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Abstract—The specific features of light transmission in a cholesteric liquid crystal (LC) cell with a director
rotated by 90° have been investigated. In this structure, where a light wave is incident at a large angle with
respect to the LC surface, the light is reflected (refracted) in the LC layer near the opposite boundary. It is
shown that the application of an electric field changes the character of extraordinary wave refraction, as a
result of which light starts passing through a cell. The transmission threshold voltage is determined, and its
dependence on the angle of incidence of light is obtained. The dependence of the transmitted-light intensity
on the voltage across the cell is obtained as well. The same dependences are also derived by numerical calcu-
lations with allowance for the turning points and extinction.
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INTRODUCTION
Since liquid crystals (LCs) are widely used in prac-

tice, researchers pay much attention to their optical
properties and behavior in external fields. The issue is
that the optical properties of thin LC layers can easily
be controlled using an electric field: an external elec-
tric field causes reorientation of the LC director, due
to which one can control the intensity of light passing
through the LC layer.

The unique electro-optical properties of LCs are
used in displays, data-transfer systems, and various
optical devices [1–4]. LCs serve as a basis for electro-
optical modulators, indicators operating in different
temperature ranges, and biosensors [5], as well as
media for recording holographic gratings and dynamic
holograms [6, 7].

LC cells are rather complex systems. To describe
the LC behavior, one must know a number of param-
eters: Frank moduli, permittivity, and the LC–sub-
strate anchoring energy. Setting the orientation of LC
molecules on the cell boundaries affects the director
distribution in the cell volume, thus influencing the
optical characteristics of the cell.

It is rather difficult to describe the behavior of LC
systems in external fields for the following reason: the
director distribution and, therefore, the optical char-

acteristics change throughout the LC sample thick-
ness. In addition, the presence of optical anisotropy
calls for the tensor description of the problem. Calcu-
lating the intensities of light beams passing through
these systems and analyzing their trajectories, one can
investigate the changes in the LC local structure as a
function of the applied external field.

The description of the LC structure in external
fields is a difficult problem, especially in the case of
strong fields (exceeding the Freedericksz threshold).
The presence of spatial helicoidal structure compli-
cates the mathematical description of the Freedericksz
transition in external fields. The Freedericksz transi-
tion in cholesteric LCs (CLCs) was considered for the
first time by Leslie [8]. Note that, in contrast to
nematics in chiral systems, there is a significant differ-
ence between the descriptions of the Freedericksz
effect in electric and magnetic fields. The reason for
this is that the electric field in cholesterics is inhomo-
geneous. This problem was considered in detail in [9–
12].

The problem of propagation of light incident at a
certain angle on an anisotropic medium with arbi-
trarily directed optical axes has been solved theoreti-
cally using different methods. In particular, numerical
methods have been used to a very great extent [13–17].
Much attention is also paid to exact and approximate
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analytical methods [18–21], the mode-coupling
method [22, 23], and methods of geometrical optics
[24, 25].

In this study, we consider a cell with a helix pitch
greatly exceeding the light wavelength. The so-called
“Mauguin adiabatic approximation” is used to
describe the wave propagation in such systems [26].
The properties of these media change gradually on the
scale of λ, due to which one can use methods of the
Wentzel–Kramers–Brillouin (WKB) type. The prob-
lem of propagation of electromagnetic waves in locally
isotropic media with smooth inhomogeneities was
solved in [27, 28]. The corresponding problem for
CLCs with a large pitch in the case of oblique inci-
dence of light was solved in [29]. Here, light also prop-
agates in the adiabatic mode: there are two normal
waves, locally ordinary and locally extraordinary, the
polarization vectors of which are determined by the
local directions of the optical axis and wave vector at a
given point. Under these conditions, the wave-vector
component transverse to the spiral axis is retained, and
its length (the wave number) is determined from the
local dispersion equation [29].

When an extraordinary ray is incident on a CLC at
an angle exceeding some minimum value, the extraor-
dinary ray is rotated (reflected) in the medium and
emerges from it [30]. Note that the rotation occurs
inside the sample rather than on its surface.

When a light beam propagates in a f luctuating
medium, it loses energy upon scattering. This loss is
described by the extinction coefficient. The latter
coincides with the total scattering cross section (the
scattered radiation intensity integrated over all scatter-
ing angles and normalized to unit volume and unit
incident-wave intensity). A homogeneous uniaxial
medium is characterized by two extinction coeffi-
cients, which are related to the scattering of ordinary
and extraordinary waves [31, 32]. Since the ray path
length in the cells under consideration may be rather
large, we will need to take into account the damping
caused by the extinction when calculating the trans-
mitted-light intensity.

