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Abstract—The one-dimensional dynamics of particles that move between a stationary and a harmonically
oscillating mirror have been analyzed analytically and numerically taking into account inelastic collisions of
particles with mirrors. It has been shown that, in such “billiards,” in contrast to the case of elastic collisions,
asymptotically stable periodic regimes are established, including the regime of periodic sticking of a particle
to the oscillating mirror, as well as regimes of dynamic chaos.
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INTRODUCTION

Control of motion [1, 2] and localization of neutral
atoms in magnetic, electric, laser, and laser–magnetic
fields [3] have both important basic and applied signif-
icance. In particular, atomic mirrors can be created
due to the reflection of atoms from an inhomogeneity
of the intensity of laser radiation upon its total internal
reflection at the dielectric boundary [4–8]. In this
case, schemes with two mirrors, between which atoms
balance, and with one mirror, in which atoms period-
ically return to the mirror due to the gravitational field,
are both realistic [9].

Because the mass of atoms is considerable and the
time of their collision with the mirror is short if the
velocity of their incidence on the mirror is not too
slow, the motion of atoms can be described classically
and a collision can be considered as a short-term
impact. It is then allowable to speak of the trajectory of
an atom (within the limits imposed by the quantum-
mechanical principle of uncertainty). For elastic colli-
sions, these trajectories are described in terms of the
well-developed theory of billiards [10–13], which can
be either static (with a stationary configuration of mir-
rors) or dynamic (with moving mirrors). We note that
the reflection of classical particles from moving mir-
rors forms the basis of the Fermi acceleration effect
[14], which was proposed to explain significant ener-
gies of cosmic particles and which, along with Ulam’s
investigation [15] of elastic reflections of particles
from oscillating mirrors, significantly influenced
modern notions of dynamic chaos and the founda-
tions of statistical physics [11, 13].

Further, we restrict ourselves to the model of one-
dimensional motion of a particle between a stationary
and a harmonically oscillating mirror. It was shown as
early as in ground-breaking work [15] that, depending
on the parameters, this motion can be either periodic
or chaotic. Periodic regimes have a neutral stability;
i.e., small deviations of the initial conditions lead to
small perturbations, which do not decay with increas-
ing time. Interest is also presented by the regime of
consecutive multiple reflections of a particle from one
and the same oscillating mirror, which has been found
and studied in [16, 17]. Under “ideal” conditions, this
regime turns into a sticking regime, in which the par-
ticle is localized on the mirror during the half-period
of its oscillations.

The dynamic regimes of billiards have been much
less studied in the case of inelastic reflections of parti-
cles from a mirror, although inelastic ref lection occurs
for atoms as well, and it can be used for their cooling
[9, 18]. At the same time, energy losses upon reflec-
tion change qualitatively the dynamics of the particle
motion, leading to the possibility of absolutely stable
regimes with attractors, for which small perturbations
decay with time [19]. Although some portion of the
kinetic energy of a particle is lost as a result of its
inelastic reflection, this loss can be compensated by
the energy inflow from the oscillating mirror. For
these reasons, it is of interest to analyze this dynamics
in more detail, including the sticking regime, which is
the subject of this paper.

Below, we will initially consider the reflection of a
particle from a single oscillating mirror, paying the
main attention to the regime of (single) sticking. Then,
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different scenarios of the particle motion between a
stationary and a harmonically oscillating mirror will
be examined, taking into account inelastic collisions
of a particle with the stationary mirror. The last section
is devoted to the analysis of periodic sticking. General
inferences are presented in Conclusions.

REFLECTION OF A PARTICLE
FROM AN OSCILLATING MIRROR

Let us initially consider the reflection of a particle
from a single mirror that oscillates with frequency Ω
and amplitude , where  is a quantity with the
dimension of length and μ is a (small) dimensionless
parameter. Then, the coordinate of the mirror is given
by . We introduce dimensionless
time  and dimensionless coordinate of the mir-
ror . For particle velocity
V, we also use the dimensionless form .
Naturally, for the particle to collide with the mirror,
the particle velocity should be directed toward the
mirror.

Velocity of incidence of a particle v is related to
velocity of its reflection  as

(1)

(the dot denotes the time derivative). The restoration
coefficient is q = 1 if the collision is absolutely elastic
and is q = 0 if the collision is absolutely inelastic (stick-
ing) [20]. We assume that 0 < q <1.

