
ISSN 0030-400X, Optics and Spectroscopy, 2018, Vol. 124, No. 4, pp. 541–548. © Pleiades Publishing, Ltd., 2018.
Original Russian Text © R.M. Arkhipov, M.V. Arkhipov, A.V. Pakhomov, D.O. Zhiguleva, N.N. Rosanov, 2018, published in Optika i Spektroskopiya, 2018, Vol. 124, No. 4, pp. 510–517.

NONLINEAR
AND QUANTUM OPTICS
Collisions of Single-Cycle and Subcycle Attosecond Light Pulses
in a Nonlinear Resonant Medium

R. M. Arkhipova, b, *, M. V. Arkhipova, b, A. V. Pakhomovb, D. O. Zhigulevaa, c, and N. N. Rosanovb, d, e

a St. Petersburg State University, St. Petersburg, 199034 Russia
b ITMO University, St. Petersburg, 197101 Russia

c Heinrich Heine University, 40225 Düsseldorf, Germany
d Vavilov State Optical Institute, St. Petersburg, 199053 Russia

e Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, 194021 Russia
*е-mail: arkhipovrostislav@gmail.com

Received December 12, 2017

Abstract—By numerically solving the system of Maxwell–Bloch equations, we have examined theoretically
collisions of extremely short single-cycle and unipolar subcycle pulses in a nonlinear resonant medium under
conditions that the light interacts coherently with the medium. The dynamics of the electric field of structures
of light-induced polarization and inversion difference has been considered in the situation in which pulses are
overlapped in the medium. We show that the states of the medium (to the right and to the left of the overlap
region of the pulses) may differ. In particular, we show that polarization waves with different characteristics
can exist in the regions of the medium that are located on opposite sides of the overlap region of the pulses.
These waves travel in different directions and have different spatial frequencies.
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INTRODUCTION
At present, due to the method of generation of

high-order optical harmonics, it has become possible
to form extremely short pulses with their duration in
the attosecond range (1 as = 10–18 s) [1–3]. The use of
these pulses gave the possibility of studying many fun-
damental issues related to the structure of matter. For
example, it became possible to investigate and control
the dynamics of wave packets in atoms, molecules,
and solids [4, 5], as well as in metal and dielectric
nanostructures [6], to study the dynamics of electron
tunneling through potential barriers [7], to accelerate
electron beams [8], etc.

The duration of extremely short pulses in a reso-
nant medium is much shorter than the relaxation
times of the polarization, T2, and the population dif-
ference, T1. Therefore, under these conditions, if the
central frequency of a pulse coincides with the fre-
quency of a resonance of the medium, manifestations
of the coherent interaction of the pulse with the
medium are possible. The coherent interaction mani-
fests itself in the appearance of Rabi oscillations of the
atomic polarization and the population inversion, and
it can lead, e.g., to the phenomenon of self-induced
transparency [9]. In this case, the 2π pulse of self-
induced transparency propagates in the medium with-
out losses. The interaction of extremely short pulses
with various media was thoroughly studied theoreti-

cally and experimentally under conditions if the spec-
trum of pulses is far from the resonant frequency of the
medium, and the manifestation of coherent effects in
the form of Rabi oscillations is impossible (see reviews
[10–13] and references therein). The coherent propa-
gation of pulses and the effect of self-induced trans-
parency were examined experimentally only for long
pulses in different media (gases, vapors of alkali met-
als) [14–16]. Recently, it has been possible to observe
the effect of self-induced transparency and the
appearance of Rabi oscillations in semiconductor
structures on quantum dots [17–20]. Recent experi-
ments should be noted in which Rabi oscillations were
observed [21–25], as well as Ramsey fringes [26] in
quantum dots interacting with femtosecond-long
pulses at room temperature.