In this paper, we report the results of an experi-
mental and theoretical study of the propagation of
light in CLCs in an external electric field exceeding the
Freedericksz threshold. The distortion of the LC
structure and the corresponding specific features of
the extraordinary-ray propagation were analyzed. The
internal refraction of a ray in a cholesteric due to the
spatial change in the optical axis direction in the
medium was investigated. The propagation of light was
theoretically described within the geometrical optics
approximation, where the ratio of the LC helix pitch to
the light wavelength was used as a large parameter.
Theoretical and experimental dependences of the
minimum transmission voltage on the limiting angle
of refraction and the transmitted-light intensity on the
voltage at a fixed angle of incidence were obtained.

Despite the fact that we considered a CLC cell with a
director rotation by 90°, the method used is also suit-
able for other LC cell geometries. The analysis of dif-
ferent cell geometries and comparison of their charac-
teristics is of great interest for determining optimal cell
properties in various applications.

The paper is organized as follows. Section 1 con-
tains the equations based on which one can find the
director distribution in an external electric field. In
Section 2, the propagation of electromagnetic waves in
a uniaxial medium is briefly described and a solution
of the wave equation by the WKB method in the first
order relative to the large parameter is presented. In
Section 3, the light-intensity losses related to scatter-
ing are considered. The experimental setup is
described in Section 4. In Section 5, the experimental
data are compared with the results of numerical calcu-
lations.

1. FREE ENERGY AND DIRECTOR 
DISTRIBUTION IN THE CELL VOLUME

The system under consideration consists of two
plane-parallel glass plates with deposited thin trans-
parent conducting layers, between which a CLC layer
is placed. The LC is oriented in a certain way: the helix
axis is perpendicular to the plate planes. A voltage can
be applied to the plates so that the electric field
strength  between the plates is parallel to the CLC
helix axis. The free energy of this system is described
using the director unit vector  (which indicates the
preferred molecular orientation at a given point) as
follows:

(1)

The first term is the free Frank energy; it describes
the LC strain energy in the bulk:

(2)

where  are the Frank moduli; 
is the helix pitch; and V is the volume occupied by the
CLC.

The last term ( ) is the LC–substrate surface
anchoring energy. Hereinafter, the LC anchoring with
the surface is considered rigid: . It will
be taken into account by imposing the boundary con-
ditions on the director:

(3)

where vectors  and  describe the easy orienta-
tion axes on the lower and upper faces of the cell,
respectively.
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To describe the optical properties of an LC cell,
one must know the director vector distribution in the
cell bulk. The distribution  can be obtained by
direct minimization of the free energy using the
method proposed in [21]. Below, we report only the
main equations of this method and the conclusions
drawn from its use.

Let us introduce a Cartesian coordinate system,
where the z axis is directed perpendicular to the sub-
strate planes, the  plane coincides with the sub-
strate plane, and the x axis is directed arbitrarily. We
assume that the arrangement of the substrate planes
corresponds to the planes  and . In the
absence of an external field in the equilibrium state,
the director vector is perpendicular to the z axis at each
point. The system is assumed to be homogeneous in
each plane , which means that .
Then, in the spherical coordinates, n(z) =
(sinθ(z)cosφ(z), , where
angles  and  are counted from the  and  axes,
respectively.

In this case, the contributions to the free energy of
the system can be transformed as follows. The first
term in Eq. (1) takes the form

(4)

where  is the substrate area, ,

(5)

(6)

(7)
It is convenient to write the contribution of the

external field to the energy in terms of voltage U
applied to the plates:

(8)

where  is the permittivity tensor
of the medium;  is the permittivity anisot-
ropy;  and  are the permittivities in the directions
along and perpendicular to the director, respectively;
and  is the Kronecker delta ( ). The
permittivity values are taken at the frequency of the
applied electric field.

Let us divide the sample into N layers in the direc-
tion of the  axis. We assume that the orientation of
the director vector in each layer is homogeneous and
set by angles  and . Then we will construct a set of
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values , , , i = 0, 1, ...,
N, which determine the director distribution in the cell
bulk. Using the finite-element method, one can
express the total free energy in terms of  and . Hav-
ing minimized the free energy over them, we obtain
the director configurations at different values of an
external electric field.

