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Abstract—A nonstationary regime of squeezed-light generation by a single-atom laser is investigated. Depen-
dences of the quantum-squeezing parameter and radiation intensity on modulation frequency of the atom–
field coupling constant are obtained. It is demonstrated that a resonance appears at the modulation frequency
equal to twice the average coupling constant, which leads to a more efficient quantum squeezing in a nonsta-
tionary harmonic regime than in the case of a stationary regime for the same values of the relaxation and
pump parameters.
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INTRODUCTION
Light sources exhibiting nonclassical statistics are a

trend in the development of quantum optics. Such
sources have a wide range of applications, such as fre-
quency standards [1, 2] and magnetometry [3, 4] in
metrology, or writing and storing information, along
with cryptography, in quantum-information applica-
tions [5–7]. The problem of generation of light char-
acterized by a nonclassical statistics can be solved by
different means. For example, it can be realized in
lasers by using pumping exhibiting certain statistical
properties [8–14] or/and utilizing multilevel pumping
schemes [15, 16].

Isolated single emitters are also promising systems
for obtaining nonclassical states of light due to the
possibility of the photon antibunching effect in them.
For example, laser action has been practically imple-
mented in single atoms [17], ions [18], and quantum
dots [19]. Sub-Poissonian statistics of radiation, along
with suppression of amplitude f luctuations below
quantum limit, were observed in the above experi-
ments. It was demonstrated in theoretical works [20,
21] dealing with investigation of the fundamental
model of a single-atom laser that such a laser can emit
amplitude-squeezed light under certain relation
between system parameters. Notably, an amplitude
squeezing that is variable with time can be observed
during a transient process. This circumstance suggests
that the efficiency of quantum squeezing of the field of
a single-atom laser can be increased by modulating the
atom–field coupling constant.

The time dependence of the coupling constant can
be realized by different means. One of them consists in

using stimulated oscillations of the cavity mirrors.
Qualitative estimation shows that a mirror-oscillation
frequency lower than 108 Hz should be sufficient for
observation of the discussed effect. Such frequency
can be achieved by means of, e.g., piezoelectric mod-
ulators. Another method consists in excitation of stim-
ulated oscillations of a single emitter in an optical lat-
tice the potential well of which is regulated by param-
eters of confining beams. A point emitter in a crystal
lattice that can be described, with good approxima-
tion, as a two-level atom can experience thermal oscil-
lations at a certain frequency, which results in the
appearance of an additional noise. Thermal f luctua-
tions of the cavity mirrors that were studied in detail in
[22] can represent another source of noise. However,
in the problem under consideration, we will assume
that such fluctuations can be neglected and that the
time dependence of the coupling constant is deter-
mined.

A MODEL OF A SINGLE-ATOM LASER
WITH A MODULATED COUPLING 

CONSTANT

The simplest fundamental model of a single-atom
laser represents a two-level atom that interacts with a
single cavity mode with losses [23–28]. The system
dynamics is governed by only four processes that
determine the properties of the generated radiation,
namely, incoherent pumping driving an atom from
ground state  to excited state  with rate Γ, spon-
taneous decay of an atom from excited state  to
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b

1070



QUANTUM SQUEEZING OF THE FIELD 1071
ground state  that is characterized by rate γ, depar-
ture of photons from the cavity that is characterized by
the cavity Q-factor or reciprocal lifetime of photons in
the cavity κ, and interaction of an atom with the field
mode characterized by coupling constant g.

The equation for an atom–field density operator of
a single-atom laser with incoherent pumping has the
form

(1)

where the first term in the right-hand side describes
interaction of the atom with the field mode, the sec-
ond term describes field relaxation, the third term
corresponds to spontaneous decay of the atom, and
the fourth term describes incoherent pumping. An
explicit form of interaction operator  and superoper-
ators describing corresponding relaxation processes is
given by

(2)

(3)

(4)

(5)

Here,  and  are the operators of photon annihila-
tion and creation in the cavity mode, respectively, and

 and  are operators of the dipole atomic transition.
To investigate the solution to Eq. (1), let us recast the
field operators in the basis of Fock states and recast
atomic operators in the basis of stationary states of an
unperturbed atom:

(6)

(7)

This representation of creation and annihilation oper-
ators is convenient for carrying out calculations,
because it gives matrix elements of the operators in an
explicit form. The equation governing density matrix

