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Abstract—A method that allows modeling the scattering characteristics of bodies of arbitrary geometry has
been proposed on the basis of the method of continued boundary conditions. The paper considers a two-
dimensional problem of plane wave diffraction on dielectric bodies with complex cross-section geometry—in
particular, on fractal-like bodies. Numerical algorithms for solving the diffraction problem based on systems
of integral equations of the first and second kind have been compared. The method has been generalized to
the problem of diffraction on a cylindrical body located in a homogeneous magnetodielectric half-space. The
correctness of the method was confirmed by checking the fulfillment of the optical theorem for different bod-
ies and by comparing with the results of calculations obtained by a modified method of discrete sources.
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INTRODUCTION
The problem of wave diffraction on a dielectric

body of complex geometry is very relevant and remains
relatively poorly investigated because of the complex-
ity of its solution. The results of modeling the charac-
teristics of wave scattering by dielectric bodies are of
great interest in such areas as optics of inhomogeneous
media, laser f law detection, and design of absorbing
coatings [1–3]. Despite the fact that a number of ana-
lytical and numerical methods for solving these prob-
lems have been developed (the most common of which
are the T-matrix method [4] and the discrete source
method [5]), the need for modeling diffraction pro-
cesses is growing quite rapidly and, therefore, the
question of developing more universal methods for
solving diffraction problems is still relevant. The wide
popularity of the T-matrix method is largely due to the
fact that it is relatively easy to perform such an import-
ant procedure, e.g., in astrophysics, as averaging the
characteristics of the scattering of a body by the angles
of its orientation relative to the incident plane wave
using this method. However, the traditional (classical)
version of the T-matrix method [4], as well as some of
its recently developed modified versions [5, 6], are

applicable to solving diffraction problems only on
scatterers with an analytical boundary.

A generalization of the T-matrix method on the
basis of the continued boundary conditions method
was proposed in [7, 8] for solving the diffraction prob-
lem with the Dirichlet condition at the boundary in
two- and three-dimensional cases. The two-dimen-
sional case was also considered for the impedance
boundary condition [9]. The idea of the continued
boundary conditions method is to transfer the bound-
ary condition from surface  of the scatterer to some
auxiliary surface  that is located outside the scatterer
at a fairly small distance  from its border. The main
advantages of the continued boundary conditions
method include the absence of restrictions on the
geometry of the scatterer (it is also applicable for scat-
terers that have border breaks and for thin screens). In
addition, the continued boundary conditions method
offers a unified approach to solving boundary value
problems that does not depend on their type or dimen-
sion, the surface geometry of the scatterer, or the
nature of the scattered field. Note also that the diffrac-
tion problem can be reduced to solving a system of
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Fig. 1. The geometry of the diffraction problem on a body
located in a homogeneous medium.
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integral equations of the first or second kinds within
the framework of the method of continued boundary
conditions, which is impossible to implement as sim-
ply as, e.g., when using the method of surface integral
equations.

This article offers a generalization of the method
described above for solving the two-dimensional
problem of diffraction of electromagnetic waves on a
dielectric body. Examples of modeling the character-
istics of wave scattering by bodies with a cross section
of complex geometry and fractal-like bodies were con-
sidered. Formulas and results of calculations of the
scattering pattern of bodies of complex geometry
located in a homogeneous dielectric half-space are
given.

DERIVATION OF THE MAIN RELATIONS

Let primary electromagnetic field ,  be inci-
dent on an infinitely long magnetodielectric cylinder
with a generator parallel to axis  and guide . The
geometry of the problem is shown in Fig. 1. Consider
the case of E-polarization, when electric field inten-
sity vector  has only one component  (below
denoted by the letter  or ) parallel to the cylindri-
cal body generator. The following coupling conditions
will then take place at the boundary of the scatterer:

(1)

where  is the field inside the cylinder; 
is the full field outside the body, where  is falling

and  is scattered (secondary) fields;  is differenti-

ation in the direction of the normal internal to ; and
, where  and  are the relative magnetic

permeabilities of the media inside and outside the
body, respectively. The external medium (  = ,

 = , where  is the area bounded by curve )
and the medium inside the cylinder are assumed to be
homogeneous, linear, and isotropic. At infinity, the
standard radiation conditions for the scattered field
are assumed to be met.

