
ISSN 0030-400X, Optics and Spectroscopy, 2019, Vol. 127, No. 1, pp. 95–106. © Pleiades Publishing, Ltd., 2019.
Russian Text © The Author(s), 2019, published in Optika i Spektroskopiya, 2019, Vol. 127, No. 1, pp. 101–111.

NONLINEAR 
OPTICS
The Evolution of High-Intensity Light Pulses in a Nonlinear Medium 
Taking into Account the Raman Effect

S. K. Ivanova, b, * and A. M. Kamchatnova,b

a Institute for Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, 108840 Russia
b Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow oblast, 141700 Russia

*e-mail: ivanoff.iks@gmail.com
Received February 25, 2019; revised February 25, 2019; accepted March 15, 2019

Abstract—The evolution of high-intensity light pulses in nonlinear single-mode optical waveguides, the
dynamics of light in which is described by the nonlinear Schrödinger equation with a Raman term taking into
account stimulated Raman self-scattering of light, is investigated. It is demonstrated that dispersive shock
waves the behavior of which is much more diverse than in the case of ordinary nonlinear Schrödinger equa-
tion with a Kerr nonlinearity are formed in the process of evolution of pulses of substantially high intensity.
The Whitham equations describing slow evolution of the dispersive shock waves are derived under the
assumption of the Raman term being small. It is demonstrated that the dispersive shock waves can asymptot-
ically assume a stationary profile when the Raman effect is taken into account. Analytical theory is corrobo-
rated by numerical calculations.
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1. INTRODUCTION
The problem of evolution of light pulses in wave-

guides is currently the subject of thorough experimen-
tal and theoretical studies. It is well known that the
solution to this problem in the approximation describ-
ing the dynamics of the electric-field envelope of the
light-pulse without taking into account medium dis-
persion leads to wave breaking after it propagates a
finite length in an optical waveguide. The derivatives
of the pulse envelope with respect to either coordinate
or time become infinite at the breaking point, while
formal solution to the equations in the dispersionless
approximation becomes multi-valued and loses its
physical meaning beyond the breaking point. Taking
dispersion into account eliminates such an unphysical
behavior. However, this leads to the appearance of
higher-order derivatives in the evolution equations for
the envelopes, which greatly complicates their analyt-
ical interpretation. Nevertheless, numerical simula-
tions reveal the following qualitative picture of the
phenomenon. After wave breaking, instead of the
multi-valuedness region, there appears a widening
region of fast nonlinear oscillations in which parame-
ters of the envelope change slowly relative to the char-
acteristic oscillation frequency and their wavelength.
This region of fast oscillations was referred to as the
dispersive shock wave (DSW). Such structures were
observed in nonlinear optics a long time ago [1, 2].

However, even before that, similar phenomena have
been studied in the dynamics of waves on water surface
[3] and in plasma physics [4]. R.Z. Sagdeev explained
the general nature of these phenomena as being the
result of combined action of nonlinear and dispersive
effects in the presence of low viscosity, which makes
DSWs stationary wave structures [5]. The general
approach to theoretical description of DSWs when
dissipative effects can be neglected was formulated by
A.V. Gurevich and L.P. Pitaevskii [6] based on the
Whitham theory of modulation of nonlinear waves [7,
8]. In this approximation, DSWs are presented in the
form of evolving modulated nonlinear wave that rep-
resents periodic solution to the nonlinear wave equa-
tion under consideration in the form of a travelling
wave. The theory and experimental studies of DSWs
have experienced extensive development, expanding
into other areas of nonlinear physics, including the
dynamics of nonlinear waves in a Bose–Einstein con-
densate (see review [9] and references therein). In par-
ticular, the theory of DSWs applied to the nonlinear
Schrödinger equation (NSE) for media exhibiting
normal dispersion and Kerr nonlinearity [10, 11] is in
excellent agreement with experimental studies of evo-
lution of specially formed rectangular pulses in optical
waveguides [12].