As was shown in [17] for the case of elastic reflec-
tions, if the velocity of a particle incident on an oscil-
lating mirror is not too high (compared to the maxi-
mum velocity of the mirror motion), the particle can
collide with the mirror not one but several times before
finally moving away from it (we assume that processes
of adsorption of particles by the surface do not occur).
At a certain selection of conditions, the number of
consecutive rereflections can be arbitrarily large (the
“sticking regime”). This can be seen from the expres-
sion for the time interval between consecutive colli-
sions: . Indeed, after the mth reflection
of the particle at moment of time , the trajectory of
the particle is . Corre-
spondingly, the equation for determining the time of
the next collision has the form

. (2)

This equation is universal in the sense that it does
not contain any parameters of the scheme. Applying
the Taylor expansion in (2) and retaining only the term
cubic in  in it, we find

. (3)
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As in [17], interval  is small if quantity
 is small. Therefore, an “ideal” sticking

regime is achieved when the particle “collides” with
the mirror “receding” with unit velocity  at time
moment , i.e., when the particle velocity is
equal to the instantaneous mirror velocity. It is this
equality of velocities, as well as the subsequent slowing
down the motion of the mirror, that determines the
occurrence of the sticking regime. Under ideal condi-
tions, the number of collisions of the particle with the
mirror is infinitely large and the particle f lies away
from the mirror in half the oscillation period (at
moment ) with the same kinetic energy (the
rebound velocity is ). At small deviations
from the ideal conditions at larger values of the veloc-
ity and moments of time at , the number of colli-
sions becomes finite. At , i.e., upon damping,
time intervals between collisions shorten compared to
time intervals in the case of elastic rereflections,
because velocity of an inelastically reflected particle 
is larger than velocity  of an elastically reflected par-
ticle:

at , (4)

where t is the moment of collision of the particle with
the oscillating mirror. As a result, under these condi-
tions, the particle trajectory in the case of inelastic
reflections is closer to the trajectory of the mirror and
the conditions of realization of the sticking regime are
mirror-favorable.

In our numerical calculations, moment of sticking
of the particle  (with respect to harmonic oscilla-
tions of the mirror, ) and the corre-
sponding number of its collision  ( ) were
determined with a specified accuracy such that the
values of dimensionless velocities of the particle and
the mirror normalized to  would differ from each
other by no more than 10–13:

. (5)

Upon implementation of this condition, we
assume that the particle moves along with the mirror
up to moment of slowing down of the latter at ,
after which the particle moves in the reverse direction
with unit velocity  (irreversible adsorp-
tion does not occur).

The described situation is presented in Fig. 1 for
the initial value of the particle velocity  and

. In this case, for the moment of convention-
ally “absolute” sticking, the time values are  =
0.09515 and, for quantity K, which denotes the num-
ber of rereflections of the particle in the near-mirror
region, including the moment of the absolute sticking,
we have . For , we have a similar
dynamics with  and . Corre-
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spondingly, an increase in damping upon reflection
leads to a decrease in the number of particle rereflec-
tions in the near-mirror region of the region up to the
moment of absolute sticking, while the absolute stick-
ing itself occurs at a time moment earlier than at
weaker damping.

Depending on time of the first collision or the ini-
tial phase of the mirror oscillations  the particle can
either decrease or increase its kinetic energy as a result
of collisions. As was shown in [17], the dependence of
the difference between the moduli of the final velocity
of the particle after its reflection from the oscillating
mirror and the initial particle velocity on the phase of
mirror oscillations, , at the moment of time at which
the (dimensionless) coordinate of the particle is

 may have jumps, and, while the function
itself is continuous, its derivative has discontinuities.
They are caused by a change in the number of succes-
sive reflections of the particle from the mirror upon a
change in the phase . Figure 2 shows the results of
calculations for different values of damping. At 
(curve 1), segments with a positive derivative (indi-
cated by the Roman numeral I) correspond to regimes
of a single reflection. Segments with a negative deriv-
ative (indicated by the Roman numeral II) correspond
to regimes of a double reflection. At  (curve 2),
the corresponding dependence has a jump and a dis-
continuity in the derivative, but the absolute value of
the jump decreases compared to the case of elastic
reflections. Similar discontinuities also appear upon
variations in the initial velocity of the particle.

0t

0t

= −0 1pz

0t
= 1q

< 1q

MOTION OF A PARTICLE 
BETWEEN A STATIONARY 

AND OSCILLATING MIRROR

For this motion, parameter μ cannot be eliminated
by renormalization. In this case, apart from the
dimensionless time , we will introduce another
dimensionless coordinate of the particle: z(t) =

, where L0 is the time-averaged distance
between the mirrors. The dimensionless coordinate of
the oscillating mirror is then zw(t) =  = 1 +
μcost. For particle velocity V, we will also use the
dimensionless form: . We assume that the
reflection from the stationary mirror (z = 0) is elastic,
while, from the oscillating mirror, the particle is
reflected inelastically.