We use the following representations to solve the
Helmholtz equation in regions  and , respectively
[5]:
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in which  are the funda-

mental solutions of the scalar Helmholtz equation in
 with material parameters of the media  and D,

respectively,  and  are the wavenumbers of the
medium inside and outside the scatterer. By requiring
the of conditions Eq. (1) to be met on contour 
located in , and on contour  located in area 
(see Fig. 1) using Eqs. (2), we obtain the following sys-
tems of the Fredholm integral equations of the first or
second kind, respectively:
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where observation points  belong to contours 
and point  and it is denoted that .
Note that the contours that are separated from S by a
fairly small distance  are most often chosen as ;
i.e., equidistant contours are considered [5, 10]. Let
the S boundary equation be given in parametric form:

(5)

The equations of the displaced contours  are then
written as follows:

(6)

where  and  are the coordinates of the normal to the
boundary of body S. To solve system of equations (3),
(4), we use the Krylov–Bogolyubov method. To do
this, we write Eqs. (3) and (4) as

(7)

(8)

in which

(9)

− − + +∂ ∂ ∂ + − κ  + κ ∂ ∂ ∂ 


( ') ( ; ') ( ; ')1
1 'S

U G G
n n n
r r r r r

− − + + ∂ ∂ − −  ∂ ∂ ∂ ∂  

2 2( ; ') ( ; ')
( ') ',

' '
G G

U ds
n n n n

r r r r
r

±( )M r ±
δS

∈( )M Sr −=U U

δ ±
δS

=
 = ∈ max

'( ),
'( ), [0, ].

x x t
y y t t t

δ
∓S

= ± δ
 = ± δ

( ) '( ) ( ) ,
( ) '( ) ( ) ,

x

y

x t x t n t
y t y t n t

xn yn

( )

( )

+ =

+ =





max

max

11 1 12 2 1
0

21 1 22 2 2
0

( , ') ( ') ( , ') ( ') ' ( ),

( , ') ( ') ( , ') ( ') ' ( ),

t

t

K t t I t K t t I t dt b t

K t t I t K t t I t dt b t

+ + =

+ + =





�� �

�� �

max

max

1 11 1 12 2 1
0

2 21 1 22 2 2
0

( ) ( ( , ') ( ') ( , ') ( ')) ' ( ),

( ) ( ( , ') ( ') ( , ') ( ')) ' ( ),

t

t

I t K t t I t K t t I t dt b t

I t K t t I t K t t I t dt b t

∂
= =

∂1 2
( '( '))

( ') ( '( ')), ( ') ,
'

U t
I t U t I t

n
r

r

ξ = +� �

2 2( ') '( ') '( ') ,t x t y t

− − + + ∂ ∂
= − + ξ ∂ ∂ 

11
( ; ') ( ; ')

( '),
' '

G G
K t

n n
r r r r

( )− − + += + κ ξ12 ( ; ') ( ; ') ( '),K G G tr r r r

− − + + ∂ ∂
= − + ξ  ∂ ∂ κ ∂ ∂ 

2 2

21
( ; ') ( ; ')1 ( '),

' '
G G

K t
n n n n

r r r r

− − + +∂ ∂ = + ξ ∂ ∂ 
22

( ; ') ( ; ')
( '),

G G
K t

n n
r r r r
OPTICS AND SPECTROSCOPY  Vol. 128  No. 4  2020
(10)

The point in Eq. (9) means the -derivative. Let us
present unknown functions  as sums:

(11)

where  are pulse functions:

(12)

Here, , , where  is the

grid step and  is the number of basic functions.
Then, substituting Eq. (11) into system of integral
equations (7), (8) and equating the left and right parts
at the collocation points with coordinates , 
selected on curves , we obtain the following systems
of algebraic equations with respect to :

(13)

or

(14)

where the matrix elements and right parts are calcu-
lated using the following formulas
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Fig. 2. The geometry of the problem of diffraction on a
body located in a dielectric half-space.
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Moving on to the asymptotics of the scattered wave
field at  and taking into account Eqs. (2), (5),
(11), and (12), we obtain the following expression for
the scattering pattern:

(17)

Equations (13)–(17) yield two numerical algorithms,
which are based on the systems of equations of first
and second kinds, for solving the formulated diffrac-
tion problem.