Although the theory of the NSE is one of the main
approaches to description of waves in nonlinear optics
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and usually provides a good qualitative explanation of
the main features of the phenomenon, it frequently
turns out to be insufficient for quantitative interpreta-
tion of the appearing DSWs. Sometimes, even small
corrections to the NSE taking into account small addi-
tional effects lead to radical deviations from predic-
tions of the NSE when evolution continues for a suffi-
ciently long time. However, exceeding the limits of the
NSE creates considerable difficulties for the theory
due to the fact that the NSE belongs to a special class
of so-called “completely integrable equations,” which
was demonstrated in [13], and falling outside the
scope of this class makes the method of inverse scat-
tering problem used in the NSE theory inapplicable.
For example, optical shock waves were observed in
high-intensity light beams propagating in photorefrac-
tive crystals exhibiting defocusing nonlinearity [14]
with saturation, in which case the relative role played
by the nonlinearity decreases with increase in the wave
intensity. This situation is not taken into account by
the NSE theory. In this case, the modulation
Whitham equations turn out to be too complicated for
their full-scale analytical interpretation. However, for
a particular case of the initial condition in the form of
an intensity jump, the method developed in [15] yields
the main characteristics of the DSW [16]. A similar
theory can be developed for optical DSWs in colloidal
media [17]. A more general shape of the initial pulses
can be analyzed by using the method recently devel-
oped in [18].

A change in the form of the nonlinearity can lead
not only to quantitative deviations from the NSE the-
ory, but also to qualitatively new effects. For example,
a delay in the nonlinear response of the medium to the
field of the wave transforms the NSE into the so-called
“derivative nonlinear Schrödinger equation” contain-
ing, in addition to the Kerr nonlinearity, its time deriv-
ative. Such a modification of the NSE radically
changes the DSW theory, enabling the appearance of
new wave structures of combined type combining,
e.g., the region of oscillations with the rarefaction
waves, along with other wave configurations [19].

Small perturbations of the dissipative type result in
qualitatively new effects. Over long time, they become
comparable with small modulation of the wave packet,
which can lead to DSW stabilization so that it acquires
a stationary profile. It is this phenomenon that we are
dealing with when taking into account the Raman
effect under propagation of light pulses in an optical
waveguide. It has been noted in [20] that, in the low-
amplitude approximation, the NSE with an additional
Raman term can be reduced to the Korteweg–de
Vries–Burgers equation (KdV–B) for which the pres-
ence of the stationary DSWs was established in [21] by
straightforward perturbation calculation and in [22,
23] by using the Whitham method (see also [24]).
However, taking into account perturbation terms of
this type in the NSE theory is substantially more com-
plex [25, 26] and requires separate analysis. The pres-
OP
ent work aims at investigation of the influence of the
Raman effect caused by delayed nonlinear response of
the system on the dynamics of light pulses propagating
in a single-mode optical fiber. First, in Section 3, we
analyze how this effect influences the dynamics of lin-
ear waves propagating in the presence of a uniform
background. Since some qualitative features of the
behavior of the light-pulse envelope in a fiber can be
analyzed using the low-amplitude limit of the evolu-
tion equations, we will calculate the main dispersive
and nonlinear corrections to the dispersionless linear
propagation of perturbations in Section 4. After that,
we will proceed by description of several stages of
DSW development after wave-pulse breaking. We will
demonstrate that the Raman effect can be neglected at
the first stage when the propagation length of the pulse
along the fiber is relatively short. In this case, the sys-
tem can be described by an ordinary NSE with Kerr
nonlinearity the Whitham solution to which for some
typical cases is well known. At the next stage, the
Raman effect comes into play, and evolution of the
DSW is described by the perturbed Whitham equa-
tions that will be derived in Section 5 within the
framework of the theory developed in [25]. We will
demonstrate that this effect influences the waves
propagating in different directions differently. Finally,
we will demonstrate that the shock wave propagating
in the positive direction of the time axis  acquires a
stationary character, while parameters of the DSW
propagating in the opposite direction continue evolv-
ing with increase in the DSW amplitude and duration
of the wave structure. The analytical results obtained
in the present work are corroborated by numerical
simulations.

