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Abstract—The quantum dynamics of the mean number of photons and quantum entropy of interacting
modes, as well as the Wigner function of the stationary state of the fundamental mode and the third subhar-
monic mode has been investigated for the intracavity third-subharmonic generation. It is shown that the
quantum dynamics of the system depends strongly on the nonlinear coupling coefficient between the modes.
It is also demonstrated that, in the steady-state limit, depending on the intermodal coupling coefficient, the
fundamental mode can be either in a pure coherent state, or in a squeezed state, or in a pure vacuum state.
The third subharmonic mode in the subthreshold regime of generation of this mode is in the vacuum state.
The Wigner function is squeezed over three sides of an equilateral triangle (squeezed vacuum). The quantum
entropy of this state is nonzero. It is also shown that the third subharmonic mode, depending on the nonlinear
coupling coefficient in the steady-state limit, can be localized in the three-component state with the same
probability of detecting a field in each coherent component of the state and with the presence of quantum-
mechanical interference between the state components. The mean number of photons in this state is smaller
than unity. Depending on the nonlinear coupling coefficient, the third subharmonic mode can also be local-
ized in the three-component state, which is a statistical mixture of three squeezed states.
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INTRODUCTION
The intracavity generation of subharmonics is a

simple and very interesting phenomenon for studying
the problems of quantum physics in optical systems.
From this point of view, the degenerate parametric
oscillator (or generation of the second subharmonic)
was thoroughly investigated by Wolinski and Carmi-
chael [1]. They showed (in the positive P representa-
tion [2], using adiabatic exclusion of the fundamental
mode from the Langevin equations of motion) that, in
the steady-state domain of interaction in this system,
one can obtain light either in a squeezed state or in a
superposition state of even type formed by two coher-
ent components. Then the quantum behavior of this
system was investigated by the Monte Carlo method
[3] in [4], where it was shown that entangled states of
light over a variable number of photons can be
obtained in this system by studying the correlation of
the f luctuations of the number of photons between
interacting modes. It was also shown in [4] (by analyz-
ing the dynamics of the quantum entropy and the
Wigner function of the state of field modes) that a two-
component state of the field of the second subhar-
monic mode (with the same probability of detecting
field in each component of the state) can be imple-
mented in this system at long interaction times. The
quantum entropy of this state is lower than the maxi-
mum entropy of the two-component state ln2, which

indicates the presence of quantum-mechanical inter-
ference between the coherent components of the state
of the subharmonic mode.

In this study, we investigate (using the Monte Carlo
method) the quantum dynamics of intracavity third-
subharmonic generation. The quantum dynamics of
the number of photons, the quantum entropy, and the
Wigner function of the interacting field modes is ana-
lyzed. It is shown that the dynamics of these quantities
depends strongly on the intermodal coupling coeffi-
cient. It is also demonstrated that three-component
state of the field of the third subharmonic mode with
the same probability of detecting field in each compo-
nent of the state can be implemented in this system. It
is shown that the quantum entropy of this state is lower
than the maximum entropy on the three-component
state ln3, which indicates the presence of quantum-
mechanical interference between the components of
the state of the third subharmonic mode.

NONLINEAR SYSTEM, BASIC EQUATIONS, 
AND CALCULATION ALGORITHMS

We model the generation of the third subharmonic
in a two-mode cavity. A nonlinear medium is placed in
the cavity, which is tuned to fundamental mode fre-
quency ω1 and third subharmonic mode frequency ω2
(ω1 = 3ω2). The fundamental mode is resonantly per-
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turbed by an external classical field. The equation for
the density matrix of this system can be presented in
the form

, (1)

where

(2)

(3)

Here,  and   are the annihilation and cre-
ation operators of photons of the fundamental mode
and third subharmonic mode, respectively;  is the
intermodal coupling coefficient, which is proportional
to the nonlinear susceptibility  of the medium; E is
the classical amplitude of the perturbing field at fre-
quency ; and   are the damping coeffi-
cients of interacting modes via cavity mirrors. The per-
turbing-field phase is omitted for simplicity in expres-
sion (2).

To study the quantum properties of the optical sys-
tem, we will calculate the Wigner functions of the
field-mode state. These functions are calculated in
polar coordinates ,  using the
formula [5]

(4)

Here,  are the elements of the density matrices of
the interacting modes in the Fock basis. The expres-
sion for  has the form

(5)

In the last expression,  are Laguerre polynomi-
als.

