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Abstract—The impact of a polychromatic field on a two-level medium is considered in the limit of small
amplitudes. In the indicated limit, we obtained asymptotic expansions of the polarization spectra of an arbi-
trary order of smallness. These polarization spectra were compared with the results of the numerical solution
of the density matrix equation. Compared to numerical calculation methods, the asymptotic expansion offers
an analytical estimation of the contribution of each individual component of a polychromatic field and a
description of the intermode interaction. However, with an increase in the intensity of the driving field, the
computational efficiency of the method decreases, since, to achieve the required accuracy, it is necessary to

increase the order of the asymptotic expansion.
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INTRODUCTION

A description of the polarization spectrum of a
two-level atomic system in polychromatic fields was
obtained in [1] as the result of an analytical solution of
the density matrix equations in the rotating wave
approximation. However, the resulting solution is
poorly suited for direct calculation of the polarization
spectrum, because it involves the summation of values
determined using a grid of points in space, the dimen-
sion of which is proportional to the number of compo-
nents of the driving field. As a result, when the number
of field components is more than a dozen, calculations
turn out to be challenging to implement.

In order to calculate the polarization spectra for a
more significant number of components of the driving
field, we considered [2] the decomposition [3] of the
solution obtained in [1] in the small-amplitude limit.
In the first linear approximation, the well-known
Lorentzian contour appears in the polarization spec-
trum [4]. The quadratic correction, as are other even-
order corrections, is absent in the asymptotic expan-
sion in powers of amplitude due to the symmetry of
the spectrum of the driving field with respect to the
transition frequency. The third-order correction, also
obtained in [2], helps to describe nonlinear effects and
intermode interaction. However, the third-order cor-
rection allows one to describe the polarization spec-
trum correctly only in a limited range of small ampli-
tudes of the driving field. In order to expand the

boundaries of the range to the region of large ampli-
tudes, it is necessary to consider corrections of a
higher order, for example, the fifth, seventh, etc.
orders.

This paper presents the decomposition for the
polarization spectrum (both real and imaginary parts)
of a two-level atomic system in polychromatic fields in
the small-amplitude limit. This expansion is a gener-
alization of the results obtained in [2] to the case of an
arbitrary order of expansion in powers of amplitudes.

The polarization spectra calculated using asymp-
totic expansions of different orders were compared
with similar spectra obtained by numerical methods
[5, 6]. A comparison was also made with the results of
calculations of the component of the population dif-
ference at the transition frequency given in [7].

DECOMPOSITION IN THE SMALL-
AMPLITUDE LIMIT

Under the condition of equality of the constants of
the longitudinal and transverse relaxations, the inter-
action of a two-level medium with a polychromatic
field symmetric with respect to the transition fre-
quency 0;y,

K
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in the approximation of a rotating wave and a fixed
atom, is described by the density matrix equation

dp . Ao O
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4 V' @®),pl-vp (0 AJ )
where E; are the amplitudes of the field k component,
and the only nondiagonal element of the interaction
matrix V, = V;, is

Q K
70 + )" Q cos(kAr).
k=1

The values Q, = d, E, /h, k=0, ..., K, are determined
by the amplitudes of the equidistant driving field; d,, is
the dipole moment of the transition; A is the inter-
mode distance; vy is the relaxation constant, and A, =
A, — A, is the difference between the pump levels.
Polarization P(¢) is proportional to the nondiagonal

Vo= ()

element of the density matrix p,, = ps, and the dipole
moment of the transition.

In [1], expressions for the polarization spectrum of
a two-level atomic system in a polychromatic field are
given; that is,
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where the summation is carried out over two multi-
indices of length K: n = {n,n,,...,ni} and1={/,, , ...,
Ig}. The expressions dependent on the multi-indices
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0 is the Kronecker symbol, and expressions F deter-
mining at which frequency the corresponding multi-
index contributes are

K
Fn,1) = k(n, +1).
k=1

The dimension of the space in which the summa-
tion is performed in Egs. (3) and (4), that is, the total
length of multi-indices n and 1, is 2K. Therefore, the
calculation of the spectra using Egs. (3) and (4)
directly becomes impracticable with a large number of
harmonics of the driving field. To solve this problem,
we proposed in [2] to perform an asymptotic expan-
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sion [3] in powers of the amplitudes of the field com-
ponents in the limit of Q, — 0, £ =0,..., K; that is,

