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Abstract—Based on the method of continued boundary conditions, a technique is proposed that allows one to
model the scattering characteristics, including averaged over orientation angles, for bodies of practically any
geometry. A number of examples of solving problems of diffraction on fractal-like bodies of revolution are
given. The correctness of the method is confirmed by verifying the implementation of the optical theorem for
various bodies and by comparing with the results of calculations obtained by the method of discrete sources.
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INTRODUCTION
The technique proposed in [1] is extended to the

three-dimensional case. The study of the characteris-
tics of wave scattering by bodies of complex geometry
is of great interest in such areas as astrophysics, optics,
acoustics, etc. Such studies are usually carried out
using the T-matrices method [2]. This method is very
popular, which is confirmed, in particular, by review
[3], which provides links to more than 250 publica-
tions for 2015–2017. The popularity of the T-matrices
method is largely due to the fact that using this method
it is relatively easy to perform such an important pro-
cedure, for example, in astrophysics, as averaging the
scattering characteristics of a body over the angles of
its orientation relative to the incident field. However,
as was shown earlier in our works (for example, [2, 4]),
the traditional method of T-matrices is correct for a
fairly narrow class of scatterer geometries.

The T-matrices method proposed by P. Waterman
in the early 1960s [5] was subsequently widely used in
radio physics, acoustics, astrophysics, and other areas
of science. Its popularity is explained by the simplicity
and convenience of calculating the characteristics of
scattering of compact objects that are important in
applications. Earlier in our works it was shown that the
traditional method of T-matrices is correct only for so-
called “Rayleigh bodies” [2]. Thus, it is of interest to
extend the technique of this method to the problems of
wave scattering by bodies of sufficiently arbitrary
shape.

The T-matrices method (MTM) is commonly
understood as the procedure for finding matrix-con-

necting decomposition coefficients over some (usually
angular or spherical) basis of the field scattered by an
object when a plane wave [1] is incident on it, called
“scattering coefficients” (see below). The elements of
the T-matrix are independent of the angle of incidence
of the primary wave and are determined only by the
geometry of the scatterer and the type of boundary
conditions at its boundary. This makes it easy to carry
out averaging scattering characteristics over the angles
of incidence of the primary wave (orientation angles of
the scatterer), which are important in a number of
applications [3]. The traditional (classical) version of
the T-matrices method [5], as well as its recently
developed modified versions [1, 4, 6, 7], are applica-
ble, as shown in [1] and earlier works of the authors, to
solving diffraction problems only on scatterers with an
analytical boundary. At the same time, in astrophys-
ics, radar, and other areas, the problem of wave scat-
tering by bodies with boundary breaks, thin screens,
etc., is highly in demand. Thus, it is of great interest to
extend the T-matrices technique to the problem of wave
scattering by bodies with a nonanalytical boundary.
This paper presents an approach based on the contin-
ued boundary conditions method (CBCM) [2, 8].

As is known [9], in the optical field, the intensity of
the electromagnetic field can be approximately
expressed through one complex scalar function, i.e.,
the diffraction vector problem can be approximately
replaced by the scalar one. In this paper, we consider
the three-dimensional scalar problem of the diffrac-
tion of a plane wave on the bodies of rotation, in par-
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ticular, on fractal-like bodies with a complex cross
section.

DERIVATION OF BASIC RELATIONSHIPS
Let us proceed to the presentation of the proposed

approach. Let us consider diffraction on a compact
obstacle in the form of a body of revolution bounded
by a piecewise-smooth surface S. Let the Dirichlet
condition be satisfied on boundary S of the scatterer

(1)

Here,  is the full field, where
 is the incident field and  is the scattered

(secondary) field. For the incident field, consider a
plane wave

(2)

where ,  are the angles of incidence of the wave, k
is the wavenumber of the medium surrounding the
body, and  are the spherical coordinates. At
infinity, the radiation condition for the scattered field
is satisfied:

(3)

As is known (for example, [2]), for the diffraction
field, the following representation takes place:

(4)

wherein

(5)

is the fundamental solution of the Helmholtz equation
(Green function of free space) in the three-dimensional
case. Subject to condition (1), representation (4) will
take the following form:

(6)

where  means differentiation in the direction of
the outward normal to surface S. Requiring, in accor-
dance with CBCM, the fulfillment of condition (1) on
surface  located at , where  is the region
inside S [2, 8], using (6) we obtain the following Fred-
holm integral equation of the first kind with a smooth
core:

(7)

Note that, most often, as  [2, 8], a surface is chosen
that encloses S and is separated from it by some suffi-
ciently small distance , that is, an equidistant surface
is considered. Let the scatterer is a body of revolution,
the equation of the boundary S of which is given in
parametric form

