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Abstract—The propagation of three-dimensional quasi-solitons in a system of carbon nanotubes with two-
level impurities has been investigated. The system of effective equations is derived in the form of analogs of
the Sine–Gordon classical equation and Bloch equations. The effects observed with a change in the inverse
population and damping parameter have been studied.
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The generalization of the existing soliton models,
aimed at making them closer to real physics, mainly by
taking into account dissipation (an integral part of any
system), has been one trend of study of solitons as
nonlinear stable formations [1, 2]. Recently, much
attention has been paid to the theory of dissipative
solitons [3–5], which is one of these generalizations.
These structures have been found in various systems,
such as semiconductor optical amplifiers, laser sys-
tems with saturable absorption, magnetooptics, etc.
[6, 7]. The stability of solitons, which is determined by
the balance between dispersion and nonlinearity, is
supplemented with the condition of balance between
the arriving and dissipated energy f lows.

At the same time, carbon nanotubes (CNTs) are
widely known to have unique nonlinear properties,
which suggest the existence of conventional solitons
therein [8–10]. For example, nonlinear properties of
CNTs with impurities were investigated within the
Anderson periodic model [11]. The problems of non-
linear response of CNTs to a high-frequency electric
field were considered in [12]. As was concluded in
those studies, nonlinearity arises due to the change in
the classical electron-distribution function and the
nonparabolic electron-dispersion relation. The possi-
bility of solitons existing in CNTs was established and
the influence of CNT parameters on them was deter-
mined in [13, 14]. Therefore, the question of the exis-
tence of dissipative solitons in these systems (including
three-dimensional ones) is quite natural [15]. Due to
the existence of natural energy dissipation caused by
scattering of CNT electrons from inhomogeneities
and impurities, it is necessary to suggest a means of

energy “pumping.” To solve this problem, we will sup-
plement CNTs with two-level systems in the inverted
state, which serve as “pump” ones.

CNTs and two-level systems with simple and thor-
oughly investigated model Hamiltonians were chosen
as objects of microscopic consideration.

MAIN EQUATIONS AND RESULTS

Let us consider the propagation of three-dimen-
sional ultrashort electromagnetic pulses in an array of
zigzag CNTs.

The dispersion relation describing the properties of
zigzag CNTs can be written as [16]

, (1)

where  eV,  nm, and  nm is
the distance between neighboring carbon atoms with a
quasi-momentum (pz, s) (pz is the momentum compo-
nent along the CNT axis, s = 0, …, n). Different signs
denote the valence and conduction bands.

It follows from the quantum mechanics laws that,
in the presence of external electric field E (directed for
clarity along the x axis and considered below in the
calibration ), the momentum must be
replaced by generalized momentum  (e
is the elementary charge).
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The three-dimensional wave equation for the elec-
tric-field vector potential in the cylindrical coordinate
system can be written as

(2)

where ,  is the effective electric-dipole
moment of one two-level system of the sample, and

 is the mean value of the z component of the pseu-
dospin vector. Here, we passed to the continuum limit
and introduced concentration n of two-level systems
(  is the speed of light, and Γ is the damping parame-
ter). A transition to the continuum limit should also be
made in the Heisenberg equations of motion for the
mean values of pseudospin operators of two-level sys-
tems, which are uncoupled within the random-phase
approximation. The fact that the characteristic spatial
size of their localization is much higher than the dis-
tance between neighboring two-level systems even for
femtosecond pulses should also be taken into account.
Then, as was noted in [17, 18], one can easily obtain

(3)

where  describes the transitions in a two-level sys-
tem.

Note that dynamics equations of two-level centers (3)
do not contain relaxation parameters (i.e., they are
valid only for times much shorter than the relaxation
time). Since we are considering ultrashort pulses
(USPs), the relaxation processes can be neglected.

Due to the cylindrical symmetry, it is assumed

below that . This assumption should be addi-

tionally discussed. Due to the field nonuniformity
along some axis (we assume for clarity that the field is
directed along the x axis and is nonuniform in this
direction), the current is also nonuniform. The cur-
rent nonuniformity causes charge accumulation in
some region. The accumulated charge can most easily
be estimated from the charge-conservation law:
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Here, ρ is the charge density, j is the current density
along the x axis, τ is the electric-field pulse width, and
lx is the characteristic length at which the pulse electric
field changes along the x axis.

