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Abstract–We have developed a rigorous self-consistent approach for the quantization of electromagnetic field
in inhomogeneous structures. The approach is based on utilization of the scattering matrix of the system.
Instead of the use of standard periodic Born-Karman boundary conditions, we use the quantization condi-
tion implying equating eigenvalues of the scattering matrix (S-matrix) of the system to unity (S-quantization).
In the trivial case of uniform medium boundary condition for S-quantization is nothing but periodic bound-
ary condition. S-quantization allows calculating modification of the spontaneous emission rate for arbitrary
inhomogeneous structure and direction of the emitted radiation. S-quantization solves the long-standing
problem coupled to normalization of the quasi-stationary electromagnetic modes. Examples of application
of S-quantization for the calculation of spontaneous emission rate for the cases of Bragg reflector and micro-
cavity are demonstrated.
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INTRODUCTION
Solution of a wave equation for electromagnetic

field in infinite uniform media with refractive index n

(1)

gives continuous spectrum of eigenfrequencies of the
mode ω. In order to provide quantum-mechanical
desription of interaction of radiation and matter, field
should be quantized: continuous spectrum of electro-
magnetic (EM) modes should be replaced by discrete
one [1–3]. For this purpose EM field is considered in
“quantization box” of “large” size (see Fig. 1a) and
boundary conditions (BC) are to be set on the facets of
the box. The natural choice is to set periodic (Born-
Karman) BC

,

, (2)

,

Wave equation (1) with BC (2) can be considered
as eigenvalue and eigenfunction problem and the solu-
tion of the problem is given by a discrete set wavevec-
tors  obeying

(3)

where  are integers; corresponding eigenfunc-
tions have the form of propagating planewaves

(4)

We should note, that the same set of eigenvalues of
the wave vector is provided by equating eigenvalues of
the transfer matrix  along each direction x, y, and z
through quantization box to unity, since the matrix
along any particular direction (for example direction
z) in the uniform media has a form

, (5)

and its eigenvalues are equal to .1 The article was translated by the authors.
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An analysis provided above leads to an expression
for the density of states in K-space

, (6a)

where  is the volume of quantization box.
Then, an expression for the density of states in respect
energy reads

. (6b)

ρ = =
π

3

3(2 )
k

x y z

dN n V
dk dk dk

= x y zV L L L

ωρ = = =
ω ω π� � �

3 2

2 3( ) ( )
dN dN dK n V

d dK d c

Each EM mode can be considered as quantum
oscillator with an energy , and this energy should
be associated with an integral of the density of EM
energy of the mode over quantization box [4]

(7)

In the case of uniform media and periodic BC, the
eigenmode of EM field is nothing but a plane wave
with spatially uniform amplitude, and the amplitude

ω� 2

= ω
π ∫ �

2 2 31 /2.
4

V

n E d r

Fig. 1. (a) Layered structure in the quantization box. (b) Plane of incidence xOz, polar angle θ is reckoned from z-axis, azimuthal
angle ϕ is reckoned from x- axis.
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of electric field for the quantized EM mode can be
obtained,

(8)

which allows to obtain a probability of spontaneous
emission W for the quantum transition characterized
by dipole moment d = er = er(cosϕdsinθd, sinϕdsinθd,
cosθd)) using Fermi golden rule:

, (9)

where  is the matrix element for the transition
between states  and . Equations (6) and (8) allow
to obtain Fermi golden rule in the form which does
depend on a virtual quantization box [5]:

(10)

where we introduce dimensionless function  describ-
ing spatial distribution of the electric field of the mode
satisfying relation E = nE0 , where α =

 is the fine structure constant and  is
a normalized vector describing an electric field of the
EM mode. Note that function  satisfies normaliza-
tion condition

(11)

Half-century ago Purcell have shown experimen-
tally [6], that probability of spontaneous emission can
be increased substantially, if emitter is placed into a
cavity. Purcell has proposed that density of states is no
longer described by equation (6), but should be
replaced by the quantity corresponding to a single
oscillator in frequency range corresponding to the
mode of the cavity, i.e.

(12a)

where Q is a quality factor of the cavity and ω0 is the
resonant frequency, and volume of the quantization
box had to be replaced by actual (or effective) volume
of the cavity Vc defined as

(12b)

where term in the denominator describes maximal
value of the density of electromagnetic energy for the
cavity mode. As a result it was concluded that the
probability of spontaneous emission is increased by
the factor f (named Purcell factor)

(13)
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where . The equation (13) is correct when
the decay of the cavity mode exceeds radiative decay of
the emitter.