(8)

where  are the cylindrical coordinates. In this
case, parameter t varies on the interval . Then
the equations of displaced surface  are written as fol-
lows:

(9)

where , , while
 and  are the coordinates of the normal to surface

of the body S. Now, using the notation

(10)

Eq. (7) takes the form

(11)

where

In addition, taking into account the Fourier expansions
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(where ), Eq. (11) reduces to the following
system of one-dimensional integral equations (SIE):

(13)

where  is the upper limit of summation in relation-
ships (12) and

(14)

System (13) can be solved, for example, by the Kry-
lov–Bogolyubov method. To this end, we represent
the unknown functions  in the form

(15)

where  are impulse functions of the form

(16)

Here, , ,  is the grid

step, and is the number of basis functions. In addi-
tion, substituting (15) into SIE (13) and equating the
left and right sides of the obtained equalities at the
collocation points selected on surface , we obtain
the following systems of algebraic equations for quan-
tities :

(17)

where the matrix elements and the right parts are cal-
culated by the formulas

(18)

Note that, in order to efficiently calculate the matrix
elements in system (17), that is, the values ,
the algorithm given in [10] was used. To speed up
the computation, we found external integrals in for-
mula (18) using an adaptive method (allowing one to
calculate integrals from rapidly changing functions),
only for the matrix elements located near the main
diagonal, and the remaining matrix elements were cal-
culated using Gauss quadrature with two nodes.

The correctness of the obtained results is con-
trolled by calculating the magnitude of the discrep-
ancy at points of surface  located in the middle
between the points of collocation. One of the criteria
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for the correctness of the results obtained is also the
optical theorem, which is written in the form [11]

(19)

where  is the scattering diagram, the
expression for which is given below. As an estimate of
the accuracy of the optical theorem, we will calculate
the value , which is the relative difference between
the left and right sides in formula (19).

For the following, it will be convenient to rewrite
systems (17) in the matrix notation:

(20)

where , , . Finding
coefficients  from systems (20) taking into account
formulas (6), (10), (12), and (15), we obtain the fol-
lowing representation for the scattered field:

(21)

where

Turning to the asymptotics of expression (21) at
, we obtain the representation for the scattering

diagram:

(22)

Here,  are the cylindrical Bessel functions. In
formula (22), coefficients  depend on angles of
incidence ,  of the plane wave.

Let us consider the question of finding a scattering
diagram averaged over the angles of incidence of a
plane wave (for example, in the case of an equally
probable distribution of angles of incidence , ):
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where outside the sphere depicted around S, in accor-
dance with the addition theorem [12], we have

(24)

Taking into account the determination of the values of
 from (24), we obtain

(25)

where  are the spherical Bessel functions, 
are the spherical Hankel functions of the second kind,

 are the associated Legendre functions, and ,
 are the spherical coordinates of a point on the

contour of the axial section of the body. Now, from
(21) and (25), we obtain

(26)

Let us rewrite relation (26) in the form standard for
MTM:

(27)
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field is plane wave (2) propagating at angle of  to the
axis,

(31)
At , we have

(32)

Thus, from (27), we obtain

(33)

As noted in the Introduction, in many applications, a
scattering diagram averaged over the angles of orienta-
tion of the body is of interest. Averaging over orienta-
tion angles (taking into account (23)) leads to the ratio

(34)

wherein

(35)

where , . For example, in the
case of an equally probable distribution of orientation
angles (angles of incidence of a primary plane wave),
we obtain

(36)

The averaged diagram can also be found directly from
formula (22). Then,

(37)

where coefficients  are found from system (20) (at
), in which the right-hand sides are replaced by

the values of (36).
We present the averaged sphere diagram. As is

known, the scattering diagram of a sphere of radius a
in the case of the Dirichlet condition on its surface has
the form

(38)

Calculating integral (23), we obtain
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Table 1. Comparison of results obtained using MMDS and CBCM

Angle , deg
Cone diagram Cylinder diagram

CBCM MMDS CBCM MMDS

0 0.7575 0.7552 2.1862 2.2179
60 4.7958 4.8092 11.227 11.235
90 42.999 43.080 88.089 87.920

150 3.9152 3.9191 4.1936 4.2130
180 1.8440 1.8408 2.1862 2.2179
240 1.2636 1.2600 3.5127 3.5558
270 1.3481 1.3444 17.930 17.817
330 12.127 12.146 1.8718 1.9515

θ

Table 2. Accuracy of the optical theorem correspondence for different geometries

Body form Values of the left and right parts in the formula (19) Value of 

Cone 39.18898 39.18820 1.99 × 10–5

Cylinder 83.49031 83.49032 2.82 × 10–8

Cross section in the form of the Koch 
snowflake (iteration 1)

51.95889 51.95778 2.13 × 10–5

Cross section in the form of the Koch 
snowflake (iteration 2)

60.02143 60.02200 9.59 × 10–6

Cross section in the form of the Sier-
pinski curve (iteration 1)

45.92960 45.92939 4.68 × 10–6

Cross section in the form of the Sier-
pinski curve (iteration 1)

40.27679 40.27682 7.30 × 10–7

Δot
Thus, the averaged diagram of the sphere, as expected,
is constant.

