a
conventional phase transition, the magnetic suscepti-
bility near the Néel temperature is approximated by a
power-law function and the scaling relation is valid:

The dependence of  on  is linear.
The slope of this straight line determines the critical
index γ. Now we plot the dependence of the logarithm
of the magnetic susceptibility  on  for
the extraordinary phase transition (Fig. 4).

As can be seen in Fig. 4, the plot is nonlinear and
the conventional scaling relation is not valid for the
extraordinary phase transition. Let us analyze the
extraordinary phase transition for the correspondence
to the logarithmic scaling relation:

where q is the critical index of magnetic susceptibility
at the logarithmic phase transition. In this case, the
dependence of  on  should be lin-
ear. An example of the corresponding plot for the film
with thickness D = 16 ML at R = 2.5 is shown in Fig. 5.

The linearity of the plot in Fig. 5 suggests that the
logarithmic scaling relation is valid at the extraordi-
nary phase transition. Similar linear dependences are
valid for the films with any thickness D ≥ 8 at any
exchange integral ratio R > Rc. 
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Calculation of the critical indices q showed that it
depends only on the film thickness D and is indepen-
dent of the exchange integral ratio R. Values of the
critical index q at different film thicknesses D are listed
in Table 1.

As can be seen, the critical index of the magnetic
susceptibility increases nonlinearly with an increase in
the film thickness.
3
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Fig. 7. Dependence of the logarithm of the magnetic sus-
ceptibility  on  for the extraordinary
phase transition in the film with thickness D = 16 ML at
R = 2.5.
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Table 1. Critical index q at different film thicknesses D

D 8 10 12 14 16
q 2.62 ± 0.01 2.84 ± 0.01 3.01 ± 0.01 3.11 ± 0.01 3.21 ± 0.01
4. CONCLUSIONS

The computer simulation showed that there is a
minimum film thickness, beginning from which the
surface and extraordinary phase transitions can be
observed. Conventional scaling relations for second-
order phase transitions are not valid for the extraordi-
nary phase transition. The behavior of the thermody-
namic functions near the temperature of the extraordi-
nary phase transition is described by a logarithmic
power-law function rather than a power-law one. This
dependence indicates that the logarithmic phase tran-
sition is implemented, which was predicted previously
for the classical and quantum Heisenberg models [9–
11]. The calculations showed that the critical index of
the logarithmic phase transition increases with an
increase in the film thickness. The logarithmic critical
index is independent of the exchange interaction con-
stant ratio (i.e., it remains constant along the entire
line of the extraordinary phase transition).
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