Regimes of a motionless particle located beyond
the zone of mirror oscillations prove to be unstable,
since the acquirement of even a small initial velocity by
the particle leads to its reflections from the mirrors
with an increase in the kinetic energy. For stationary
regimes without rereflections (with the unvaried

Ω →t t
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= 0/V Lv

Fig. 1. The solid curve shows the trajectory of a mirror,
, while the dashed curve shows the trajectory

of a particle; dots indicate moments of collision of the par-
ticle with the mirror. The parameters are as follows:

, q = 0.95, , and .
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Fig. 2. Dependences of the difference between the moduli
of the initial and final velocities of a particle (v0 and ,
respectively) reflected at the exit from the zone of mirror
oscillations (after possible multiple reflections within a
half-period) on the initial phase of the oscillating mirror,
t0, for  (solid curve 1) and  (dashed curve 2);

. Roman numeral I indicates segments with a
positive derivative, which correspond to the regimes of sin-
gle reflection from the mirror, while Roman numeral II
indicates segments with a negative derivative, which corre-
spond to the regimes of double reflection.
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kinetic energy of the particle), assuming  in
(1), we find

. (6)

Because , then . For stationary regimes
with collisions of the particle with the mirror in N
periods of its oscillations at , we have

(7)

while, at ,

. (8)
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From this, we obtain the following equation for
:

. (9)

The solution of this equation is

(10)

and the inequality

(11)

should be implemented.
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Fig. 3. Dynamics of setting up of a steady-state regime of motion of a particle between oscillating inelastic and stationary elastic
mirrors for , , and : (a) dependence of the particle velocity on the number of collision with the sta-
tionary mirror; (b) setting up of the Lyapunov exponent in relation to the number of reflections, ; and (c) phase portrait.
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Numerical calculations confirm the validity of for-
mula (10) and restriction (11).

Figures 3–7 present calculation results for different
values of the parameters of the problem. Thus,
Figs. 3–5 show typical dependences for the resto-
ration coefficient q = 0.99. In this case, the initial
phase of the process, i.e., the phase of the mirror oscil-
lations at the moment of the first reflection of the par-
ticle from the stationary mirror, is . Figure 3a
presents the dependence of the particle velocity on the
number of collision at the moment of reflection of the

=0 0t

particle from the stationary mirror for  and
= 0.312. In this case, a regime with a single (in

modulus) value of the particle velocity is established.
Figure 3b shows the results of setting up of the Lya-
punov exponent, which characterizes the rate of reces-
sion of close trajectories in the phase space [2] and is
defined as

(12)

Here, n is the number of reflections from the sta-
tionary mirror. Primes mark the velocities and ordi-
nates of the particle at the moment of the nth collision
with the oscillating mirror after the nth reflection from
the stationary mirror for the (displaced) trajectory in
the phase space with coordinates ( , ), the initial
value of the velocity for which differs by dv from the
initial value of the velocity for the main trajectory
(under study) for the same initial phase of oscillations
of the mirror ( ). The figure demonstrates
the setting up of a negative value of the Lyapunov
exponent. Figure 3c presents the phase portrait of the
corresponding process of setting up of the stationary
regime. The coordinates of points on it correspond to
position  of the particle in the near-mirror region
(region of mirror oscillations, ) and veloc-
ity  of the particle at the moments of its collisions
with the oscillating mirror. The figures on it enumer-
ate several first collisions. It is significant that this sta-
ble regime is an attractor; i.e., small initial deviations
from corresponding asymptotic values at long times
exponentially decrease.

Under the conditions of Fig. 4 (smaller amplitude
of mirror oscillations and initial particle velocity),
after an irregular transient process, a periodic regime
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is established in which 15 reflections from the station-
ary mirror occur during 45 oscillations of the mirror.

Finally, under the conditions of Fig. 5, a regime of
dynamic chaos is observed. This is confirmed by a
positive value of the Lyapunov exponent (Fig. 5b),
which corresponds to an exponential recession of tra-
jectories with close initial conditions.

In Fig. 6, for steady-state processes, the smallest
number of periods, , during which the dynamic
situation is repeated, is shown as a function of initial
velocity . Results are presented for different values
of  with the initial phase of mirror oscillations being

. As is seen, if the value of the velocity is small,
 < 0.5, there is a rather wide “window” of values of
 for which the smallest number of periods is unity,

 = 1. As  increases, this window widens. At
larger values of the velocity ( ), relatively narrow
windows with this value  appear, which
widen with increasing . For different , the stepwise
dependence , apart from unity values

 = 1, contains different values ,
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which are inherent in the given value of . For exam-
ple, at , there are additional steps with

= 9 and ; at , there are steps
with  = 6 and ; and at ,
there are steps with .