We will also investigate the quantum dynamics of
the mean number of photons of the field modes and
the dynamics of the quantum entropy Si(t) =

  of the fundamental and
subharmonic modes. The quantum entropy of the
field can be calculated using the numerical diagonal-
ization of the density matrices of these modes in the
Fock basis.
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Equation (1) for the density matrix of an optical
system can be solved by the numerical Monte Carlo
method [3]. In this method, the density matrix of the
system is presented as the mathematical expectation of
the density matrices of quantum trajectories, and each
of these matrices characterizes a pure state, which can
be found using some calculation algorithm:

(6)

Here, α is the trajectory number and N is the number
of independent quantum trajectories.

The algorithm of this method for calculating one
quantum trajectory in the case of intracavity third-
harmonic generation was reported in [6]. Since the
algorithm for calculating one quantum trajectory in
our problem is similar to the algorithm for calculating
the quantum trajectory in the case of intracavity third-
harmonic generation, it is omitted here.

The dynamics of the system is investigated for iden-
tical values of the mode damping coefficients in the
cavity ( ) in dimensionless time  and
with dimensionless parameters of the system,

, . All calculations are performed for
the evolution of the system from the initial vacuum
state of the fundamental mode and the third subhar-
monic mode. Each dynamics of the mean number of
photons, mode quantum entropy, and Wigner func-
tion is obtained using 1000 independent quantum tra-
jectories of the optical system. The dynamics of the
system is analyzed for the amplitude of fundamental
mode perturbation .

THE DYNAMICS OF THE SYSTEM
IN THE CASE OF WEAK INTERMODAL 

COUPLING

In this section, we consider the quantum dynamics
of the system for a small intermodal coupling coeffi-
cient: .

Figure 1 shows the dynamics of the numbers of
photons of the fundamental mode (curve a) and the
third subharmonic mode (curve b) for the above-men-
tioned case. The number of photons of the fundamen-
tal mode significantly increases and greatly exceeds
unity for long interaction times (the steady-state value
of the number of photons of the fundamental mode in
this case is approximately 9). At the same time, the
number of photons of the third subharmonic barely
increases and is much smaller than unity for long
interaction times (the steady-state value of the number
of photons of the third subharmonic mode in this case
is approximately 0.06). One can state that the system
is in the subthreshold regime of subharmonic genera-
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tion, and the third subharmonic mode is close to the
vacuum state.

The Wigner functions of the stationary state of the
fundamental and third subharmonic modes are pre-
sented in Figs. 2a and 2b, respectively, for interaction
time . The fundamental mode for long interac-
tion times is in the one-component state, the Wigner
function of which resembles that of the coherent state.
The quantum entropy of this state is much lower than
unity (approximately 0.0005, see Fig. 4). One can state
that the fundamental mode is in the pure coherent
state.

The Wigner function of the third subharmonic
mode resembles the Wigner function of the vacuum
state, which is symmetrically squeezed over three sides
of equilateral triangle. The quantum entropy of this
state is approximately 0.1 (Fig. 5), a fact indicating
that the state is nonpure. For comparison, Fig. 3 pres-
ents the Wigner function of the stationary state of the
second subharmonic mode in the subthreshold regime
of generation of this mode, which was obtained in [2].
These Wigner functions differ significantly in symme-
try, although both describe the vacuum state of the
modes in the subthreshold regime of generation of the
corresponding subharmonics.

The dynamics of the quantum entropy of the fun-
damental and subharmonic modes is presented in
Figs. 4 and 5, respectively.

DYNAMICS OF THE SYSTEM IN THE CASE
OF STRONG INTERMODAL COUPLING

In this section, we investigate the quantum dynam-
ics of the system for a nonlinear coupling coefficient
exceeding that analyzed in the previous section by a
factor of 10 (k = 0.3 and 0.03, respectively). The per-
turbation amplitude is retained the same ( ). In
this case, the quantum behavior of the system differs

=τ 20

=ε 1.5

significantly from the behavior of the system described
in the previous section.

Figure 6 shows the dynamics of the number of pho-
tons of the fundamental and subharmonic modes
(curves a and b, respectively). One can see that, in this
case (in contrast to that described in the previous sec-
tion), the system is in the above-threshold regime of
subharmonic mode generation. The number of pho-
tons of the subharmonic mode for long interaction
times is approximately equal to the number of photons
of the fundamental mode for the same interaction
times.

Figure 7 shows the Wigner functions of the funda-
mental and subharmonic modes (panels a and b,
respectively) in the stationary state of the system.

Fig. 1. Dynamics of the mean numbers of photons of
(curve a) the fundamental mode and (curve b) the third
subharmonic mode for coupling coefficient k = 0.03.
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Fig. 2. Wigner functions of the stationary states of (a) the
fundamental mode and (b) the third subharmonic for
intermodal coupling coefficient k = 0.03.
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These functions were calculated for interaction time
.