Note that the argument used by Purcell (replace-
ment of the density of states defined by Eq. (6) with
inverse spectral width of the cavity mode) is not the
solution of a rigorously formulated mathematical
problem (eigenstate problem for EM field with spe-
cific BC) but a f lash of intuition.

An Eq. (13) does not allow to calculate the proba-
bility of spontaneous emission to the mode with spe-
cific directions and polarization (for example direc-
tionality of the emission from photonic crystals). Also,
the use of Eq. (13) is problematic in the case of open
optical systems, when the integral in Eq. (12) does not
converge.

Quantization of electromagnetic field can be also
done using outgoing wave BC [7], which results in a
set of quasi-stationary states with complex energies.
These states are analogues of the eigen-modes of
Fabry–Perot cavity, and are also known in literature as
quasi-stationary states [8], decaying states [9], reso-
nant states (RS) [10], leaky modes [11], quasi-guided
modes [12], quasi-normal modes [13, 14].

However, outgoing wave BC are not universal: they
do not provide solutions for uniform media and within
photonic band gaps of periodic structures. Numerical
recipes based on application of Brillouin-Wigner
(BW) perturbation theory [15, 16] to the set of quasi-
stationary states can in principle treat the problem of
renormalization of effective mode volume, but the for-
malism describing these numerical methods is rather
cumbersome, and substantial computational efforts
are required to achieve convergence of the results. The
attempts to develop the procedure for the quantization
of electromagnetic fields in inhomogeneous media
based on canonical quantization of Lagrangian and
Hamiltonian of the electromagnetic field [17, 18] can
be formally considered as solution of the problem, but
such attempts are characterized by extreme awkward-
ness of the developed formalism, which is impractical
to use, in particular for the calculation of probability of
spontaneous emission in arbitrary structures.

This paper is aimed at development of the proce-
dure of quantization of electromagnetic field that
would allow rigorous self-consistent description of the
mode structure in the quantization box with inhomo-
geneity, and providing a way for the calculation of
probability of spontaneous emission (Purcell effect)
from multilayered structure for modes characterized
by arbitrary direction of propagation and polarization.

THE FORMALISM
As was noted above periodic BC can be set by

equating eigenvalues of transfer matrix through uni-
form quantization box to unity, providing a set of
eigenvalues in the form of wavevectors. When inho-

λ = π ω2 c
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mogeneity is inserted into quantum box, then
wavevectors are not good quantum numbers anymore.
On other hand, adequate description of inhomoge-
neous structure can be given by scattering matrix,
which couples the waves incident on the structure
(incoming waves) and outgoing waves.

We propose the procedure of quantization of elec-
tromagnetic field, based on equating to unity eigenval-
ues of scattering matrix of the system, or by equating
incoming amplitudes and outgoing amplitudes.

Now we will define quantization procedure in
details. Let us consider quantization box with layered
structure within, as shown in Fig. 1a. The normal to
the interfaces of the layers is parallel to the Oz axis, and
the distances from the left and the right facet of the
quantization box to layered structures are L1 and L2, as
shown in Fig. 1a. In the case of such layered structure,
it is convenient to consider mode of electromagnetic
field with specific angular frequency ω in the form

(14a)

where the lateral components of the wavevector Kx and
Ky relate to direction of propagation of the waves in
empty parts of quantization box via relations

, (14b)

and

(14c)

In the case of TE polarization electric field of the
wave has the component Ey only, while for TM polar-
ization there are components Ex and Ez.

In each layer of the structure, spatial dependence
of electric field along z-axis is defined as superposition
of the waves propagating in opposite directions along
z-axis, and in the subsequent discussion we denote the
wave with positive Kz with upper index “+,” for nega-
tive Kz we will use upper index “–.”

We denote amplitudes of the waves incident on the
left and right facets of the quantization box as E+(0)
and E–(L), and amplitudes of the waves outgoing from
right and left boundaries as E+(L) and E–(0).

Amplitudes of the wave on left and right facets of
the quantization box are coupled by relation

(15)

where r1 and r2 are the amplitude reflection coeffi-
cients of layered structure for the waves incident from
the left and right sides respectively, t is the amplitude
transmission coefficient of layered structure, and the
phases gained by waves propagating from the facets of
quantization boxes to layered structures are given by

. It follows from (9) that amplitudes
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of incoming waves [ (0), (L)] are coupled

with amplitudes of outgoing waves [ (L),

(0)] by scattering matrix 

, (16)

and  reads

(17)

where λ = λ1λ2.