Re(P); = %(Re P" +Re PP +Re PO +..),
®)
Im(P), = —7‘127‘121(1111 PP +Im P +Im P +..),
where Re Pj(N) = Q(QN) and Im Pj(N) = Q(QN) are the

corrections of the Nth order of smallness in the limit of
small amplitudes; N =1, 3, 5, .... Even-order correc-
tions in expansions (5) are absent due to the symmetry
of the spectrum of the driving field (Eq. (2)) with
respect to the transition frequency. Odd corrections

Re P}N) and Im Pj(N) are linear combinations of prod-
ucts of nonnegative degrees of amplitudes of various
components of a polychromatic field; the sum of the
exponents is V. The field amplitudes are not necessar-
ily equal to each other, but have the same order of
smallness Q, = 0(Q), k =0,1,...,K. It follows that
the specified linear combination of products really has
order N in smallness parameter .

Generalizing the results of [2] to the case of an
asymptotic expansion of an arbitrary length, we have
for the correction of the Nth order to the imaginary
part of the polarization

Q7" . Q)
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where summation over multi-index kK" = {k",..., "}

is carried out in n-dimensional space, with each of the
indices k,(”) , [ =1,...,n, varying from —K to K, exclud-

ing the value 0. Coefficients af,’), v=0,..,nl=1,..,
N + 1 appearing in Eq. (6) are polynomials of degrees
/ from yand A; that is,
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Note that a(l) =(- 1)1/2“y' for even /, while it becomes

0 for odd /.

The structure of Eq. (6) indicates the presence of
the intermode interaction. The numerator contains
the product of the amplitudes of the components of
the driving field. Thus, each term under the sign of
summation over multi-index k" corresponds to some
combination of N interacting components. In the first
approximation (N = 1), intermode interaction is
absent; in the third approximation, the interaction of
three modes is described; in the next, the fifth,
approximation, five modes are described; etc. The
multiplier, which is the product of amplitudes, deter-
mines the interaction force of the considered compo-
nents. This factor is the sum of n + 1 terms with the
denominators of the Lorentzian type with a different
characteristic ratio of constant relaxation and inter-
mode distance. The frequency at which the result of
the interaction is observed is a combination of the fre-
quencies of the interacting components, which is
described by the last factor with two Kronecker sym-
bols inside.

An expression similar to Eq. (6) can also be
obtained for the Nth correction in the limit of small
amplitudes in the asymptotic expansion of the real
part of polarization; that is,

N- n
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The terms in the asymptotic expansion of the real part
of the polarization differ from those in the expansion
of the imaginary part by the presence of factor yin the

numerator; polynomial coefficients b\(,/) present in
Eq. (7) have a degree of / — 1 rather than /, like in

Eq. (6),

B =-1
p® =240
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In the first linear approximation (N = 1), the term

with n = 0 in Eq. (7) is zero, because béz) =0. In the
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term with » = 1, internal summation is performed by

only one index, k = k“), yielding

() 1)
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K
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In the imaginary part of the polarization, in the first
approximation, the term with » = 0 is nonzero, but the
term with » = 1 and v = 0 vanishes,

Qal 0 (1 k —k
Im P = Quap” 26 + 1@ +8)
e Z KAV + Ak A K’
2Q;
YA
0, |j>K.
Thus, in the first approximation, the Lorentzian cir-

cuit appears in the polarization spectrum, bounded by
a set of frequencies of the driving field.

In the third approximation, we obtain the formulas
presented in [2] from Egs. (6) and (7) at N = 3.

<K,

CALCULATION RESULTS
OF POLARIZATION SPECTRUM

The results of calculations of the absorption and
dispersion spectra performed using Egs. (6) and (7)
are shown in Figs. 1 and 2. Expansion (5) involves
from one (linear approximation by €) to three (the
fifth-order correction by Q) terms. The polychromatic
driving field consists of 101 equidistant components
(K= 50), the amplitudes of which are Q, =Q, = ... =

Qg = 0.1y; the distance between the components is
A = 0.3y. The horizontal axis shows the component
numbers; the transition frequency corresponds to the
frequency of the component with index j = 0.