At the same time, there are many works in which
the coherent propagation of extremely short pulses in
a resonantly absorbing medium has been studied the-
oretically [27–53]. However, investigations performed
in these works were mainly focused on studying
aspects of the coherent propagation of extremely short
pulses, such as the verification of the satisfiability of
the McCall–Hahn area theorem [39–41], checking
the validity of the approximation of slowly varying
amplitudes and of the rotating-wave approximation
[42–45], studying soliton propagation regimes and the
generation of attosecond pulses [27, 32–38], induc-
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tion and ultrafast control of light-induced structures
using single-cycle [46, 47, 50] and subcycle [48, 49,
51] pulses.

These investigations were done mainly for the case
of bipolar pulses, for which the electric-field strength
changes its sign with time and the electric area of the
pulse, which is defined as the integral of the electric-
field-strength vector at a given point in space, is zero
[27–47, 50]. Recently, the possibility of obtaining uni-
polar pulses, for which the electric area differs from
zero, has become attractive [52, 53]. These pulses are
capable of unidirectionally acting on charged particles
and, consequently, to efficiently transfer momentum
to charges, which makes it possible to use these pulses
to accelerate charged particles, control the dynamics
of wave packets, etc. [52].

The appearance in a resonant medium of light-
induced gratings of the population difference and
polarization in the case of coherent interactions of
long not overlapping pulses with the medium was con-
sidered in [54–57]. The possibility of creating of such
light-induced polarization and inversion structures in
a resonant medium upon coherent propagation of sin-
gle-cycle bipolar extremely short pulses and unipolar
subcycle pulses under conditions that pulses do not
overlap each other in the medium was studied in [46–
50]. Collisions of self-induced transparency bipolar
solitons were studied in [58–60] for the case of long
pulses and in [42–45] for the case of extremely short
pulses. Collisions of two unipolar subcycle pulses
propagating in a medium that consists of a mixture of
gaining and absorbing particles were considered in
[31]. In [51], the dynamics of light-induced polariza-
tion and inversion structures was analyzed under con-
ditions that subcycle pulses interact at the center of the
medium. In [61], the collisional dynamics of two uni-
polar subcycle pulses was examined under consider-
ation of soliton propagation through the medium in
the medium. The authors of [66] investigated the
properties of strongly coupled long-lived states of a
system “electromagnetic field + matter,” which arise
upon collisions of coherent pulses in a dense resonant
medium (“polariton clusters”). It was shown that
polariton clusters possess necessary properties to be
base elements of all optical signal processing.

In this paper, we study situations in which unipolar
subcycle pulses intersect and collide with bipolar sin-
gle-cycle attosecond pulses in a medium, as well as sit-
uations in which, contrastingly to previous works,
more than two pulses participate in the collision. We
analyze the behavior of light-induced structures cre-
ated by sequences of these pulses in the medium at dif-
ferent concentrations of absorbing particles. The
influence of the radiation of traveling polarization
waves on the dynamics of propagating pulses is consid-
ered. It is shown that, when extremely short pulses are
overlapped in a medium, the state of a part of the
medium on one side of the overlap region may differ
OP
from the state of the region of the medium that is
located on the other side of the region in which the
pulses overlap with each other. In particular, we show
that, in the regions located on opposite sides of the
pulse overlap region, polarization waves with different
spatial characteristics may form. These waves can
propagate in opposite directions, and, if three pulses
collide in the medium, the waves have different spatial
frequencies.

In this paper, we consider the case in which the
pulse duration is comparable with the period of the
light wave, and the dimensions of the overlap region of
the pulses are also on the order of the wavelength of
the light wave. It is evident that, in this case, the inci-
dent fields cannot interfere with each other even with
a short-term formation of a standing wave. Therefore,
the dimensions of the zone that separates the parts of
the medium with different properties is extremely
small. This constitutes the fundamental difference
between the case considered below and the situation in
which multicycle bipolar femtosecond and longer
pulses overlap with each other in the medium. In the
latter case, the dimensions of the overlap region are
equal to several tens, hundreds, or more wavelengths,
and gratings are created as a result of the interference
between overlapping beams [62].