Eigenvalues of  matrix reads

(18)
and related eigenvectors are

(19)
Periodic BC imply equating the field on the oppo-

site sides of the quantization box, which is equivalent
to the equating eigenvalues of scattering matrix to
unity. Here we provide quantization of the field using
different BC: we equate “incoming” and “outgoing”
fields, what means equating the eigenvalues of the
scattering matrix  to unity:

(20)
Solution of eq. (20) in respect to frequency thus

gives the spectrum of eigenfrequencies. Using the set
of quantum numbers, one can obtain the eignenvec-
tors B(1) and B(2), and calculate the field profile of the
mode using the transfer matrix method. The compo-
nents of the eignevectors B(1,2) are the complex ampli-
tudes of the fields incident on the edges of the box, and
the field of the mode is the superposition of the fields,
excited by waves incident on the structure from oppo-
site directions, and corresponding spatial profiles of
the electric field described by the functions .

Similar to the case of periodic BC, we can consider
the mode obtained using S-quantization as elemen-
tary quantum oscillator and normalize it using equa-
tion (11). The field of the mode should be normalized
according to eq. (7). We denote BC (20) as S-condi-
tions, and the procedure of quantization described
above as S-quantization.

In the case of uniform media, BC given by Eq. (20)
is nothing but periodic BC. At the same time, the
modes defined by eigenvectors B(1) and B(2) with field
distribution described by functions  and  respec-
tively, will not be plane waves, propagating in opposite
directions, but will be standing waves of equal ampli-
tude, shifted by the quarter of wavelength.

+
,x yK KE −

,x yK KE
+

,x yK KE
−

,x yK KE Ŝ
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In non-absorbing media eigenfrequencies defined
by Eq. (20) are real, which reflects equity of incoming
and outgoing f luxes. Eq. (18) can be rewritten in the
form

(21)
where α is a phase, defined by reflection and transmis-
sion coefficients of layered structure and is depending
on frequency of the light. When size of quantization
box is large enough in respect to layered structure, KzL
varies much faster then α with increasing frequency,
and one-dimentional density of states in K-space reads

 = L/(2π), as in the case of uniform media, and

3D density of states is given by Eq. (6).
In non-uniform media, spatial envelope function

of electric field of the mode is not constant, and prob-
ability of spontaneous emission is defined by the mag-
nitude of an electric field of the mode at the position
of emitting dipole. For each eigenvalue β(1,2) the spatial
profile of the field of EM mode is a superposition of
the fields excited by the two waves incident from left
and right sides of the structure with the frequencies
defined by Eq. (20), and the amplitudes of these two
waves are coupled by Eq. (19). As usual, each mode
should be considered as elementary quantum oscilla-
tor, and normalized using Eq. (7).

Let us consider the situation when the K-vector of
light in empty quantization box is within the light
cone, i.e. . The formalism corresponding to
waveguide modes will be given elsewhere [19]. In this
case light can leak from the structure into the quanti-
zation box. If the size of quantization box goes to
infinity, then the contribution of the layered structure
to value of integral (7) will be negligible, and the inte-
gral (7) will be equal to the contribution given by the
wave in empty parts of quantization box. Thus, the
amplitude of electric field of EM mode, normalized
using Eq. (7) incident on empty quantization box, and
incident on quantization box with layered structure,
will be equal.

Since density of states provided by S-quantization
is the same density of states as setting periodic BC, for
the specific EM mode probability of spontaneous
emission given by Eq. (10) for the dipole in layered
structure will be defined by modification of the ampli-
tude of electric field vector  in layered structure.

The physical results should not depend on the size
of quantization box. The size of quantization box can
be chosen to provide equity of the solution of Eq. (20)
to any predefined frequency, and λ1 can always be
chosen equal to λ2. When the size of quantization box
is approaching infinity, the spectrum of eigen-fre-
quencies defined by Eq. (20) become quasi-continu-
ous. Thus, the modification of spatial profile of the
field within layered structure defined by functions

 does not depend on the size of the left and right

β = + α(1,2) exp( ),ziK L

z

dN
dK

< ωxK c

�e

�

(1,2)
e

empty parts of quantization box, and is defined only
by reflection coefficients r1 and r2 and transmission
coefficient t of the layered structures see Eq. (19).