CALCULATION RESULTS

In Table 1, the results of calculating the modulus of
the scattering diagram of an ideally ref lecting cone
(the Dirichlet conditions are fulfilled on the body sur-
face) with a cross section of an equilateral triangle with
the side  and an ideal cylinder with a square
cross section with the side  are presented.
The plane wave is incident perpendicular to the axis of
rotation of the body. The scattering diagram was cal-
culated at . Parameter . The numerical
results given in Table 1 were obtained by two methods:
using the modified method of discrete sources
(MMDS) and CBCM. Note that MMDS cannot be
directly applied to the diffraction problem on the bod-
ies with boundary breaks (such as a cone and cylin-
der); therefore, to solve the problem using MMDS,
the bodies’ axial section contour was approximated by
a smooth contour (for example, [13]). In particular,
when solving the problem of diffraction on a cylinder,
the body boundary was approximated by the surface of
a superellipsoid of revolution. As can be seen from

=2 20ka
=2 20ka

ϕ = 0 −δ = 310k
OP
Table 1, the relative difference of the results obtained
using MMDS and CBCM does not exceed 5 × 10–3 in
the case of diffraction on a cone and 4 × 10–2 for a cyl-
inder.

In Table 2, the results of checking the accuracy of
the optical theorem for the abovementioned bodies (a
cone and cylinder), as well as for a body of revolution
with a Koch snowflake cross section and a Sierpinski
curve cross section (two iterations were considered)
are presented [14]. In the latter two cases, the maxi-
mum size of the body section along the x axis was
equal to . The geometries of these fractal-like
bodies are shown in Figs. 1 and 2. The number of col-
location points at one wavelength for all six forms of
the body section was . The number of angular
harmonics was chosen to be . A plane wave was
incident perpendicular to the axis of the body. As fol-
lows from Table 1, the relative difference between the
right and left sides of equality (19), i.e., the value of

, does not exceed 5 × 10–5. Thus, the diffraction
problem is solved on the basis of the CBCM with high
accuracy.

Let us consider the results concerning the calcula-
tion of the scattering diagram of wave averaged over

=2 20ka

λ = 30N
= 24Q

Δot
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Fig. 1. Cross section of the body in the form of the Koch
snowflake: (a) is the first iteration, (b) is the second
iteration.

x

z (a)

x

z (b)

Fig. 2. Cross section of the body in the form of the Sier-
pinski curve: (a) is the first iteration, (b) is the second
iteration.
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Fig. 3. The angular dependence of the averaged diagram
for the sphere.
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Fig. 4. The angular dependence of the averaged diagram
for the body with the cross section in the form of the Koch
snowflake. Curves 1 and 2 correspond to the first and sec-
ond iteration.
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Fig. 5. The angular dependence of the averaged diagram
for the body in the form of the Sierpinski curve. Curves 1
and 2 correspond to the first and second iteration.
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the angles of incidence. As a test, we compared the
values of the averaged sphere diagram obtained using
the CBCM and using the exact formula (39). The
radius of the sphere was . The angular depen-
dences of the averaged diagram module are shown in
Fig. 3. Curve 1 in the figure illustrates the exact value
of the averaged diagram obtained from (39), and
curves 2 and 3 relate to the case when value of param-

eter  was  and , respectively. As can be seen,
with decreasing parameter , the approximate solu-
tion approaches an exact one.

In Figs. 4 and 5, the angular dependences of the
averaged scattering diagram for a particle with a cross
section in the form of a Koch snowflake and in the
form of a Sierpinski curve, respectively, are shown.
The maximum size of the body section along the x axis

was equal to . Parameter  was equal to .
It should be noted that if, in the two-dimensional
case, the type of the averaged scattering diagram made
it possible to form a first idea about the geometry of

= 10ka

δk −310 −410
δ

=2 20ka δk −310
OPTICS AND SPECTROSCOPY  Vol. 126  No. 5  2019
the scatterer [1], then in the three-dimensional case
such obvious correspondence is not observed, appar-
ently because of its more complex geometry.
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