The Wigner function of the fundamental mode in
the stationary state of the system differs significantly
from the Wigner function of the stationary state of the
same mode in the previous case: at k = 0.03, it is sim-
ilar to the Wigner function of the coherent state,
whereas at k = 0.3 it resembles the Wigner function of
the squeezed state. The quantum entropy of this state
is approximately 1.2 (Fig. 8), a fact indicative of non-
purity of this state. The form of the Wigner function of
the subharmonic mode also sharply changes: at k =
0.03 it resembles the Wigner function of the vacuum
state squeezed over three sides, whereas at k = 0.3 it is
similar to the Wigner function of the state that is a sta-

=τ 20
tistical mixture of three components. Each compo-
nent resembles the Wigner function of the squeezed
state. The field of the third subharmonic mode can be
found in each component of the state with equal prob-
ability. The quantum entropy of this state exceeds the
maximum quantum entropy of the statistical mixture
of the three-component state ln3 (Fig. 9). The latter
indicates that the field state has a much more compli-
cated structure, which does not follow from the anal-
ysis of the Wigner function.

The dynamics of the quantum entropy of the field
state for the fundamental and third subharmonic
modes is presented in Figs. 8 and 9, respectively. Both
values become steady-state at long interaction times.

Fig. 3. Wigner function of the stationary state of the second
subharmonic mode in the subthreshold regime of genera-
tion of this mode [4].
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Fig. 4. Dynamics of the quantum entropy of the funda-
mental mode for intermodal coupling coefficient k = 0.03.
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Fig. 5. Dynamics of the quantum entropy of the third sub-
harmonic mode for intermodal coupling coefficient k =
0.03.
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Fig. 6. Dynamics of the mean numbers of photons of
(curve a) the fundamental mode and (curve b) the third
subharmonic mode for coupling coefficient k = 0.3.
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DYNAMICS OF THE SYSTEM IN THE CASE
OF VERY STRONG INTERMODAL COUPLING

In this section we investigate the dynamics of the
system in the case of a large nonlinear coupling coef-
ficient between the interacting modes: .

Figure 10 shows the dynamics of the number of
photons of the fundamental and subharmonic modes
(curve a and b, respectively). The number of photons
of the stationary state for both modes is smaller than
unity. The number of photons of the stationary state
for the fundamental mode is , and one can
state that this mode is close to the vacuum state. The
number of photons of the stationary state for the sub-
harmonic mode is .

The Wigner functions of the stationary state of the
fundamental and third subharmonic modes are pre-
sented in Figs. 11а and 11b, respectively. The Wigner
function of the fundamental mode resembles the

= 4k

≈1 0.02n

≈2 0.5n

Fig. 7. Wigner functions of the stationary states of (a) the
fundamental mode and (b) the third subharmonic for
intermodal coupling coefficient k = 0.3.
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mental mode for intermodal coupling coefficient k = 0.3.
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Fig. 9. Dynamics of the quantum entropy of the third sub-
harmonic mode for intermodal coupling coefficient k =
0.3.
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Fig. 10. Dynamics of the mean numbers of photons of
(curve a) the fundamental mode and (curve b) the third
subharmonic mode for coupling coefficient k = 4.
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Wigner function of the vacuum state. The quantum
entropy of this state is also close to zero (Fig. 12): it is
approximately 0.05. Thus, one can state that in this
case the fundamental mode is in the pure vacuum state
at long interaction times.

The Wigner function of the stationary state of the
third subharmonic mode has a three-component
structure in this case. This mode is in the three-com-
ponent state with the same probability of detecting
field in each component of the state. The quantum
entropy of this state is approximately 0.7 (Fig. 13).
This value is smaller than the maximum quantum
entropy of the three-component state ln3, which indi-
cates the existence of a quantum-mechanical interfer-

ence between the components of the field state for the
third subharmonic mode in this interaction domain.
The possibility of implementing three-component
superposition states of light in optical systems was
indicated for the first time in [7]. A mechanism of the
occurrence of three-component states of light with
quantum interference between the field state compo-
nents in the range of small amplitudes of the state (the
mean number of photons is smaller than unity) in a
dissipative medium was proposed in [8].

The dynamics of the quantum entropy of the fun-
damental and third subharmonic modes for k = 4 is
presented in Figs. 12 and 13, respectively. Both entro-
pies become steady-state at long interaction times.

Fig. 11. Wigner functions of the stationary states of (a) the
fundamental mode and (b) the third subharmonic for
intermodal coupling coefficient k = 4.
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Fig. 12. Dynamics of the quantum entropy of the funda-
mental mode for intermodal coupling coefficient k = 4.
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Fig. 13. Dynamics of the quantum entropy of the third
subharmonic mode for intermodal coupling coefficient
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The steady-state entropy of the fundamental mode is
much smaller than the steady-state entropy of the
third subharmonic mode.
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