An approach based on modification of spatial pro-
file of the modes in microcavities has been used by De
Martini [20], though the use of periodic BC limits an
applicability of results obtained in this work. An
approach used in [20] corresponds to the use of only
“symmetric” eigenvector B(1), while the mode corre-
sponding to “antisymmetric” eigenvector B(2) is
missed in [20, 21]. However, if an emitter is placed at
the center of a symmetric structure (as has been done
in [20]) absence of B(2) does not affect the validity of
the results, since the value of the mode field corre-
sponding to B(2) is zero in center of the symmetric
structure. If the dipole is placed into arbitrary place in
the structure without specific symmetry, the modes
corresponding to both B(1) and B(2) should be taken
into account.

For a development of the formalism it is convenient
to relate components of vector  describing electric
field in layered structure to the components of vector

 for uniform medium, via coefficients X, Y, and Z
as specified below. For TE mode

(22)

while for TM mode

(23)

It is also convenient to define directional Purcell
factor for a specific mode characterized by direction of
propagation defined by the polar angle θ of wave in
free space as a ratio of probability of spontaneous
emission for this mode to probability of spontaneous
emission in the free space, when dipole is parallel to
the field of the mode:

(24)

Such definition of directional Purcell factor will be
convenient for the subsequent analysis of the Purcell
effect in the case of waveguide modes.

Similarly, the dot product in Eq. (24) for TE modes
reads

, (25)

and for TM mode

. (26)

Therefore, the Purcell factor for specific TE mode
characterized by emission angle θ is
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while for TM mode

 (28)

In the case of TE polarization, for the dipole ori-
ented along y-axis, directional Purcell factor is noth-
ing but

(29a)

For the dipole, oriented along axis Ox the Purcell
factor for TM modes reads

, (29b)

and for the orientation of dipole along Oz axis

(29c)

Thus the quantities X, Y, and Z define the probabil-
ity of spontaneous emission in layered structure within
the light cone.

The Purcell factor in its usual sense, describing the
total probability emission of emission rate into the free
space is given by integration of directional Purcell fac-
tor  over the whole solid angle 4π. Note that such
integration should imply averaging over all possible
orientation of a dipole, where necessary.

RESULTS AND DISCUSSION
The equations for eigenvalues (18) and eigen-

vectors (19) of scattering matrix become extremely
simple in the case of symmetric structure. When λ1 =
λ2 and r1 = r2 = r, eigenvalues reads λ(t ± r) while cor-

responding B(1,2) = [1, ±1]. In this case the mode 
corresponding to eigen-vector B(1) becomes purely
symmetric, while the mode  becomes anti-sym-
metric. For subsequent analytical transformations of
the formalism, it is interesting to note that for sym-
metric structure amplitude reflection and transmis-
sion coefficients r and t are coupled by a relation

 [22]. For uniform space, variations of 

and  is described by standing waves shifted by quar-
ter-wave.

Figure 2 shows the profiles of electric field for the
modes  and  characterized by θ = 0 (normal
incidence) for the Bragg reflector placed into the
quantization box for the frequencies below stop band,
at the center of stop band, and on the edge of the
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stopband. The Bragg reflector was constructed from
16 pairs of quarter-wave layers with the refractive indi-
ces 1.45 and 2.2 (corresponding to silica and titania);
the structure is surrounded by vacuum. Thus the
thicknesses satisfy the condition
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Fig. 2. The profiles of the electric field for the modes 

and  (solid and dashed curves) the modes obtained by
using BC (20) for the Bragg reflector placed in a “box of
quantization,” for the frequency of eigenmodes (a) the
lower allowed band, (b) in the center of PBG, and (c) on
the edge of the PBG. The dotted line in the Fig. 2c shows
the profile of the field obtained using outgoing wave
boundary conditions.
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In the photonic band structure of Bragg reflector
the band gap is centered at frequency , and the
width of the band gap is defined by the contrast of the
refractive indices n1 and n2. It was predicted [23, 24],
that in infinite photonic crystal probability of sponta-
neous emission is reduced to zero for the frequencies
corresponding to bandgap, but for the structures of the
finite size it is obviously not the case.

For the modes within the first allowed band, the
fields are standing waves outside the structure and
standing Bloch waves within the structure.