THE THEORETICAL MODEL 
AND THE SYSTEM UNDER CONSIDERATION

To study collisions of unipolar subcycle and single-
cycle attosecond pulses in a resonant medium, the sys-
tem of Maxwell–Bloch equations was applied.
Because the duration of exciting pulses is short, the
system does not use either the approximation of slowly
varying amplitudes or the rotating-wave approxima-
tion. As in [27–51], the medium was described in the
two-level approximation using the density-matrix for-
malism. Calculations show that, if a greater number of
levels of a medium are taken into account, the main
features of the coherent propagation of pulses in two-
level media still remain [32–34, 36, 50]; therefore, for
simplicity, we will use the two-level approximation in
this paper. The inhomogeneous broadening will be
also neglected. The field is assumed to be linearly
polarized, which reduces the problem to a scalar one.
We also neglect the diffraction of radiation, which is
justified for propagation lengths of beams that are
smaller than the diffraction length.

Therefore, the examined systems of equations has
the form
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Fig. 1. Geometry of an examined system.
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Table 1. Parameters that were used in numerical calcula-
tions

Wavelength
of resonant transition

λ0 = 700 nm

Transition dipole moment d12 = 20 D
Relaxation time of inversion T1 = 1 ns
Relaxation time of polarization T2 = 1 ps
Concentration of atoms N0 = 5 × 1014 cm–3

Amplitude of field 1 E01 = 9.55 × 104 esu units
Duration of pulse 1 τ1p = 388 as
Amplitude of field 2 E02 = E01

Duration of pulse 2 τ1p = τ2p

Parameter of delay τ1 = τ2 = 2.5τ1p
(2)

(3)

(4)

Systems (1)–(4) contain the following parameters: P
is the polarization of the medium, N0 is the concentra-
tion of active centers, E is the electric-field strength, c
is the speed of light in a vacuum,  is the reduced
Planck constant, ω0 is the frequency of the resonant
transition of the medium (  =  is the wave-
length of the resonant transition), d12 is the dipole
moment of the working transition, and n0 is the differ-
ence between the populations of the two working levels
in the absence of an electric field (  for the
absorbing medium).

Equations (1) and (2) describe the evolution of the
off-diagonal element of the density matrix, ρ12, and the
difference  between the diagonal elements
of the density matrix, which has the meaning of the
population difference (inversion) between the ground
and excited states of the two-level system. The off-
diagonal element of the density matrix, ρ12, is related to
the polarization of the medium by formula (3), this
polarization serves as a source of the field in wave
equation (4).

System of Maxwell–Bloch equations (1)–(4) is
actively used in the literature to study the coherent
propagation of extremely short pulses in a resonant
media [27–51]. Here, to analyze the collisional
dynamics, system (1)–(4) was solved numerically.
Bloch equations (1) and (2) for the density matrix were
solved by the fourth-order Runge–Kutta method.
Wave equation (4) was solved by the method of finite
differences.

The spatial region of integration had a length of L =
12λ0. The resonant medium was located along the z
axis at the center of the region between the points z1 =
4λ0 and z2 = 8λ0. Exciting pulses also propagated along
the z axis (Fig. 1). As previously in [47–51], to create a
sequence of exciting pulses for the numerical calcula-
tion, zero boundary conditions were taken for the val-
ues of the field for the limits of the integration region,
which corresponds to an ideal reflection of the radia-
tion at the boundaries.

COLLISION OF A BIPOLAR SINGLE-CYCLE 
PULSE WITH A UNIPOLAR SUBCYCLE PULSE 

IN A MEDIUM
Extremely short pulses were sent to a medium from

the left and from the right (see Fig. 1). An extremely
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short pulse of a Gaussian shape was sent to the
medium from the left (at the entrance to the medium):

(5)

From the right to the left, a unipolar subcycle pulse
was sent, which also has a Gaussian shape,

(6)

Here,  are the time delays.
The parameters of the calculation are presented in

Table 1.
The amplitudes of the exciting pulses were chosen

such that the pulses would equalize the populations of
the upper and lower levels; i.e., after the action of the
pulses, the inversion n = 0 would be achieved.