2. BASIC EQUATIONS
Our analysis is based on a standard approach devel-

oped in [27] in which the dynamics of the envelope of
the light-wave’s electric field  is described by the
NSE taking into account normal dispersion and defo-
cusing Kerr nonlinearity, while damping is neglected:

(1)

where  is the coordinate along the waveguide,  is
time,  is the reciprocal of the wave’s group velocity
(  = ),  is the parameter determining pulse
broadening, and  is the nonlinear coefficient deter-
mined by the expression

for carrier frequency . Here,  is the parameter of
the Gaussian mode,  is the refractive index, and  is
the speed of light in a vacuum. Hence, the second term
in the evolution equation (1) describes propagation of
the wave with group velocity, while the last term cor-
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THE EVOLUTION OF HIGH-INTENSITY LIGHT PULSES 97
responds to Kerr nonlinearity. The term with coeffi-
cient  corresponds to quadratic dispersion. By
using the substitution

where  is the characteristic intensity of the system,
Eq. (1) can be reduced to a common dimensionless
form

(2)

It was noted in the Introduction that small effects,
such as higher-order dispersion, self-steepening, and
the Raman effect, that are not taken into account in
the NSE approximation can substantially influence
propagation of pulses along sufficiently long fibers.
The influence of self-steepening on DSW evolution
was analyzed in detail in [19], where it was shown that
it leads to formation of complex combination struc-
tures. In turn, the Raman effect describes frequency
mixing of the stimulated Raman self-scattering. Tak-
ing it into account results in the appearance of an
additional term in the evolution equation, so that the
equation governing the envelope of the light pulse in
dimensionless variables takes the form

(3)

Constant  that characterizes the tilt of the SRS gain
curve is usually a small parameter of the system, which
enables considering the last term in the equation as a
perturbation when describing the DSW within the
framework of the Whitham theory. It should be noted
that the self-steepening and the Raman effect are of
different character. Therefore, the influence of each of
them on the system can be studied separately.

Let us begin our investigation of the influence of
the Raman term by analyzing its effect on linear waves
propagating in the presence of a uniform background.

3. LINEAR WAVES

Suppose that a light pulse propagates in the pres-
ence of a uniform wave background with an amplitude
of  =  = const. To find the role played by the
Raman term, let us find the solution to the linearized
NSE with a Raman term for a pulse in the linear
approximation. In this case, it is convenient to trans-
form to variable  determined by substitution  =

. Equation (3) takes the form

(4)
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Such a substitution does not change the properties of
the equation, because the wave phase is determined to
within a constant factor. The evolution of small per-
turbation  in the presence of a uniform background,

(5)

can be described by the linearized equation

(6)

with the initial condition . Separating
the real and imaginary parts,

(7)

from (6), we have

(8)

Function  can be excluded, and the latter system
yields a linear equation for determining :

(9)

The latter equation can be solved by using the Fourier
method. To this end, let us write the dispersion rela-
tion for the linear harmonic waves of the form

:

(10)

The imaginary unity in the dispersion relation means
that the linear waves experience either decay or ampli-
fication at . The general solution to Eq. (9) can
be written in the form

(11)

where functions  are determined from the ini-
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Fig. 1. Pulse evolution in the linear approximation of the
NSE with Raman term (3) at . The dashed grey line
shows the initial perturbation, and the dashed blue line
corresponds to the saddle-point method described by
Eqs. (16) and (17), while the continuous red line corre-
sponds to numerical calculation of integral (14) for 
with initial perturbation (19) at . For comparison, the
black solid line shows linear waves described by linearized
equation (6) with .
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After simple calculations, we find functions  in

terms of Fourier transforms  and  of the ini-
tial (input) perturbation of intensity, 

, and phase,  = , respec-
tively:

(13)

Suppose that the phase of the wave at the initial
moment of time is constant, and there is a perturba-
tion of only intensity; i.e., . Then, we have

(14)

where

(15)

For a long propagation distance , this integral can be
estimated by using the standard saddle-point method,
which yields

(16)

for the wave propagating in the negative direction of
the  axis and

(17)

for the linear wave propagating to the right, where 
and  are the values of  at the saddle points deter-
mined by the equations