One criterion for the correctness of the results
obtained is the optical theorem, which is written as
[11]

(18)
where
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As an estimate of the accuracy of the optical theorem,
we will calculate a value that represents the relative dif-
ference between the left and right parts in Eq. (18):

(20)

SCATTERING ON A CYLINDRICAL BODY 
IMMERSED IN A HOMOGENEOUS 

DIELECTRIC HALF-SPACE
We generalize the proposed method to the case in

which the scattering obstacle is located in a homoge-
neous magnetodielectric half-space. The geometry of
the problem is shown in Fig. 2. Denote the material
parameters of the media at  and  through

,  and , , respectively (  is the media inter-
face). The matching condition are assumed to be met
at the interface:
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where  and  are the complete field in the upper
and lower half-space, respectively. Let us consider a
plane wave incident from the upper half-space 
as the incident field.

As in the case of diffraction on a body in a homo-
geneous medium, the complete field in the lower half-
space, in which the body is located, and the field
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inside the scatterer has the form Eq. (2), where Green
function  is replaced by the following one:

(22)

here, , , .

In this case, the root sign is selected so that its imagi-
nary part is not positive. In these formulas, it is denoted
that , , and ,

.
The further solution of the problem is again

reduced to the system of integral equations with
respect to the field and its normal derivative at the
boundary of the scatterer. We will solve the diffraction
problem using, e.g., the system of integral equations of
the second kind. As a result, we obtain the system of
integral equations in the form of Eq. (8) and the ker-
nels of the integral equations are written as follows:

(23)

where the first terms are the same as for a body in a
homogeneous medium with wavenumber  and the
additional terms, which are due to the presence of the
interface, have the following form:
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Fig. 3. The angular dependence of the scattering pattern
for an elliptical cylinder. (1) The modified discrete source
method and (2) the continued boundary conditions
method.
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Fig. 4. The angular dependence of the scattering pattern of
a body with a cross section in the form of a quadrifolium.
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In addition, unlike the case of diffraction on a body in
a homogeneous medium, under diffraction on a body
in a half-space, the primary field is written as follows:

(25)

where  is the angle of incidence of a plane wave. The
system of integral equations is again solved by the Kry-
lov–Bogolyubov method, but, because of the fact that
the additional kernels of integral equations are slowly
changing coordinate functions, the matrix elements of
the system of linear equations can be calculated using
an approximate formula:

(26)

Here, we have the formulas for calculating the scat-
tering pattern in the upper half-space. The pattern has
the form

(27)

NUMERICAL RESULTS
Let us consider the results of numerical modeling.

Thereafter, we will assume that the body is irradiated
by a plane wave. As an example, let us first consider
the diffraction problem on an elliptical cylinder, a cyl-
inder with a quadrifolium cross section, and a cylinder
with a rectangular cross-section. The equation of the
contour of a body with a section in the form of a
quadrifolium has the form (in polar coordinates)

(28)
Figures 3–5 show the angular dependences of the

scattering pattern for the corresponding geometry
obtained for the following values of the problem
parameters: kδ = 10–4, ϕ0, = 0, μi = 1, and εi = 4 (the
material parameters of the external medium are μe = 1
and εe = 1 everywhere). The dimensions of the bodies
had the following values: the semiaxis or half the side
lengths of the rectangle ka = 5 and kb = 1 and the
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 and  parameters for the body with a
cross section in the form of a quadrifolium. The results
were compared with the patterns constructed using
the modified discrete source method [5, 12]. Note that
the modified discrete source method cannot be
directly applied to the problem of the diffraction on
bodies that have boundary breaks, and so the contour
of the axial section of the body was approximated by a
smooth contour to solve the problem using the modi-
fied discrete source method [12]. Note also that the

= 5ka τ = 0.5
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Fig. 5. The angular dependence of the scattering pattern of
a body with a rectangular cross section. (1) The modified
discrete source method and (2) the continued boundary
conditions method.