 =  of a single-atom laser, where
= , , , can be pre-

sented in the form of an infinite system of differential
equations:
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To solve infinite system of differential equations (8)–
(11), the basis of the field states was limited, similarly
to in [21]. After that, the system was solved numeri-
cally. The steady-state regime of oscillation of a single-
atom laser is most interesting from the practical point
of view. In the case of constant parameters (Γ, γ, κ, g)
of the quantum system, this regime is stationary. To
characterize quantum statistics of the field after the
end of the transient processes, we can find average
number of photons in the cavity  and the degree of
light squeezing in the stationary state that is described
by the Mandel Q parameter:

(12)

(13)

where k is the value of the filling factor at which the
system of equations is artificially terminated and ρnn is
the diagonal element of the density matrix averaged
over the two atomic states. The latter parameter char-
acterizes the probability of finding n photons in the
cavity field mode. When parameter Q becomes nega-
tive, light acquires nonclassical properties and is char-
acterized by a sub-Poissonian quantum statistics.

Let us introduce the time dependence of the cou-
pling constant corresponding to a harmonic function
in Eqs. (8)–(11):

(14)

Here, g1 is the modulation amplitude,  is the cou-
pling-constant modulation frequency,  is some con-
stant phase, and g0 is a time-independent part. Here,
we assumed that function (14) obeys the inequality
g1/g0  1.

The choice of a small modulation amplitude rela-
tive to the constant component of the coupling con-
stant is dictated by the fact that we are interested in the
deviation of the stationary regime of oscillation of a
single-atom laser from the nonstationary regime in the
first place. It is easier to analyze the nonstationary
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Fig. 1. Average photon number as a function of the cou-
pling-constant modulation frequency for two values of
parameter g1 in expression (14).
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Fig. 2. Mandel Q parameter as a function of coupling-con-
stant modulation frequency for two values of parameter g1
in expression (14).
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regime as a linear perturbation. Otherwise, large mod-
ulation amplitude g1 can give rise to strong transient
processes corresponding to system evolution from the
stationary regime taking place at maximum value of
the coupling constant g = g0 + g1 to the stationary state
at minimum value g = g0 – g1. They do not contain any
interesting information but substantially complicate
the field dynamics in the cavity. The choice of har-
monic function of the coupling constant (14) is
explained by the fact that we are looking for resonance
effects that can take place in the nonstationary regime
of oscillation of a single-atom laser. Exactly deter-
mined initial phase  appearing in the argument of
the sine function in (14) triggers the phase-synchroni-
zation mechanism and enables overcoming the decay
of the squeezed state due to phase diffusion.

RESULTS

Preliminary analysis of dynamics of average pho-
ton number  and parameter Q at constant values of
Γ, γ, κ, and g shows that the reciprocal time of the
transient process can be estimated as being equal to the
sum of rates Γ, γ, and κ of incoherent processes in the
model, while the oscillation period of the diagonal ele-
ments of the atom-field density matrix during the
transient process depends on the constant component
of coupling constant g0. To observe the resonance
effect, modulation period g must be smaller or compa-
rable to the time of the transient process. Otherwise,
the dynamics will correspond to an adiabatic regime in
which establishment of equilibrium occurs faster than
the change in the system parameters. Therefore, when
searching for the resonance effect, we chose parame-
ters of a single-atom laser from [20] as initial ones:

(15)

ϕ1

n

Γ = κ = γ =0 0 01.4 , 1.4 , 0.1 .g g g
OP
These parameters satisfy the above formulated
requirements and lead to the highest degree of squeez-
ing in the stationary regime, which makes them most
promising from the point of view of expected results of
the calculations.

The dependences of the average photon number in
the cavity and Mandel Q parameter on modulation
frequency Ω for parameters of a single-atom laser
specified in (15) are presented in Figs. 1 and 2. Since
system of differential equations (8)–(11) does not have
a stationary solution for a coupling constant given by
(14), the results are presented by pairs of curves corre-
sponding to maximum and minimum values of the
studied quantity achieved during a modulation period
in the steady-state dynamics. Indices min and max in
the graphs denote maximum and minimum values of
parameter Q or average photon number that are
attained periodically in the nonstationary oscillation
regime of a single-atom laser.