(18)

Figure 1 presents a comparison of the result
obtained by the numerical calculation of integral (14)
and from the estimate given by (16) and (17) for initial
perturbation

(19)

It can be seen that the pulse splits into two smaller
pulses. However, in contrast to the case of an ordinary
NSE, they do not represent symmetrical pulses prop-
agating in the opposite directions. Instead, these two
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pulses have now different profiles. It can be seen that
the pulse propagating in the positive direction of the 
axis decays, while that propagating in the negative
direction experiences gain. Obviously, this effect is a
consequence of the action of the Raman term in
Eq. (3). The approximate solution given by (16) and
(17) shows that the amplitude of the packet of linear
waves propagating to the left steadily grows. However,
it should be remembered that this theory is valid for
small deviations from the level of background inten-
sity. It should also be noted that the asymptotic solu-
tion given by (16) and (17) describes the wave packet
well even for short lengths  of the optical waveguide.

The time dependence of intensity of the linear
waves is illustrated in Fig. 2 for the case in which a
jump discontinuity modeled by the expression

(20)

was used as an initial perturbation. Here, jump discon-
tinuity width  should be chosen to be sufficiently
small so that its influence was not be felt at rather long
times. Constants  and  are responsible for the
boundary values of the light intensity at the right and
left sides of the jump discontinuity, respectively. The
problem of initial-gap evolution represents one of the
fundamental problems of the DSW theory. We will
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Fig. 2. Pulse evolution in the linear approximation of the
NSE with Raman term (3) at . The dashed grey
line shows the initial perturbation in the form of a jump
discontinuity; the continuous red line corresponds to
numerical calculation of integral (14) for  with initial

perturbation (20) at , , and . For
comparison, the black solid line shows linear waves
described by linearized equation (6) with .
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analyze it in detail below. Here, we will note only that
the difference between the linear waves at  and

 is noticeable even at small values of , for the left
wave in particular.

Let us investigate the influence of weak dispersion
and nonlinearity on the evolution of a light pulse.

4. THE LIMIT OF LOW AMPLITUDE
AND WEAK DISPERSION

Let us investigate the influence of the Raman effect
on DSW evolution in the limit of low amplitudes and
dispersion when they are taken into account in the
main approximation, i.e., we are interested in the
leading dispersion and nonlinear corrections to the
dispersionless linear propagation of perturbations
along a background pulse  when the Raman term in
(3) is taken into account. To this end, it is convenient
to use functions of intensity  and frequency
modulation (chirp)  as independent variables. To
transform to equations for these variables, let us use
the Madelung transform

(21)

Substituting the latter into (3), separating real and
imaginary parts, and differentiating one of the equa-
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tions, we obtain the following set of equations:

(22)

The last term in the left-hand side of the second equa-
tion describes the effects of dispersion, while the term
in the right-hand side of this equation is reminiscent of
the well-known Burgers viscosity in the theory of
waves on the surface of water and other continuous
media [8].

Using the latter set of equations and applying a
standard perturbation theory approach with respect to
the perturbation amplitude and the weak dispersion
[28], we obtain a low-amplitude analog of Eq. (3). Let
the wave be propagating in the positive direction of the
 axis. An approximate equation for  has the

form

(23)

The latter is the KdV–B equation. It is well known [22,
24] that the evolution of the waves obeying this equa-
tion spits into three stages. At the first stage, when

, the influence of the term characterizing low
viscosity on the DSW evolution is small and can be
neglected. At the second stage, when , the
influence of viscosity becomes comparable with the
DSW modulation. Obviously, viscosity cannot be
neglected in this case and the perturbation theory
approach is used for description of the DSW due to the
small value of the viscosity coefficient. Finally, at the
third stage, when , the DSW becomes station-
ary with respect to , i.e., the output-signal profile
becomes independent of the optical-waveguide
length. This kind of behavior of the DSW can also be
expected in the case of approximation (23) for the
wave propagating to the left.