ωBR

For the mode, corresponding to the , shown in
Fig. 2b, the spatial structure of the mode is dramati-
cally changed: the modes exponentially decay towards
the center of the structure, and then, growth toward
the opposite edge. In the surrounding media the
modes are standing waves of constant amplitude, but

unlike the case of uniform media the modes  and

 are either coincides or shifted by half wavelength in
respect to each other. Such peculiar spatial profile
indicate that there are areas outside the structure,

ωBR

�

(1)
e

�

(2)
e

Fig. 3. Dependencies of the quantities Y (a); X (b); and Z (c) on the emission angle θ and frequency ω for the Bragg reflector;
emitter is positioned at the centre of the structure. The circles mark the dispersion of the mode obtained using outgoing wave
boundary conditions.
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where emission is either suppressed or enhanced.
Within the structure, the field (and probability of
emission) is falling into the depth of the structure, but
the decrease is not monotonic, an envelope of the field
also oscillates. Thus, the proposed procedure of S-
quantization describes qualitatively suppression of
spontaneous emission inside photonic crystals.

For the mode, corresponding to the edge of the
bandgap, (see Fig. 2c), envelop of the field, corre-
sponding to  is reducing when approaching center
of the structure, while for  the field in the structure
is increased. For comparison, the profile of the mode
obtained using outgoing wave BC with complex fre-
quency (1.16–0.0025i) eV, is also shown. It can be seen
that this mode is very similar to the mode, decribed by
the function . This is a manifestation of eigen-
modes of the photonic crystals called edge states
which are used in distributed feedback lasers [25] and
are responsible for appearance of Bragg polaritons
states [26].

Figure 3 shows the dependencies of the quantities

(31a)
(Fig. 3a),

(31b)
(Fig. 3b), and

(31c)
(Fig. 3c), defining Purcell effect for the Bragg reflec-
tor described above for the dipole, placed into the cen-
ter of the structure. For all cases, a pronounced band
reduced emission probability, mimicking a photonic
band gap of the Bragg reflector is clearly seen. For TE
polarization, the bandgap is increased with increasing
emission angle, while for TM polarization, the quan-
tities X and Z mark a reduction of the width of pho-
tonic band gap with increasing Θ.

There is also line of enhanced efficiency of emis-
sion, near the upper boundary of the band gap. This
line corresponds to gap edge state, shown in Fig. 2c.
Note, that there is no feature in the emission pattern,
corresponding to edge state in the lower boundary of
the bandgap, since upper and lower band edge states
have different parity.

Figure 4 shows the profiles of the electric field for
the modes  and  obtained by using BC (20) for
the microcavity placed in a “box of quantization,” for
the frequency corresponding to an eigenmode of a
microcavity. The microcavity structure is formed by
two Bragg reflectors as described above that confine a
layer with optical thickness corresponding to one
wavelength for the frequency . It can be seen, that
an envelope of the field corresponding to  exponen-
tially increases from edges towards center of the struc-
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ture repeating the profile corresponding to eigenmode
with complex frequency , obtained
using outgoing wave BC, while  quickly vanishes
within a depth of the structure. Dependence of the
quantities Y, X and Z on angle θ and the frequency of
the emitted light is shown in Fig. 5. Within the band-
gap probability of emission is suppressed, but for
eigenmode of the microcavity, whose frequency is
defined by outgoing wave BC [26] probability of emis-
sion is substantially increased. Thus S-quantization
depicts simultaneously the features of corresponding
to band gap (suppression of the emission probability)
and localized eigenstates (increase of the emission
probability).

CONCLUSION
We have developed a rigorous self-consistent pro-

cedure of quantization of electromagnetic field for
non-uniform media, when arbitrary layered structure
is present in the quantization box (S-quantization).
Instead of using periodic (Born- von Karman) bound-
ary conditions, implying an equating the wave ampli-
tude and its derivative on opposite facets of quantiza-
tion box, our model requires equity of incoming and
outgoing amplitudes, and quantizes electromagnetic
field by equating eigennumber of scattering matrix of
the system to unity (S-boundary conditions). In the
case of uniform media, S-conditions become equiva-
lent to Born- von Karman boundary conditions. The
procedure of the calculation of direction-dependent
modification of spontaneous emission rate (Purcell
effect) for arbitrary layered structure based on S-quan-

− ω(1.0 0.0002 ) BRi
�
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e

Fig. 4. The profiles of the electric field for the modes 

and  (solid and dashed curves) obtained by using BC
(20) for the microcavity placed in a “box of quantization,”
for the frequency corresponding to an eigenmode of a
microcavity. Green dotted line shows the profile of the
field of microcavity eigenmode obtained using outgoing
wave boundary conditions.
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tization has been developed. The procedure is rigorous
and allows to avoid difficulties, coupled to normaliza-
tion of quasi-stationary mode and originating from
divergence of the integral, describing a mode volume
in open system. The procedure is applied to calcula-
tion of directional dependence of spontaneous emis-
sion rate for Bragg reflectors and microcavities.
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