2. PROPAGATION OF LIGHT IN LC CELLS: 
GEOMETRICAL-OPTICS APPROXIMATION

In this section, we consider the propagation of light
in CLC cells. Note that permittivity tensor , which
determines the optical properties of the medium, is
taken at the optical frequency of measurements.
Below, we assume the medium to be nonmagnetic;
i.e., permeability tensor . We are interested
in solutions to the wave equation. Let us consider the
case where a wave is incident on the plane z = 0. We
assume that our system is characterized by a large
parameter: the ratio of the helix pitch to the light wave-
length, . Therefore, the wave equation will
be solved using the WKB method [33]. Within the
framework of this method, we restrict ourselves to the
first two orders with respect to large parameter Ω. The
light-wave field can then be written [34] in the form

(9)

where  is the wave type (ordinary  or extraordi-
nary ),  are the wave amplitudes, ,  are
the polarization vectors,  is the wave vec-
tor, and  is a two-dimensional vector (it is indepen-
dent of coordinates, and its magnitude is determined
by the angle of incidence of light on the medium). The
longitudinal component of the wave vector, kz, which
has a rather complicated form, can be derived [34]
from the eikonal equation

(10)
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. Expression (9) describes four possible
solutions to the wave equation.
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In the system under consideration, the refractive
index of the medium may decrease along the extraor-
dinary-ray propagation path. In this case, the ray may
undergo total internal reflection (i.e., the wave vector
gradually changes its direction to opposite during
propagation). At some point of the medium ( ),
the function , after which it
becomes negative. This means that  acquires an
imaginary additive and the wave begins to exponen-
tially decay. In reality, the wave undergoes total reflec-
tion at this point. The wave, being reflected from some
layer in the medium, starts propagating in the back-
ward direction with respect to the z axis. The points at
which  are referred to as “turn-
ing points” in the theory of differential equations. It is
a rather difficult problem to construct the field in the
vicinity of these points, because the WKB method
does not work there. Since we are interested in the
light transmission through the cell, the presence and
location of turning points is of key importance.

3. EFFECT OF EXTINCTION

When the angle of incidence of light is sufficiently
large, the extraordinary-ray propagation path in a
CLC cell is fairly long. As a result, the intensity of the
light beam transmitted through the cell decreases
(because of light scattering). This intensity loss is
described by extinction coefficient :

(13)

where  is the incident-light intensity and  is an
element of the ray-path length. The expression for the
extinction in CLC is given in the Appendix.

The element of the ray-path length can written as

(14)

The tangent at each point of the ray path is parallel
to the Poynting vector :

(15)

The CLC under consideration is a locally uniaxial
medium. For these media, the directions of the Poynt-
ing and wave vectors are related as follows: .
Then we have
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Expressions (14) and (17) and the expression for
the extinction coefficient derived in Appendix make it
possible to calculate the light-scattering loss (13).

4. EXPERIMENTAL
The experimental cell for studying the refraction in

CLC consisted of two glass trapezoidal prisms, PR1
and PR2, with 50  25 mm bases and a height of 18
mm (Fig. 1). The tilt angle made by the lateral faces
with the bases was . Glass refractive index  was
1.712 for a wavelength of  nm. Transparent
conducting coatings (electrodes) and thin polyimide
layers were deposited on the prism bases. The polyim-
ide layers were rubbed to form a planar LC orienta-
tion, which provides rigid anchoring between the LC
and the prism surface. In this case, the LC director on
the boundary layer (on which light falls) is directed
perpendicular to the drawing plane (Fig. 1). On the
second layer boundary, the director lies in the drawing
plane. The necessary LC-layer thickness (8 μm) was
set using Teflon spacers. The gap between the prisms
was filled with a CLC mixture having a helix pitch of
32 μm. The mixture consisted of LC-1466 (NIOPIK)
and VICh-3 active additive (Vilnius University, Lithu-
ania). The Frank moduli for LC-1466 are K11 = 1.1 ×

10–6 dyn,  dyn, and .
Dielectric anisotropy  of LC-1466 in the frequency
range from 500 Hz to 10 kHz is 12.3, and the permit-
tivity in the direction across the director is .
The principal values of the permittivity tensor,  and