However, the situation changes for the waves prop-
agating in the opposite direction. The limiting equa-
tion for intensity perturbation  can be written in the
form

(24)

This is also a KdV–B equation. However, it should be
noted that the signs before the terms describing disper-
sion and viscosity are different. This means that the
character of the DSW changes, and the wave experi-
ences amplification instead of standard decay.
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Such a difference in the behavior of the waves
propagating in opposite directions is caused by the
lack of symmetry of Eq. (3) with respect to substitu-
tion . Obviously, this property will influence
the pulse evolution described by full equation (3). Let
us analyze formation of the DSW and derive equations
describing their dynamics.

5. SHOCK-WAVE FORMATION
Let us discuss the dispersionless limit of the hydro-

dynamic equations that follow from the NSE when
dispersion is neglected. In this limit, equations (22)
without the term describing the influence of the
Raman effect transform into a set of equation of the
form

(25)

The first equation of the set can be interpreted as the
continuity equation for intensity , while the sec-
ond equation can be interpreted as the Euler equation
for the f low velocity . Using standard technique,
this set of equations can be reduced to the diagonal
Riemann form:

(26)

for the Riemann invariants

(27)

and reciprocal velocities

(28)

The functions introduced above will be used for
choosing the initial state corresponding to a wave
propagating in a certain direction.

Let the initial conditions at the input of the optical
waveguide be formulated in the form of step functions:

(29)

For this choice of the initial conditions, wave breaking
will take place at . Had evolution of the light
envelope  be described by Eq. (2), two character-
istic structures, namely, the rarefaction wave and the
DSW, will be formed in the course of propagation. It is
clear from the form of hydrodynamic equations (22)
and the low-amplitude limit that the same structures
will form in a general case. However, the Raman effect
will influence only the evolution of the DSW, similar
to viscosity in the case of wave dynamics on water
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described by the KdV–B equation. In this case, it
makes sense limiting analysis of the shock-wave
dynamics by the initial conditions the evolution of
which will result in formation of the DSW without
simultaneous formation of the rarefaction wave, which
greatly simplifies the investigation. In terms of earlier
introduced Riemann invariants, this would mean that
the initial condition must be specified according to the
conditions (a) ,  or (b) ,  =

, where the upper index denotes the corresponding
jump discontinuity boundary.

Having defined the initial condition in this way, let
us proceed to the description of the three stages of
DSW formation taking into account the Raman effect.

5.1. The First Stage: 

Since wave breaking occurs at , dispersion
must be taken into account at this stage when .
However, modulation of the wave is relatively small,
and the Raman effect can be neglected for the time
being. In this case, the dynamics is described by an
ordinary NSE (2) periodic solution of which is well
known and can be expressed in the form [28]
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background intensity  =  + , and
length

(34)

where  is the complete elliptic integral of the first
kind, are expressed in terms of these parameters. In a
DSW, these parameters are slowly varying functions of

 and . The advantage of writing the periodic solution
in the form (30) is that parameters  represent Rie-
mann invariants of the modulation equations and their
evolution is determined by the Whitham equations in
the diagonal form:

(35)

Here,  are the characteristic Whitham velocities:

(36)

where  is an elliptic integral of the second
kind.

In the limit  ( ), the travelling wave
transforms into a soliton solution in the presence of
the constant-density background:

(37)

In the other (low-amplitude) limit in which 
(  or ), the wave amplitude tends to
zero, while the density attains the background value. It
is essential that, in these limiting cases, the pair of the
Whitham velocities transforms into the Riemann
velocities of the dispersion limit. This means that the
edges of the DSW are sewed together with the smooth
solutions obtained in the hydrodynamic approxima-
tion of the dispersionless limit that is valid for descrip-
tion of the wave evolution outside of the DSW.

Since the initial condition does not contain param-
eters with a dimension of real time, the modulation
parameters depend only on the self-similar variable

. Therefore, the Whitham equations reduce to

(38)
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Hence, only one Riemann invariant is variable, while
the other three must attain constant values. Knowing
the initial conditions allows obtaining the form of a
DSW for . Typical situations have been inves-
tigated in [10, 11], and we will not discuss the details
here.