0.5

1.5

3.0
|g

(ϕ
)|

1.0
1, 2

2.0

2.5

0 45 90 135 180
ϕ, deg

225 270 315 360

Fig. 6. The geometry of the body with a cross section in the
form of (a) a Koch snowflake and (b) Sierpinski curve.
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modified discrete source method provides high accu-
racy of calculation for bodies with a smooth border,
such as ellipses, multifoil, etc.

Tables 1–3 show the differences in the scattering
pattern modules of the specified geometry obtained by
two methods: using the modified discrete source
method and the continued boundary conditions
method. As can be seen from Tables 1–3, the differ-
ence in results decreases as the number of basic func-
tions used increases. It also follows from the given data
that the use of equations of the first kind for bodies
with a smooth boundary is better because of faster
convergence. In the case of a body with a rectangular
section, using equations of the second kind gives better
results.
OP

Table 1. Comparison of the results obtained using the mod-
ified discrete source method and the continued boundary
conditions method. Diffraction on an elliptical cylinder

N

System of integral 
equations of the first kind

System
of integral equations 
of the second kind

absolute error relative 
error absolute error relative 

error

48 1.295 × 10–2 2.038% 1.453 × 10–1 24.297%

96 1.904 × 10–3 0.230% 4.183 × 10–2 7.238%

192 6.096 × 10–4 0.067% 1.144 × 10–2 2.003%

288 5.834 × 10–4 0.075% 5.539 × 10–3 0.977%

384 5.607 × 10–4 0.075% 3.450 × 10–3 0.612%
Figure 6 shows the geometry of fractal-like cylin-
ders with a cross section in the form of a Koch
snowflake and Sierpinski curve (first iteration) [13].
Figures 7 and 8 illustrate the angular dependences of
the scattering pattern for the specified cylinders at the
problem parameters of kδ = 10–4, µi = 1, and εi = 4.
The maximum cross-sectional size of a body with a
cross section in the form of the Koch snowflake and a
body with a cross section in the form of the Sierpinski
curve on the x axis was . Two different angles
of incidence ϕ0 = 0° and 45° were considered. As fol-
lows from the figures for the geometry under study, the
maximum points of the angular dependences of the
scattering pattern roughly coincide with the angles of
incidence of the plane wave. It can also be seen that
the dependences of the pattern for both a body with a
section in the form of the Koch snowflake and a body
with a section in the form of the Sierpinski curve have
quite large side lobes.

The accuracy of the optical theorem was verified
for the geometry of the scatterers considered above. In
all cases, we chose the number of bias functions so that

= 10kL
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Table 2. Comparison of the results obtained using the mod-
ified discrete source method and the continued boundary
conditions method. Diffraction on the body with a section
in the form of a quadrifolium

N

System of integral 
equations of the first kind

System
of integral equations
of the second kind

absolute error relative 
error absolute error relative 

error

48 1.643 × 10–1 10.411% 3.836 × 10–1 21.169%

96 2.499 × 10–2 1.442% 9.462 × 10–2 5.125%

192 5.802 × 10–3 0.325% 2.534 × 10–2 1.370%

288 2.984 × 10–3 0.166% 1.143 × 10–2 0.619%

384 2.176 × 10–3 0.121% 6.474 × 10–3 0.351%
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Fig. 7. Angular dependence of the scattering pattern of a
body with a section in the form of a Koch snowflake. The
angle of incidence of the wave (1)  and (2)  = 45°.
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Fig. 8. The angular dependence of the scattering pattern of
a body with a cross section in the form of a Sierpinski
curve. The angle of incidence of the wave (1)  and
(2)  = 45°.
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Fig. 9. The angular dependence of the scattering pattern of
a body located in a dielectric half-space. (1) A cylinder
with a section in the form of a Sierpinski curve, (2) a cylin-
der with a section in the form of a Koch snowflake, and
(3) a cylinder with a section in the form of a regular hexa-
gon. The angle of incidence of the wave (1)  and
(2) = 45°.
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, where  is the number of collocation
points at a single wavelength. In this case, the permit-
tivity of the body medium varied from  to 103 and
the relative magnetic permeability was chosen equal to
1. As a result of calculations, we found that the relative
difference between the right and left parts of Eq. (18),
which is the value of  (see Eq. (20)), does not
exceed 5 × 10–3; i.e., it is small.