It follows from (5) that the USP width affects sig-
nificantly the accumulated charge, which induces an
additional electric field to interfere the USP field. The
accumulated charge was estimated to be about 1–2%
of the charge contributing to the current; hence, the
charge accumulation can be considered negligible for
femtosecond pulses [19]. The numerical experiments
for CNTs and a pulse width of several tens of femto-
seconds confirm the validity of this assumption [19].

The standard expression for the current density can
be written as

, (6)

where  and the angle brackets indi-

cate averaging with nonequilibrium density matrix
: . With allowance for the equal-

ity , the equation of motion yields

directly  for the density matrix, where

. Thus, one can use the number of
particles given by the Fermi–Dirac distribution in the
expression for the current density. We consider below
the case of low temperatures, in which only a small
region in the pulse space near the Fermi level contrib-
utes to the sum (integral).

Taking into account that ρ0 = 
 (  is the Boltzmann constant, and T is

temperature), we expand  in a Fourier series:

Then,

and, taking into account that distribution function
 is an even function of quasi-momentum, which
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Substituting this result into (6) and performing
summation over s and p, we obtain

where  is the concentration of equilibrium electrons
in the system and 

Taking into account all the aforesaid and introduc-
ing dimensionless values, we can write Eq. (2) as

(8)

Note that Eq. (8) is only a generalization of the
well-known Sine–Gordon equation for the case in
which the generalized potential is expanded in the
general Fourier series.

Equations (3) and (8) were numerically solved [20].
The initial conditions were chosen in the form

(9)
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where  is the radius, Q is the amplitude, γz and γr
determine the pulse width, z0 is the initial displace-
ment of the pulse center, and w is the inverse popula-
tion. This initial condition corresponds to the case in
which a USP consisting of one electric-field oscilla-
tion is applied to the sample. The energetic parameters
were expressed in  units. Note that the evolution
variable in this consideration is time.

The evolution of the electromagnetic field propa-
gating over the sample is shown in Fig. 1.

The USP is split into two pulses with amplitude
loss, and these pulses begin to propagate separately. In
turn, each pulse formed from the initial one is also
split into two pulses during propagation, etc. One can
relate this process to the removal of inverse population
from two-level systems during their propagation. Sim-
ilar behavior (splitting of the initial pulse and further
propagation) was observed when investigating the
USP dynamics in nanotube systems [13, 14].

Here, the use of the term “soliton” is extremely
conventional, because pulses undergo splitting.
Therefore, we will use another term: “quasi-soliton.”

The influence of damping parameter Γ is shown in
Fig. 2. It can be seen that the Γ value significantly
affects the USP shape. An increase in Γ leads to an
increase in the number of pulses the main pulse is split
into (although case (b) with Γ = 2 is inconsistent with
the general pattern).

An important distinctive feature of dissipative
quasi-solitons is that their shape depends weakly on
the initial conditions. The dependence of the pulse
shape on the inverse population w, which is related to
the initial distribution, was investigated in the system
under consideration to confirm the existence of this
feature (Fig. 3).

It can be seen in Fig. 3 that the pulses correspond-
ing to different initial conditions begin to acquire an
identical shape as they recede from the pulse-location
point at the initial instant and the difference between
them decreases. This fact, in turn, suggests that the

'r

Δ

Fig. 1. Strength of the electric field of a three-dimensional electromagnetic pulse at different instants: (a) initial instant and t =
(b) 1.0 × 10–13, (c) 3.0 × 10–13, and (d) 5.0 × 10–13 s.
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specific features observed in the system under consid-
eration are the same as in the case of the formation of
dissipative solitons.

CONCLUSIONS

The conclusions based on the results of this study
can be formulated as follows.

(i) An ultrashort optical pulse propagates without
amplitude damping, which is due to the balance
between its energy loss and the energy takeoff from
inverted two-level systems.

(ii) The propagation of an ultrashort optical pulse
causes a “tail” of electric-field oscillations behind it,
which can be explained as being due to excitation of
nonlinear-wave pulses.

(iii) The shape of the arising pulse train (i.e., electric-
field peaks, which are constantly split into similar peaks)
at large distances depends weakly on the initial condi-
tions due to the dissipation and gain in this system.
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