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Abstract—Collisions of unipolar subcycle pulses in a nonlinear resonant medium that coherently interact
with it are studied theoretically. The dynamics of spatial polarization structures and population difference
that the pulses induce in the medium are analyzed. A surprising feature is that the medium is capable of
“remembering” the result of the interaction with the pulses and their collisions during times comparable to
the polarization relaxation time. An analysis of the dynamics of light-induced structures makes it possible to
judge the parameters of subcycle pulses at the times longer than the pulse duration, which, in the future, can
be useful in their detection.

DOI: 10.1134/S0030400X17100046

INTRODUCTION

At present, ultrashort and extremely short pulses of
femtosecond and attosecond durations have been
obtained [1–3]. Their generation gave birth to attosec-
ond science, which made it possible to investigate and
control the dynamics of wave packets of matter [4, 5],
to control electron beams with a subcycle resolution
[6], etc.

Coherent interaction of extremely short pulses with
a resonant medium is of independent interest [7–27].
Coherent interaction manifests itself in the appear-
ance of Rabi oscillations, and it arises if duration of a
light pulse  is shorter than the relaxation times of the
population difference and the polarization,  and ,

 [28, 29]. At the times that are comparable
with , the state of the electromagnetic field, as well
as of the matter, can be modified without losses.
Coherent interaction of light with matter manifests
itself in the effect of self-induced transparency, which
consists of the possibility of loss-free propagation of a
pulse in a resonantly absorbing medium (  pulse)
[30]. Another distinctive feature of the coherent inter-
action is the ability to store information in a medium

in the phase of the field without losses at the times
shorter than relaxation times. It is evident that the use
of the coherent interaction opens new prospects in
optics and photonics, since devices based on it may
have comparatively high speeds of operation and low
losses. In a recent review [31], these devices were
called “coherent photonic devices.” Indeed, in [32–
40], the possibility of mode locking in lasers based on
the coherent interaction (self-induced transparency
mode-locking) was studied. The authors of [11–15]
showed the possibility of generating attosecond soli-
tons in single-mode optical fibers filled with amplify-
ing and absorbing centers as a result of simultaneous
action of self-induced transparency and generation of

 pulses. Rabi oscillations have been observed experi-
mentally in different systems, in particular, in experi-
ments with single quantum dots and upon propagation
of a short pulse in a medium of quantum dots [41–46].
At present, the coherent propagation of long [28–30,
47, 48] and extremely short pulses in resonant media
has been well studied [7–27].

Recently, another interesting phenomenon has
been predicted, which arises as a result of the coherent
interaction of extremely short pulses with a resonantly
absorbing medium [16, 17]. It consists of the possibil-
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ity of inducing, erasing, and ultrafast controlling spa-
tial gratings of the population difference by means of a
sequence of extremely short pulses that do not overlap
in the medium. Commonly, these gratings are formed
in the medium as a result of interference of two or
more overlapping quasi-monochromatic light beams
[49]. However, if the interaction with matter is coher-
ent, no beam overlap is required. Gratings may arise
due to the fact that the medium “remembers” the
action of a preceding pulse; i.e., when a field is no lon-
ger present, the polarization of the medium still
behaves itself as if the field were present. In this case,
the medium acts as an “information keeper” of a sort
about passed pulses.

Coherent interaction of extremely short pulses with
a resonant medium has been studied mainly in the
case of bipolar pulses. Bipolar pulses have zero electric
area (integral of the electric-field strength with respect
to time at a given point in space). Recently, the possi-
bility of obtaining unipolar subcycle pulses attracts
attention, see, e.g., [7, 11–15] and reviews [50, 51].
Each of these pulses contains only one half-wave of
the field, and their electrical area can be nonzero.
Application of unipolar pulses, compared to bipolar
ones, has a number of advantages, not only because of
their short duration, but also due to the fact that the
occurrence of a constant component makes it possible
to efficiently transfer momentum to charged particles.
This makes important the use of unipolar pulses for
controlling the dynamics of wave packets and acceler-
ation of charged particles (see recent reviews [50, 51]
and references therein). Although it is sometimes
doubted whether unipolar and subcycle pulses can be
obtained, in a number of cases, such pulses can exist in
the form of soliton solutions of equations of nonlinear
optics, see references in [50, 51] upon reflection of a
single-cycle pulse from a thin metal layer or dielectric
in the one-dimensional case [52] and in a quadrati-
cally nonlinear medium [53]. Almost unipolar pulses
have been obtained experimentally in the terahertz
range [54], and they have been used to control the
dynamics of Rydberg atoms [55]. Recently, new meth-
ods have been proposed for generating unipolar pulses
in Raman-active media [56–58] and in media with
nonlinear field coupling [59, 60].