The solid curves in Figs. 1 and 2 show the results
obtained numerically by directly solving density
matrix equation (1) using the Runge—Kutta method
followed by the Fourier transform of the obtained time
dependence and by decomposing the solution in a
harmonic basis, that is, by a method that is often
described in publications as the “Floquet method”
[8]. The accuracy of the numerical solution is rather
high, which is confirmed by the difference in the
results obtained by two completely different methods,
which is less than 0.1%.

No.2 2019
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Fig. 1. Spectrum of the imaginary part of polarization at

Qp=..=Qr=0.1y;, K=50; A= 0.3.
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Fig. 2. Spectrum of the real part of polarization at Q, =
=Qr=0.17; K=50; A=0.3y.
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Fig. 3. Component of the population difference at the
transition frequency depending on Q; Q = Q= ..= Qg =
0.1y; K=10; A=0.37.
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At a given value of the amplitude of the driving field
of Q = 0.1y (Figs. 1, 2), the first, linear approximation
gives a clearly unsatisfactory description of the polar-
ization spectra. Namely, the value of the central, at the
transition frequency pulse in the spectrum of the
imaginary part turns out to be approximately twice as
large as the value obtained numerically. Side pulses at
the frequencies determined by the boundaries of the
spectrum of the driving field are entirely absent in the
first approximation.

A third-order approximation in amplitude gives a
qualitatively correct description of the polarization
spectrum, but quantitative estimates are not accurate
enough. Thus, the amplitude of the central pulse of
the imaginary part of the spectrum is underestimated
by approximately 30%, while the amplitude of the side
pulses is, on the contrary, overestimated by a third.
The fifth-order correction gives a much more accurate
description of the spectrum at € = 0.1y with respect
to the third-order correction: the values of the central
and side pulses differ from the results of the numerical
calculation by 3 and 5%, respectively.

To check the accuracy of the calculations, the
result was compared with the dependences of the com-
ponent of the difference between the level populations
at the transition frequency and the amplitude of the
polychromatic field obtained in [7]. For this purpose,
the relation between polarization and population dif-

ference,
d .
(E + Y)P = idy, V1, (P11 — P),

resulting from equations of the density matrix (1), was
used. Relation (8) written in the harmonic basis makes
it possible to obtain the spectrum of the population
difference from the polarization spectrum by inverting
the Toeplitz ribbon matrix [9]. For comparison with
the data of [7], we are only interested in the compo-
nent of the spectrum with index 0, that is, at the tran-
sition frequency.

®)

Figure 3 shows the dependence of the component

of the difference in level populations (p,, —p,;)/2 at
the transition frequency on the amplitude of the poly-
chromatic driving field. The amplitudes of each of the
21 field components (K = 10) are the same; the dis-
tance between the components is A = 0.3y. In the ini-
tial approximation, in which only one term of asymp-
totic series (5) is taken into account, the population
difference is constant and does not depend on the
amplitude of the driving field. In subsequent approxi-
mations, if the amplitudes of all field components are
the same, the dependence of the components of the
spectrum of the population difference on amplitude is
an even-degree polynomial: second, fourth, etc. With
an increase in the order of approximation, the ampli-
tude range increases in which the asymptotic expan-
sion gives an acceptable description of the population
difference. If we assume that the deviation of the dif-
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ference between the populations of levels at the transi-
tion frequency by 1% from the actual difference is
admissible, then the first approximation leads to the
correct value for Q =< 0.03y; the third approximation,
for Q =< 0.08y; and the fifth approximation, for
Q=< 0.12y.

CONCLUSIONS

A method for calculating the polarization spectra
in the range of small amplitudes of the driving field has
been proposed. Compared to numerical calculation
methods, the asymptotic expansion offers an analyti-
cal estimation of the contribution of each individual
component of a polychromatic field and a description
of the intermode interaction. However, with an
increase in the intensity of the driving field, the com-
putational efficiency of the method decreases, since,
to achieve the required accuracy, it is necessary to
increase the order of the asymptotic expansion.

This approach can be generalized to the case of sys-
tems with a large number of levels.
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