The calculation results revealed the following
dynamics of the system. Figure 2 illustrates the
dynamics of inversion n, while Fig. 3 shows the
dynamics of polarization P of the medium. Prior to
their collision, the pulses transferred the medium to a
state with a zero inversion (Fig. 2) and induced coun-
terpropagating polarization waves (Fig. 3). Then, the
pulses collided at the center of the medium at the point
z/λ0 = 2 at time moment t ≈ 0.015 ps. Finally, these
pulses continued to propagate and began to interact
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Fig. 2. Dynamics of population difference n(z, t) under the

action of bipolar single-cycle pulse 1 and unipolar subcycle
pulse 2 colliding at the center of a medium (at the point
z/λ0 = 2) at time moment t ≈ 0.015 ps. Calculation param-

eters are given in Table 1.
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Fig. 3. Dynamics of polarization P(z, t) under the action of

bipolar single-cycle pulse 1 and unipolar subcycle pulse 2
colliding at the center of a medium (at the point z/λ0 = 2)

at time moment t ≈ 0.015 ps. Calculation parameters are

given in Table 1.
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with polarization waves that run towards them and
that were induced a moment before by the preceding
pulses. As a result, in both halves of the medium, to
the right and to the left of the point at z/λ0 = 2, gratings

of the population difference with a period of λ0/2

(Fig. 2) and polarization waves appeared (Fig. 3).
After that, the pulses came out of the medium, were
“reflected” from the boundaries of the integration
region and were sent again to the medium. They
entered the medium at the time t = 0.04 ps. In Figs. 2
and 3, the moments of entrance of pulses are indicated
by the arrows with numbers 3 and 4. At the time
moment t ≈ 0.045 ps, the pulses overlap with each
other in the medium. Prior to this time moment, the
pulses induced polarization waves in different parts of
the medium, which traveled in opposite directions.
This is clearly seen in Fig. 3 in the form of a character-
istic zigzag structure on the left and on the right of the
point at z/λ0 = 2.

These polarization structures, running in opposite
directions in different parts of the medium, vanished
as soon as pulses overlapped each other at the point
z/λ0 = 2 at t ≈ 0.045 ps. After the overlap of the pulses

in the medium, quasi-harmonic gratings of the popu-
lation difference appeared in the medium on the left
and on the right of the point of collision z/λ0 = 2 of the

pulses, as well as more complex structures of polariza-
tion waves. Figure 4 shows these gratings after the
emergence of the pulses from the medium at the time
moment t = 0.056 ps.

Therefore, the dynamics of light-induced struc-
tures upon collision of a subcycle unipolar pulse with
a single-cycle bipolar pulse is similar to the dynamics
of light-induced structures that arise upon collisions
of subcycle pulses [51] and upon propagation of
OP
extremely short pulses that do not overlap in the
medium [46–50]. The only exception is the above-
mentioned interesting fact about the appearance of
regions in the medium in which polarization waves
that travel in opposite directions exist. This fact was
not mentioned in previous studies [46–50].
TICS AND SPECTROSCOPY  Vol. 124  No. 4  2018
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Fig. 5. Distributions of (a) population difference n(z, t),

(b) polarization P(z, t), and (c) field. The medium in (c) is

located between the points at z = 0 and z = 4λ0. 
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THE INFLUENCE OF THE RADIATION 

OF POLARIZATION WAVES ON THE SHAPE 

OF PASSING PULSES

In the preceding example, as well as in [46–51], the

concentration of atoms was so small that the excitation

pulses remained almost unchanged during their prop-

agation. However, generally speaking, induced travel-

ing polarization waves may emit light after the trans-

mitted pulse. Such a possibility was mentioned in [50],

however, because the concentration of absorbing

atoms is low, the magnitude of the emitted field is neg-

ligibly small and pulses propagating in the medium

hardly change their shape. It is interesting to consider

the case when the medium is optically dense. In the

following example, the particle concentration was

taken to be N0 = 5 × 1019 cm–3. The remaining param-

eters remained the same as in Table 1.