, for wavelength  nm are 2.86 and 2.28,
respectively. At specified values of the layer thickness
and helix pitch, the director rotated by 90° when pass-
ing from one layer boundary to the other.
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Fig. 1. A liquid crystal cell consisting of two trapezoidal
glass prisms PR1 and PR2, with thin polyimide layers and
transparent conducting coatings deposited on their bases.
The director is oriented perpendicular to the drawing plane
on the lower face of the LC cell and lies in the drawing
plane on the upper face. (1) Schematic path of extraordi-
nary ray in the absence of an electric field. (2) The extraor-
dinary ray starts passing through the cell at some voltage U.
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A block diagram of the experimental setup is pre-
sented in Fig. 2 (top view). A helium–neon laser beam
with wavelength  nm and diameter of 1 mm
was directed on the LC cell under study through half-
wave plate λ/2. The half-wave plate was used to orient
the incident-ray polarization vector parallel to the LC
director at the glass–LC interface. The light then
arrived at photodetector Ph, the signal from which was
recorded by digital oscilloscope Оsс (ASK-3106) and
a computer. A control ac rectangular voltage from an
Aktakom ANR-3122 generator was applied (through a
commutator) to the cell electrodes and the oscillo-
scope. The commutator generated pulses with a dura-
tion from 0.1 to 5 s. To change the angle of incidence
of the light beam on the LC layer, the cell was installed
on a rotating table equipped with an angle reading
device (reading accuracy 1 min).

Threshold voltage  of light transmission
through the cell was determined using the dependence
of transmitted-light intensity I on applied voltage .
The threshold voltage was considered to be the voltage
at which the transmitted-light intensity became no less
than 10% of the incident-light intensity. The experi-
mental data are shown in Figs. 4 and 5 (next section)
in comparison with the results of numerical calcula-
tions.

5. CALCULATION RESULTS

Let us first consider the penetration depth of an
extraordinary ray into an LC layer in the absence of an
external electric field. In this case, the expression for
the penetration depth can be obtained analytically. We
introduce a Cartesian coordinate system so as to sat-
isfy the equality . In turn, the director
takes the form ,
where  and . Angle  between the
wave vector and director is then given by the relation

(18)
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is zero. Snell’s law for an extraordinary ray at point 

is , where  is the angle of incidence
of light on the lower boundary of the LC cell and  is
the refractive index of glass. Using the latter, one can
easily obtain a relation for the penetration depth:

(19)

For the cell under consideration, we have

(20)

When an external electric field is switched on,
wave-vector component  is nonzero at the turning
point. In this case, dependence  can be obtained
numerically. Minimizing the free energy at a certain
electric voltage, we obtain the director distribution in
the cell volume, i.e., sets of values  and 
( ) for a given U value. Substituting them
into function , one can easily find the
layer  in which it changes sign. The turn-
ing point is located specifically in this layer. The coor-
dinate of the midplane of this layer is taken to be the
ray penetration depth in the cell. Figure 3 shows the
dependence of the penetration depth on the angle of
incidence of light on the LC at different voltages. One
can see that the penetration depth decreases with an
increase in the angle of incidence, and, at a fixed angle
of incidence, increases with an increase in voltage. At
large angles of incidence, the penetration depth
depends weakly on voltage.

We experimentally obtained the dependence of the
minimum transmission voltage on the limiting angle
of refraction for the cell under consideration, i.e., the
dependence on the largest angle of incidence of light
on the glass–LC interface at which light still passes
through the cell. Below we report a calculation of this
dependence.
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Fig. 2. Schematic of the experimental setup: (He–Ne) helium–neon laser, ( ) half-wave plate, (Ph) photodetector, (G) gen-
erator, (Osc) oscilloscope, and (PC) computer.
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The position of the turning point depends on
. The range of δ values at which turning

points exist is determined by the condition

(21)

Having chosen an appropriate δ value, one can
make the ray rotate at a rather small distance from the
upper boundary of the cell. For the angular range
given by (21), the director orientation on the upper
boundary for the cell geometry under consideration
provides extraordinary-ray rotation in the cell bulk.
Strictly speaking, the geometric optics is inapplicable
in the vicinity of turning point, where the optical prop-
erties of the medium significantly change at distances
on the order of the light wavelength. Modes may be
transformed near these points. A possible conse-
quence of this transformation is, e.g., percolation.
This effect becomes pronounced if the turning point is
located at a distance of  from the upper cell bound-
ary. In this case, the transmitted-light intensity differs
from zero due to the percolation. At the same time, if
the turning point is located at a distance larger than λ
from the upper boundary, the percolation barely man-
ifests itself. Thus, if the turning point lies at a distance
of  from the upper cell boundary at fixed  and 
values, we assume that this voltage and angle corre-
spond to the minimum transmission voltage for a
given angle of incidence at which a wave does not pass

⊥ = δ0 singk k n

⊥ εε ≤ δ ≤ .�sin
g gn n
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∝λ U δ

through the cell. At higher voltages or smaller angles
the wave passes through the cell.