Despite of these advantages of unipolar impulses,
their coherent interaction with the medium has been
poorly studied in the literature. Investigations that
have been performed [7–27] were mainly aimed at
studying coherent interaction of bipolar pulses with a
resonant medium and a possibility of obtaining unipo-
lar subcycle pulses in the form of solitons upon propa-
gation of bipolar pulses in a nonlinear medium [7, 11–
15, 18, 19, 50]. In a number of works, collisions of
bipolar extremely short pulses of self-induced trans-
parency in a resonant medium have been examined
(see [23–26] and references therein). In [27], colli-
sions of unipolar subcycle pulses in a single-mode

optical fiber containing amplifying and absorbing par-
ticles were studied.

Taking into account the aforesaid, in this paper, we
will study collisions of unipolar subcycle pulses in a
resonantly absorbing medium under conditions when
their interaction with the medium is coherent.
Recently, it was shown that such pulses, if they do not
overlap in the medium, are capable of inducing in it
spatial polarization structures and population differ-
ences that can exist in the medium during times com-
parable to  [61, 62]. In this work, we will study the
dynamics of these structures in a medium upon colli-
sions of unipolar subcycle pulses in it. As will be shown
below, the study of the dynamics of these structures
can be used in the future to extract information on
passed pulses.

THE THEORETICAL MODEL 
AND THE SYSTEM UNDER CONSIDERATION

To study collisions of subcycle unipolar pulses in a
resonant medium, we used the system of Maxwell–
Bloch equations. Because exciting pulses are of a short
duration, we do not use the approximations of slowly
varying amplitudes and rotating waves. The medium is
described in the two-level approximation using the
density-matrix formalism. This system of equations
has the form

(1)

(2)

, (3)

. (4)

Here  is the frequency of the resonant transition of
the medium (  is the wavelength of the
resonant transition),  is the transition dipole
moment,  is the population difference in the absence
of an electric field (for the absorbing medium, ),
P is the polarization of the medium, N0 is the concen-
tration of active centers, E is the electric-field
strength, c is the speed of light in a vacuum, and  is
the reduced Planck constant.

Equations (1) and (2) describe the evolution of the
off-diagonal element of the density matrix,  and the
difference between the diagonal elements of the den-
sity matrix, n. Quantity n has the meaning of the pop-
ulation difference (inversion) between the ground and
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excited states of the two-level system. Using the off-
diagonal element of the density matrix, polarization
(3) of the medium is calculated, which serves as a
source of the field in the wave equation (4). The sys-
tem (1)–(4) of the Maxwell–Bloch equations was
solved numerically. The Bloch equations (1) and (2)
for the density matrix were solved by the fourth-order
Runge–Kutta method. The wave equation (4) was
solved by the method of finite differences.

The length of the total integration range was L =
. The resonant medium was arranged along the z

axis in the center of the range between the points at
 and z2 = 8λ0. To create a sequence of unipolar

pulses, zero boundary conditions for the values of the
field at the ends of the integration range were taken in
the numerical calculation so that the pulses reflected
from the boundaries and propagated back.

Subcycle pulses of the same amplitude were sent
from the left and right to the medium. The field at the
left end of the integration range  was taken in
the form

. (5)

λ012
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At the right end , the field of the pulse sent
from the right to the left also had a Gaussian profile,

. (6)

Here,  are the delays which were chosen such that
the pulses would collide in the center of the medium.
The amplitude of all pulses, , was chosen to be the
same.

THE DYNAMICS OF LIGHT-INDUCED 
STRUCTURES FORMED AS A RESULT 

OF PULSE COLLISIONS

For simplicity, as in [16, 17, 59, 60], we consider
the case in which the amplitude of all the pulses is such
that the pulse saturates the medium (  pulse). For
extremely short pulses, the notion of the “pulse area,”
which was introduced for long pulses, for which the
approximations of slowly varying amplitudes and
rotating waves are valid, is no longer applicable [16, 17,
20–26]. Figures 1 and 2 show the evolution of the
dynamics of the population difference and the polar-
ization that form upon propagation of subcycle pulses
(5) and (6) in the medium.