The behaviors of the inversion, the polarization,

and the field are presented in Figs. 5a–5c, respec-

tively. Pulses enter the medium at time moment t =

0.01 ps and immediately begin to change their shape

upon propagation. Polarization waves created by

pulses (Fig. 5b) emit light after the transmitted

impulses, and it begins to affect the shape of the trans-

mitted pulses. This leads to spreading of pulses as they

propagate. In this case, the amplitude of the pulses

decreases during their propagation; therefore, the

inversion does not change significantly (Fig. 5a) and

harmonic gratings are not formed. In the medium, a

complex energy exchange between the field and the

medium is observed. The spatial distribution of the

field and the distribution of the polarization and the
OPTICS AND SPECTROSCOPY  Vol. 124  No. 4  2018
inversion of the medium at the time moment t =
0.025 ps are shown in Fig. 6.

Interestingly, this effect of spreading of extremely
short unipolar subcycle pulses is similar to the effect of
formation of so-called “zero-area pulses” (0π pulses)
[63, 64]. It is well known that, when a pulse with small
area Θ, which is smaller than π, and with a short dura-
tion, which is shorter than relaxation times T1 and T2,

propagates in a resonant medium, a zero-area pulse
(0π pulse) is formed. This effect has been known for a
long time for the case of long pulses, in which case the
notion of the pulse area is applicable [63, 64]. If a
pulse with the initial area Θ < π propagates through a
medium, then, in accordance with the McCall–Hahn
area theorem, its area will tend to zero while the pulse
propagates through the medium [9, 15, 16]. In this
case, the envelope of the pulse becomes alternating-
signed while propagating through the medium, and
the area of the pulse tends to zero. This occurs because
the energy absorbed at the leading edge of the pulse is
reemitted by the medium back into the field, but in an
antiphase. Such 0π pulses were predicted theoretically
in [63] and were observed experimentally in the case of
relatively long pulses [64]. A similar dynamics is
observed in the case of bipolar extremely short single-
cycle pulses, as was shown in [41].

COLLISION OF THREE UNIPOLAR 
SUBCYCLE PULSES IN A RESONANT 

MEDIUM

Let extremely short pulses be sent into a medium
from the left and from the right (Fig. 1). The field that
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Fig. 7. Distributions of (a) population difference n(z, t) and

(b) polarization P(z, t) upon excitation of a medium by a
field of three unipolar subcycle pulses (7) and (8). The
relaxation time is T2 = 5 ps. The delay time is τ4 = 10τ1p.

The remaining parameters are the same as in Table 1. The
arrows indicate the propagation directions of the pulses. As
in preceding examples, the pulses are overlapped approxi-
mately at the center of the medium (at the point z/λ0 = 2)

at the time moment t ≈ 0.015 ps. 
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was sent from the left was taken as two subcycle unipo-
lar pulses with some delay between them,

(7)

The field that was sent from the right also had a
Gaussian profile of a unipolar subcycle pulse (as pre-
viously, the profile of the field on the left or the right
boundary of the medium is meant),

(8)

The concentration of atoms absorbing pulses was
taken to be small, as in the table, the relaxation time
was T2 = 5 ps, the amplitude of the field was E0 =

90000 esu, and the delay was τ3 = 10τ1p. The remain-

ing parameters were the same as in Table 1.