Table 4 shows the results of the calculation of the
scattering pattern obtained using the continued

λ = 25N λN

ε = 4i

Δot
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boundary conditions method and the modified dis-
crete source method. The diffraction on a body
located in a dielectric half-space was considered. The
dimensions of the bodies were chosen the same as in
the case of diffraction in a homogeneous medium and
the material parameters of the media for the upper and
lower half-spaces and the cylindrical body had the fol-
lowing values: μ1 = 1, ε1 = 1, µ2 = 1, ε2 = 2 – i × 10–3,
µi = 1, and εi = 6. The value of d was chosen so that the
shortest distance from the boundary of all bodies to
the boundary of the media was 1. Parameter .
The table shows that the relative difference between
the results obtained using the continued boundary

−δ = 410k
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Table 4. Comparison of the results obtained using the modified discrete source method and the continued boundary con-
ditions method. Diffraction on a body located in the dielectric half-space

N
Elliptical cylinder Quadrifolium cylinder Rectangular cylinder

absolute error relative error absolute error relative error absolute error relative error

48 3.616 × 10–2 9.047% 3.414 × 10–1 51.927% 2.146 × 10–2 6.856%

96 1.057 × 10–2 2.622% 1.235 × 10–1 18.859% 4.928 × 10–3 1.611%

192 3.073 × 10–3 0.735% 3.609 × 10–2 5.696% 2.432 × 10–3 0.359%

288 1.616 × 10–3 0.368% 1.687 × 10–2 2.670% 2.121 × 10–3 0.354%

384 1.099 × 10–3 0.238% 9.829 × 10–3 1.548% 2.630 × 10–3 0.377%

Table 3. Comparison of the results obtained using the modified discrete source method and the continued boundary con-
ditions method. Diffraction on a body with a rectangular cross section

N
System of integral equations of the first kind System of integral equations of the second kind

absolute error relative error absolute error relative error

48 3.498 × 10–2 4.781% 5.035 × 10–2 6.795%

96 1.466 × 10–2 1.956% 1.417 × 10–2 1.715%

192 7.358 × 10–3 0.879% 4.773 × 10–3 0.466%

288 5.229 × 10–3 0.561% 3.122 × 10–3 0.248%

384 4.219 × 10–3 0.429% 2.641 × 10–3 0.208%
conditions method and the modified discrete source
method does not exceed 1.6%. Figure 9 shows the
angular dependences of the scattering pattern for cyl-
inders with a cross section in the form of a regular
hexagon, Koch snowflake, and Sierpinski curve (first
iteration) located in a homogeneous half-space. The
pattern dependences are given for the upper half-
space. Two different angles of incidence of the plane
wave θ0 = 0° and 45° were considered. It follows from
the figure that, in the case of a plane wave normal inci-
dence, the scattering pattern for all bodies has a main
lobe (in the direction of backscattering) and two side
lobes. In the case of an off-normal incidence, the pat-
tern graph has an oscillating character.

CONCLUSIONS

Two numerical algorithms based on a system of
integral equations of the first and second kind have
been developed using the continued boundary condi-
tions method, which allow calculating the scattering
characteristics of magnetodielectric bodies of arbitrary
geometry. The results of calculating the scattering pat-
tern for a large set of bodies with different geometries,
including fractal-like scatterers, were obtained. A
comparison of the results of the methods based on the
continued boundary conditions method with the
results obtained using the modified discrete source
method was made. The continued boundary condi-
tions method allows getting the results of the calcula-
OP
tion of the scattering pattern with high accuracy. In the
case of a body with a smooth boundary, the method
based on equations of the first kind allows obtaining
results with better accuracy. The accuracy of the opti-
cal theorem for the geometry under consideration was
verified. The accuracy of the optical theorem was 5 ×
10–3. Comparison of the modified discrete source
method and the continued boundary conditions
method for the case of diffraction on a cylindrical
body located in the dielectric half-space showed a
good coincidence of the calculation results. Angular
dependences of the scattering pattern were con-
structed for bodies with boundary breaks located in
the dielectric half-space.
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