THE FEASIBILITY OF THE MULTIPLE 
REPETITION OF THE STICKING REGIME

As was shown in [17], upon elastic reflection, ,
the multiple repetition of the sticking regime in the
two-mirror scheme is problematic. This is related to
the fact that, upon elastic reflections in the region
passed by the oscillating mirror, the particle is ulti-
mately reflected from the oscillating mirror at a rela-
tive moment of time that is different from . In con-
trast, upon inelastic ref lection in the case of “abso-
lute” sticking, the particle is detached from the mirror
with a high accuracy at the moment of time , and
this gives grounds for repeating the situation of the
absolute sticking.
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Fig. 6. Dependences of the smallest number of periods, , in steady-state processes over which the dynamic situation
repeating takes place in the case of damping with  on the initial velocity, , for μ = (a) 0.01, (b) 0.02, and (c) 0.03.
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This regime of the absolute sticking in the two-mir-
ror scheme is indeed possible under certain condi-
tions. In order for the situation of an almost complete
sticking to be repeated over  oscillation periods of
the mirror, the particle reflected at time moment 
at distance  from the stationary mirror with a veloc-
ity of  should collide with the mirror, in the ideal
case, over time interval , i.e.,  =
π(2N – 1), so that

. (13)

The described situation is demonstrated in Fig. 7,
which shows the dependences of the particle velocity
on the number of reflection from the stationary mirror
for different values of the parameters, as well as of

N
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The initial phase of the process was chosen such
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Figure 7 presents calculation results for  and
close values with the restoration coefficient being
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Fig. 7. Dependences of the velocity of a particle completely reflected from an oscillating mirror and the number of rereflections
in the near-mirror region on the number of collision with a stationary mirror at q = 0.95: (a) , ,
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The situation of the absolute sticking and its
repeating takes place if initial velocity  is rather close
to μ (slightly exceeds μ). Thus, for  at

 and at  (Fig. 7a), we have the
absolute sticking and its repeating. In this case, tabs =

 and K =
273, 24, 24, ....

Small deviations of the values of  toward 
ensure the condition under which the particle that was
reflected from the stationary mirror comes into con-
tact with the oscillating mirror at 
(i.e., at ), after which the sticking
is possible. At  and  = μ(1 +
0.01), the plot of the dependence of the velocity of the
particle after its reflection from the stationary mirror
on the number of the contact with it has a shape that is
similar to that in Fig. 7a. Here, tabs = 0.09515,

, ..., while K = 268, 285, 285,
.... If , the occurrence of the absolute sticking
to the oscillating mirror after the first contact with the
stationary mirror leads to a situation in which the par-
ticle escapes from the near-mirror region at a velocity
of  and, after the second reflection from
the stationary mirror, the collision of the particle with
the oscillating mirror occurs at  (i.e.,
at ). This leads to breakdown of
the absolute sticking phenomenon. Our calculations
confirm the absence of the absolute sticking at μ =

 and  (K = 287, 0, 0,
...) (Fig. 7b). An increase in the deviation of  toward

 leads to a situation in which there is no abso-
lute sticking. Figure 7c presents calculation results for
μ = , . It is seen from
this figure that there is no repeating of the absolute
sticking; in this case, . A periodic
regime is established.

CONCLUSIONS

Therefore, upon inelastic reflections of particles
from an oscillating mirror in a two-mirror trap, peri-
odic, stochastic, or sticking regimes can be estab-
lished, which are also well-known for the case of elas-
tic reflections. The difference lies in the fact that the
regimes become asymptotically stable, so that small
initial deviations from their «ideal» values decrease
with time. This means that, in the two-mirror scheme
with inelastic reflections, a regime can be established
in which not only the particle velocity is fixed (in mag-
nitude) (i.e., the monochromatization of the atomic
beam takes place), but also there is strict localization
of particles, which is determined by the oscillating
mirror. Thereby, dynamic traps provide additional

0v
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= μ +0 (1 0.01)v μ = μ ,4cr
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= …277, 8, 0, 0K

possibilities in localization of peaks compared to static
traps. Qualitatively, a similar behavior is known for
parametric generation of radiation pulses in a cavity
with a oscillating mirror [21–23], where localization
of formed pulses is caused by matching with the phase
of mirror oscillations.

The inelasticity of particle reflections from the
mirror also makes it possible to obtain a periodically
repeating sticking regime. In it, the particle is localized
on the oscillating mirror within a half of the oscillation
period, after which it f lies away toward the stationary
mirror, reflects off of this mirror, returns back to the
oscillating mirror and is localized on it again within
half of the oscillation period. In the case of elastic
reflections, periodic repeating of the sticking regime is
difficult, whereas an additional dissipative factor
ensures stability of this regime.
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