Figure 7 illustrates the dynamics of (a) the inver-
sion and (b) the polarization in this case. In this exam-
ple, the pulses are overlapped in the medium only
once, and, as in the preceding examples, at the center
of the medium (at the point z/λ0 = 2) and at the time

moment t ≈ 0.015 ps, and they do not return to the
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medium no longer. As can be seen from Fig. 7a, after

the overlapping of the pulses, a harmonic grating of

the population inversion is formed in the right half of

the medium. This example is interesting in so far as, as

soon as the pulses leave the medium, harmonic polar-

ization waves with different spatial frequencies are

formed in its left and right halves (with periods λ0 and

λ0/3, respectively; see Figs. 7 and 8b after the moment

of overlap of the pulses at t ≈ 0.015 ps). These polariza-

tion waves, which travel in opposite directions, are

clearly seen in Fig. 8, which shows the instantaneous

distributions of the (a) inversion and (b) polarization

at the moment of time after the pulses left the medium.

Correspondingly, the phase velocities of these waves

are c and c/3.

Therefore, the example considered above illus-

trates the possibility of creating situations in which the

state of a medium in its left half differs from its state in

the right half. As can be seen from the preceding sec-

tion, at large concentrations of atoms, the contribu-

tion of the radiation of traveling polarization waves

becomes significant, which leads to a change in the

shape of passed pulses. Correspondingly, it should be

expected that, at high concentrations, the pattern

shown in Figs. 7 and 8 will be blurred. This circum-

stance is confirmed and illustrated by Fig. 9. Exci-

tation pulses will also spread, as is illustrated by

Figs. 9c and 10, which show the distribution of the

field in the medium in free space after the pulses left

the medium.
TICS AND SPECTROSCOPY  Vol. 124  No. 4  2018
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Fig. 9. The same as in Fig. 6 but at a larger concentration

of atoms: N0 = 5 × 1019 cm–3. The remaining parameters

are the same as in Fig. 6. The medium in (c) is located

between the points at z = 0 and z = 4λ0. 
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CONCLUSIONS

In this work, based on numerical modeling, we
examined the dynamics of light-induced structures of
polarization and inversion in a resonant medium upon
propagation of overlapping bipolar single-cycle and
unipolar subcycle attosecond pulses that coherently
interact with the medium. We considered the cases of
two overlapping pulses when the concentration of
absorbing atoms is either small or comparatively large.
In the first case, propagating pulses almost retain their
shape, and the dynamics of light-induced structures of
polarization and population inversion is similar to that
previously studied by the authors of [46–51]. The con-
sidered polarization waves and the population-differ-
ence gratings can remain in the medium at times com-
parable to relaxation times. In the case of an optically
dense medium, it becomes significant that polariza-
tion waves induced by the pulses become sources of
OPTICS AND SPECTROSCOPY  Vol. 124  No. 4  2018
electromagnetic radiation that propagates after the
passed pulses. This radiation is added to the field of
the incident pulses and leads to the loss of subcyclicity
and spreading.

Finally, we considered the case of three colliding
video-pulses in a medium. In this case, as our calcula-
tions show, the state of the medium in its left half can
differ from its state in the right half. For example,
waves of polarization with threefold different spatial
periods arise in them. These waves travel in opposite
directions with significantly different phase velocities.

The considered examples show another possibility
of ultrafast control of the medium state on the times-
cale of pulse duration. These circumstances can be
used in ultrafast and nonlinear optics to create optical
switches, laser-radiation deflectors, and short-term
memory cells. Diffraction of light by similar structures
can be used to measure relaxation time T2 in different

media, which was shown previously in the case of
using long (nanosecond) pulses [55, 56].

To experimentally observe these effects, gases or
quantum dots with long polarization relaxation time
T2 may be used. Quantum dots are a most suitable

medium, since they have a discrete structure of levels,
similarly to atoms, and they possess large transition
dipole moments (dozens of Debyes). At low tempera-
tures, polarization relaxation times T2 can reach tens

or hundreds of nanoseconds in them [65].
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