5.2. The Second Stage: 

At this stage,  and effects related to the
Raman term start playing a substantial role, compet-
ing with the influence of the modulation. The DSW
dynamics is regulated by a complete NSE with Raman
term (3). The local form of the wave is still described
by periodic solution (30). However, the Whitham
equations become inhomogeneous in this case due to
the appearance of the perturbation term. To derive
these equations, we will use the method developed in
[25]. The method can be formulated as follows. Let
equations governing evolution of the wave variables

 have the form

(39)

where  is a small parameter describing the dis-
persion effects. Functions  correspond to the core
integrable part of the equations without taking into
account perturbations, while functions  represent
the terms perturbing the system. It is assumed that the
unperturbed system can be presented as a compatibil-
ity condition of two linear equations

(40)

where  and  depend on functions , their spatial
derivatives, and spectral parameter . This condition
holds for the NSE and allows using a powerful inverse
scattering method for its investigation [28]. Linear
second-order equations (40) have two basic solutions

. Their product  satisfies the third-order
differential equation that can be integrated once
thereby yielding the relation

(41)

where coefficient  is defined by the relation  →
, while  is the polynomial of  of degree 
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In a modulated wave, parameters  become slow
functions of  and , while their evolution is described
by the perturbed Whitham equations that, in the case
of Eq. (39), take the form

(42)

where  denotes the highest order of derivative of
functions  appearing in , while the angular brack-
ets denote averaging over one wavelength . After
averaging, all  are taken equal to .

Let us apply this theory to the NSE with a Raman
term:

(43)

A positive small parameter  introduced here
explicitly reflects the smallness of the dispersion
effects, which is assumed in the DSW theory, so that
only the leading approximation with respect to this
parameter should be retained after averaging. Equa-
tion (43) contains two variable functions  and ,
along with two corresponding perturbation terms

(44)

For an unperturbed NSE, functions  and  appear-
ing in the linear equation (40) have the form

(45)

Averaging can be performed using equations known
from the theory of periodic solutions to the NSE:
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where  and  were defined in (32) and (33). To
calculate the right-hand sides of the Whitham equa-
tions, we will also need an expression governing
parameter  [28]:
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where  are zeros of function  related to the Rie-
mann invariants  through expressions

(48)

while  was defined in (31). As a result, we obtain the
Whitham equations for the Riemann invariants  in
the form

(49)

where wavelength  was defined in (34). The integral
in the right-hand side can be expressed in terms of
elliptic integrals. However, the resulting expression
will be too complex, and it is easier to deal with its
original form.

The solution to the perturbed Whitham equations
(49) determines evolution of parameters  due to non-
uniform modulation of the waves and a weak effect of
the viscosity type caused by the Raman term. Based on
the earlier analyzed low-amplitude limits of the KdV–
B type, it is natural to expect that the DSW propagat-
ing in the positive direction will asymptotically
approach the stationary waves, and some of their char-
acteristics can be calculated analytically. The ampli-
tudes of the DSW propagating to the left will continu-
ously grow, and the corresponding solution can be
found numerically from the obtained perturbed
Whitham equations.

5.3. The Third Stage: .

At distances , the DSW propagating in the
positive direction of the  axis becomes stationary,
because the Raman effect compensates the influence
of the wave modulation at such values of . This
means that the DSW moves as a whole with constant
velocity and its profile remains unchanged. In this
case, the DSW are described by the perturbed
Whitham equations (49) with parameters  depen-
dent on . Assuming that function  is an
integral of the Whitham equations, i.e., 
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Fig. 3. Riemann invariants  as functions of .
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under the condition that  = , the Whitham
equations can be recast in a simpler form:

(50)

where

(51)

Let us demonstrate that our assumption of  being
constant is valid and that the structure of these equa-
tions, in fact, ensures the existence of three integrals ,

, and . This statement can be proved by using the
Jacobi identities that follow from an obvious identity
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where a polynomial of degree  appears in the
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equations (50) thus reduces to a single ordinary differ-
ential equation of the form

(55)

with the initial condition  that can be con-
veniently chosen on the soliton edge of the DSW. It
follows from the matching conditions at the DSW
edges that