The dependence of the minimum transmission
voltage on the limiting angle of refraction was calcu-
lated as follows. First, the director distribution in the
cell volume (i.e., sets of  and  values (i = 0, 1,
..., N)) was found for a fixed U by minimizing the
free energy (1). The thus-found values were substi-
tuted into expression (12), as well as the angles of
incidence δ from the range specified by (21). The δ
value at which the turning point is located at a distance
of  from the upper cell boundary was determined
from the set of equations for turning points:

 = 0. Specifically this δ value is the
limiting angle of refraction.

Figure 4 shows the dependences of the minimum
transmission voltage on the angle of incidence, both
experimental and obtained by numerical calculation.
The dashed line corresponds to the turning-point
location at a distance equal to the light wavelength
from the upper cell boundary. The best coincidence
with the experimental data was observed for the calcu-
lation with the turning point located at a distance of

 from the upper boundary. The results of this cal-
culation are shown in Fig. 4 by a solid line. One can see
that the minimum transmission voltage increases with
an increase in the angle of incidence. This behavior
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Fig. 3. Dependences of the extraordinary-ray penetration
depth on the angle of incidence of light on the LC layer at
different voltages: U = (1) 0, (2) 1.2, (3) 1.35, (4) 1.5, and
(5) 2 V.
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Fig. 4. Dependence of the minimum transmission voltage
on the angle of incidence of light on the LC layer: ( )
experimental data, (dashed line) the result of the numeri-
cal calculation on the assumption that the percolation
occurs at a distance equal to the light wavelength, and
(solid line) the result of the numerical calculation on the
assumption that the percolation occurs at a distance larger
than the light wavelength by a factor of 1.2.
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can be explained as follows: at large angles of inci-
dence the penetration depth becomes small, and, as
can be seen in the previous figure, a higher voltage
must be applied to make a ray start passing through the
cell. A similar behavior of the dependence was

observed for an LC cell with a director rotation by
180°, which was studied in [34].

The existence of turning points affects the light
intensity transmitted through the cell. If turning points
are absent, the transmitted-light intensity can be
found using the expression

(22)

where the expression for  is given in Appendix
(A.20). The dependence of extinction on z manifests
itself in the following way: the angle between the
director and wave vector changes while a wave pene-
trates into the LC bulk along the  axis. Integral (22)
can be calculated from the Simpson formula using the
sets  and  ( ) obtained by minimizing
energy (1). These sets are substituted into the expres-
sion for extinction (A.20) and the tangent at each
point of the ray path (17). In the presence of turning
points located at a distance from the upper cell bound-
ary that is smaller than the light wavelength, the inte-
gration in expression (22) for intensity must be per-
formed up to the turning point :

(23)

One can also estimate the damping coefficient,
which is related to the occurrence of the imaginary
part in the z component of the wave vector at :

(24)

The experimental and numerically calculated
dependences of the transmitted-light intensity on
voltage at a fixed angle of incidence are shown in
Fig. 5a. The transmitted-light intensity linearly
increases with an increase in voltage from 1.1 to 2 V.
The intensities are normalized to the maximum trans-
mission intensity. One can see that the experimental
data and the results of numerical calculations are in
good agreement. For comparison, Fig. 5b shows also
the results of numerical calculations normalized to the
incident-light intensity. The numerical calculations
also yield a linear increase in intensity (Fig. 5b, solid
line). The consideration of the damping coefficient for
this system reduces the transmitted-light intensity by
more than a half.