The results of our numerical simulation showed the
following dynamics of the system: Both pulses satu-
rated the medium and left traveling polarization waves
behind them (Figs. 1, 2). In the center of the medium,
near the point at , the pulses collided, caus-
ing a burst of the population difference near it. Near
this point, the medium was transferred to the ground
state (Fig. 1). In the collision region of the pulses, a
region was formed in which particles were transferred
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Fig. 1. Dynamics of population difference n(z, t) under the
action of unipolar subcycle pulses colliding at the center of
the medium (at the point ). The parameters of
the calculation were as follows: The wavelength of the res-
onant transition was  nm (the period of eige-
noscillations was  fs), the length of the
medium was , the transition dipole moment was

 = 20 dB, the concentration of two-level atoms was

 cm–3, the relaxation times were
ns, the amplitude of unipolar pumping pulses

was E0 =  esu, the duration of each pulse was
= 0.38 fs ( ), and the delays were .

4.0
0.8
n

0.6
0.4
0.2
0
−0.2
−0.4
−0.6
−0.8

z/λ0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.05
t, ps

0.040.030.020.010

λ =0/ 2z

λ =0 700
= λ =0 0 / 2.33T c

= λ04mL
12d

= × 14
0 5 10N
= =1 2 1T T

× 49.55 10
τ p 0/6T τ = τ = τ1 2 2.5 p

Fig. 2. Dynamics of polarization P(z, t) under the action of
unipolar subcycle pulses colliding at the center of the
medium (at the point ). The parameters of the
calculation are the same as in Fig. 1.
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to the ground state (the white region near the point at
 in Fig. 1). The length of this region is on the

order of the spatial length of the pulses. Therefore, by
determining the length of the inversion structure in
this region, one can obtain information on the dura-
tion of passed pulses.

Furthermore, as a result of the interference of
pulses with the polarization waves, the pulses propa-
gating on the right and on the left of the center of the
medium induced a population grating. Complex
polarization structures in the form of standing waves
also appeared (Fig. 2). After that, the pulses left the
medium and the “recorded information” remained in
the medium in the form of the light-induced spatial
structures. Then the pulses were reflected from the
boundary of the integration range and were sent to the
medium again. The medium still remembers the result
of their preceding action. The pulse that propagates on
the left of the point at  in the direction from
the left to the right erases the population grating (see
weak oscillations in Fig. 1). The same occurs on the
right of the point at  upon propagation of the
second pulse. Then, the pulses collided again at the
point at , after which they propagated to the
right and to the left of this point, now inducing non-
harmonic inversion and polarization structures.
Therefore, it is seen that the use of the coherent inter-
action makes it possible to create light-induced polar-
ization and inversion structures, which can be stored
in the medium within times until the coherence of the
medium becomes destroyed (times shorter than  and
T2). It is evident that a decrease in the polarization
relaxation time leads to a smearing of light-induced
structures. This circumstance is illustrated by Fig. 3,

λ =0/ 2z

λ =0/ 2z

λ =0/ 2z

λ =0/ 2z

1T

which shows the dynamics of spatial inversion struc-
tures at  fs.

CONCLUSIONS
In this work, we showed theoretically the existence

of the dynamics of light-induced polarization and
inversion structures in a resonant medium upon colli-
sion of unipolar subcycle pulses coherently interacting
with the medium. These polarization and population
difference gratings can exist in the medium within
times comparable to relaxation times, until the coher-
ence of the medium is destroyed.

Traveling waves of the medium polarization can be
considered as relativistic mirrors and can be used to
convert the frequency of reflected light pulses [63],
because these mirrors can move with relativistic veloc-
ities, unlike ordinary “material” mirrors. It can be
expected that, experimentally, the effect may be stud-
ied in gases or quantum dots. Quantum dots possess
large transition dipole moments (dozens of Debyes).
At low temperatures, the relaxation polarization times
may reach tens to hundreds of nanoseconds [64].

The examined effect can be used to create optical
switches and sources of short-term information stor-
age (memory cells). Reading of light-induced struc-
tures may be used in the future to extract data on
parameters of extremely short pulses.
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