(56)

at the soliton edge and

(57)

at the low-amplitude edge.
The diagram of the Riemann invariants is illus-

trated in Fig. 3. Since we analyze here the wave prop-
agating in the positive direction, we have  and

. This means that  and .
Hence, it follows from the fact that functions  and 
are constant that
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Fig. 4. Dependences of the leading-soliton amplitude on
propagation length  for several values of constant  char-
acterizing the Raman effect. The analytical result obtained
by using the Whitham theory is illustrated by the black
dashed line, while numerical results obtained by solving
Eq. (3) are presented by the solid curves.
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We thus found all Riemann invariants at both edges of
the DSW, i.e., we know integrals  and  along entire
shock wave. This allows finding the wave velocity and
the amplitude of the leading soliton:

(60)

(61)

It is important noting that the speed of the DSW
and the amplitude of the soliton depend only on the
initial parameters and are independent of constant 
reflecting the Raman effect. The dependence of the
soliton amplitude on coordinate  found by numerical
simulation is presented in Fig. 4. It can be seen that
there is some deviation of the theory from the results
of the numerical simulation that is probably caused by
the fact that the Whitham theory does not take into
account the nonadiabatic effects that can play a sub-
stantial role in the DSW described by nonintegrable
equations, such as the NSE with a Raman term. This
kind of discrepancies has been noted in [16, 29] for
other physical systems. Despite this discrepancy, in
general, the DSW are described by the Whitham the-
ory quite well, which can be seen from Fig. 5. We see

1s 4s

= = λ + λ + λ + λ λ

= + + + + + ,

1
1 4 2 2 4

1 1( )
2 2

1 (2 2 ( 2 )( 2 ))
4

L L R R L

L R R L L R R

s
V

u u I u I u I

= λ − λ − λ λ λ − λ + λ λ

= − − +

+ + +

4 2 2 4 2 1 2 4

2

1 (2 )( 2 )
4

1 [2 2
16

( 2 )( 2 )] .

L R R L R L R L
s

L L L R

L L R R

a

I I u u

u I u I

γ

x

OP
that the agreement between the results of the Whitham
theory and numerical simulations considerably
improves with decrease in the wave amplitude.

On the contrary, for the wave propagating in the
opposite direction, the amplitude of oscillations in the
wave and its duration continuously grow. It is difficult
to construct an analytical theory of such a nonstation-
ary nonlinear structure, prompting using numerical
TICS AND SPECTROSCOPY  Vol. 127  No. 1  2019
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simulation instead. An example of such a wave
obtained by numerical solution of Eq. (3) is illustrated
in Fig. 6. It can be seen that the wave profile substan-
tially changes with increase in distance . At suffi-
ciently long waveguide distances , the amplitude of
the wave packet separating from the DSW and
described quite well by the linear theory discussed in
Section 3 considerably increases.

6. CONCLUSIONS

In the present work, we developed an analytical
theory of propagation of relatively long light pulses in
fibers described by the NSE modified by a small term
characterizing the Raman effect. We analyzed the
main stages of formation of a shock wave with an ini-
tial profile in the form of a step function and obtained
analytical solutions for the initial and stable final
stages of nonstationary shock-wave development by
using the Whitham method for equations containing
perturbation terms.

In principle, the results obtained in the present
work can be experimentally observed in systems anal-
ogous to those used in recent experiment [12]. How-
ever, it should be kept in mind that the effect of self-
steepening takes place in addition to the Raman effect
in standard fibers. However, these two effects reveal
themselves differently and, thus, can be distinguished.
It was demonstrated in [19] that the main consequence
of the effect of self-steepening is formation of com-
bined shock waves due to the nonmonotonic depen-
dence of the nonlinear term on the wave amplitude,
whereas the Raman scattering leads to formation of
stationary shock waves of final length. In the process,
as a rule, the Raman effect is much stronger than the
effect of self-steepening. The theory developed in the
present work shows that the Whitham method pro-
vides a general and sufficiently efficient approach to
description of the DSWs observed in light guides and
other optical systems (see, e.g., [30]).
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