The dependences of parameter Q on modulation
frequency contain a characteristic extremum (Fig. 2)
indicative of the presence of a parametric resonance in
the model of a single-atom laser. The peak of the res-
onance curve is attained at modulation frequency

, while its position on the axis of abscissas is
nearly indistinguishable for different values of con-
stants γ, κ, and Γ, which was verified by numerically
solving system (8)–(11). The maximum on the fre-
quency curve corresponding to average photon num-
ber  is less prominent than that in the curve corre-
sponding to parameter Q (Fig. 1).

To observe the steady-state dynamics of the field
state, we plotted the time dependences of the average
photon number, parameter Q, and probabilities of sev-
eral Fock states for a nonstationary oscillation regime
(Figs. 3–5) in which parameter g is determined by
expression (14). Note that the figures represent also
additional dynamic curves corresponding to the sta-

Ω ≈ 02g

n
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Fig. 3. Probability Pn of finding n photons in the cavity of
a single-atom laser as a function of time: (1) P0 in the sta-
tionary regime at gconst = 0.9g0, (2) P0 in the nonstationary
regime (14) at g = g0(1 + 0.1sin(2g0 t)), (3) P0 in the sta-
tionary regime at gconst = 1.1g0, (4) P1 in the stationary
regime at gconst = 0.9g0, and (5) P1 in nonstationary regime
(14) at g = g0(1 + 0.1sin(2g0t)), (6) P1 in the stationary
regime at gconst = 1.1g0; the three lower curves were plotted
similarly to the upper ones.
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tionary oscillation regime with largest (gconst = g0 + g1)
and smallest (gconst = g0 – g1) values of coupling con-
stant g attained during a modulation period.

That the difference in the value of parameter Q for
the stationary regimes corresponding to the largest
and the smallest values of coupling constant g are an
order of magnitude smaller than variation of parame-
ter Q over modulation period of the coupling constant
in the same range but in the nonstationary oscillation
regime (Fig. 5) was unexpected. Numerical values of
the Mandel Q parameter corresponding to Fig. 5 are
presented below:

(16)

(17)

(18)

where  and  are the values of parameter Q
for a single-atom laser in the stationary regime of
oscillation at constant values of coupling parameter
g = 0.9 and 1.1, respectively, and Qmin and Qmax are the
maximum and the minimum values of parameter g =
0.9 and 1.1 in the nonstationary regime achieved
during a modulation period of coupling constant (14)
in the range between g = 0.9 and 1.1, respectively.

It should be noted that the time dependence of
average photon number  does not exhibit such a
property, i.e., the difference between the maximum
and the minimum values for the two stationary
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regimes is approximately equal to the modulation
amplitude in the case of the nonstationary oscillation
regime (Fig. 4).

It follows from (16)–(18) that the nonstationary
regime of oscillation cannot be considered to be an
adiabatic dependence of the stationary regime on vari-
able system parameters. Otherwise, the difference
between the maximum and the minimum values of
parameter Q would be close to each other for different
modulation frequencies  of the coupling constant.
This fact suggests the presence of a strong nonlinear
resonance effect. We believe that it can be used for
achieving a higher degree of squeezing of light gener-
ated in the cavity of a single-atom laser than in the sta-
tionary regime. Note that synchronous detection by

Ω
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means of a photoelectric element must be used for uti-
lizing generation of squeezed light in the steady-state
dynamic regime. Otherwise, statistics accumulated
over a time interval long relative to the modulation
period will be averaged over strong but frequent oscil-
lations of the average photon number in the cavity.

CONCLUSIONS

The existence of a nonlinear resonance effect of
squeezed-light generation in a cavity of a single-atom
laser with a modulated coupling constant is predicted.
The time dependence of the Mandel Q parameter and
the average number of photons in the cavity at input
parameters of a single-atom laser leading to maximum
squeezing in the stationary regime of oscillation is
obtained. The dependences of the maximum and min-
imum values of the Mandel Q parameter and average
photon number  on modulation frequency of cou-
pling constant g in the case of cavity characterized by
low Q-factor are plotted based on the pattern of the
steady-state dynamics. The effect of increase in the
degree of light squeezing in the nonstationary regime
of oscillation relative to the stationary regime of oscil-
lation of a single-atom laser is predicted numerically.
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