CONCLUSIONS
We obtained the director distributions in the LC

cell volume at different voltages using a method based
on the direct minimization of free energy [21]. With
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Fig. 5. Dependence of the transmitted-light intensity for
an extraordinary ray on the voltage applied to the cell (the
angle of incidence is ). (a) The intensity is normal-
ized to the maximum transmission intensity: (squares)
experimental data, (solid line) damping coefficient A is
disregarded, and (dashed line) damping coefficient is
taken into account. (b) The intensity is normalized to the
incident-light intensity: (symbols) results of numerical
calculation, (solid line) damping coefficient A is disre-
garded, and (dashed line) damping coefficient is taken into
account.
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the director distribution known, the dependences of
the extraordinary-ray penetration depth on the angle
of incidence at different voltages were numerically
constructed. In the experiment, the angle of incidence
is set with an error of 0.1°, due to which the depth of
light penetration into the LC layer can be gradually
changed. Thus, one has a unique possibility of study-
ing the local orientational structure of the LC director
and the dynamics of its change in external electric
fields. Note that the light propagation was theoreti-
cally described within the framework of the geometri-
cal optics approximation, where the ratio of the LC
helix pitch to the light wavelength was used as a large
parameter. Both theoretical and experimental depen-
dences of the minimum transmission voltage on the
limiting angle of refraction and the transmitted-light
intensity on voltage at a fixed angle of incidence were
determined. The calculations were carried out without
any simplifying assumptions about the LC properties.
All Frank moduli, the permittivity anisotropy, and the
electric field inhomogeneity in the LC were taken into
account. The theoretical description also took into
account the presence of turning points for an extraor-
dinary ray in the sample. The single adjustable param-
eter in the calculations was the depth at which light
percolation occurs. Changing this depth, one can
obtain good agreement between the experimental data
and the results of numerical calculation. Note that the
director distribution is confirmed only indirectly,
because the transmitted-light intensity is an integral
characteristic, whereas the minimum transmission
voltage yields information about the director distribu-
tion in a narrow layer rather than in the entire cell vol-
ume.

The method for describing the LC optical proper-
ties presented in this study can be applied to a variety
of cells. The only significant limitation imposed on the
LC system is the validity of geometrical optics approx-
imation (the WKB method).
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APPENDIX

EXTINCTION COEFFICIENT
IN A TWIST CELL WITH A LARGE

HELIX PITCH

A homogeneous anisotropic medium is character-
ized by two extinction coefficients:  and . In the
Born approximation [32, 35], they have the form

σ( )o σ( )e

(A.1)

Here, the superscripts  and , which are related to
the incident and scattered waves, respectively, take two
values, corresponding to the  and  modes in a
uniaxial medium. Here,  are the angles between
vectors  and ;  is the
Fourier transform of the correlation function of direc-
tor f luctuations,  (δεαβ =

); and  are the refractive indices
of the ordinary and extraordinary waves, respectively,

(A.2)

where

(A.3)

is the mean square of f luctuations,

(A.4)

(A.5)

 denotes integration over all directions of unit

vector .

In some cases, this expression can be significantly
simplified and calculated analytically. At , the
correlation function of director f luctuations diverges
as , which leads to a logarithmic divergence in inte-
gral (A.1). The q value may turn to zero only when the
lengths of incident and scattered waves coincide. In
this case, scattering of the  type is absent for
geometrical reasons. Thus, a logarithmic divergence
arises only in the case of  scattering. The con-
tributions of the  and  scatterings to
the extinction are reduced to single integrals in the
form

(A.6)
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(A.7)

where θ* is the angle between n(r) and k(i),

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

, , .
The logarithmic contribution of the  scat-

tering to the extinction can be written as

(A.16)

where

(A.17)

(A.18)

Note that the logarithm of the  ratio arises in
this expression. The reason for this is that the director
correlations are limited by the sample sizes. The con-
tribution in the form (A.16) turns to zero at  and

. In fact, the contribution is nonzero for
these angles. Therefore, along with the logarithmic
contribution, the contribution linear in angle 
should be taken into account. To this end, we will cal-
culate the extinction at  and . The lin-
ear contribution can then be written as

(A.19)

Proceeding from the geometrical considerations,
one can show that . The 
value can be obtained numerically from expression (A.1).
Thus, the extinction for an extraordinary ray takes the
form

(A.20)
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In a helicoidal medium with a large helix pitch, for-
mula (A.1) retains meaning if one takes into account
that , , , and , which are functions of
director , depend on z. In fact expression (A.1) is
used in the approximation of local homogeneity; i.e.,
the director in each layer is determined by angles 
and  for this layer.
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